首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The effects of kaempferol on the oxidative and phosphorylative properties of plant mitochondria from potato tubers and etiolated mung bean (Phaseolus aureus Roxb.) hypocotyls were investigated. Kaempferol inhibited the state 3 oxidation rate of malate, NADH, and succinate, but was without effect on the ascorbate-tetramethyl p-phenylenediamine oxidation rate. The inhibition was almost the same whether the mitochondria were in state 3 or in an uncoupled state 3. When 180 micromolar kaempferol was added during state 4, the tight coupling of succinate or NADH oxidation was not released. The results obtained indicate that kaempferol inhibits the mitochondrial electron flow at, or just after, the flavoprotein site.  相似文献   

2.
Mitochondria from Zucker fatty (ZF) rats (a model for fatty liver disease) showed a delay in the repolarization after a phosphorylative cycle and a decrease on state 3 respiration, suggesting alterations at the phosphorylative system level. The ATPase activity showed no differences between control and ZF rats, implying alterations in other components of the phosphorylative system. A pronounced depletion in the content of the adenine nucleotide translocator (ANT) was observed by Western blotting, while no alterations were found in the mitochondrial voltage-dependent anion channel content. These data suggest that hepatic accumulation of fat impairs mitochondrial function, reflecting the loss of oxidative phosphorylation capacity caused by a decrease in the ANT content.  相似文献   

3.
The effects of flavone on the oxidative and phosphorylative properties of plant mitochondria from potato tubers and etiolated mung bean hypocotyls were investigated. Flavone inhibited the state 3 oxidation rates of malate, NADH and, to a lesser extent, succinate but was without effect on the ascorbate-TMPD oxidation rate. The inhibition was the same whether the mitochondria were in state 3 or in an uncoupled state 3. When 100 μM flavone was added during the state 4, the tight coupling of succinate or NADH oxidation was not released. In the electron transfer chain, flavone inhibition appeared to be located in the flavoprotein region. All forms of NADH dehydrogenases seemed to be affected but the greatest inhibition appeared when exogenous NADH was used.  相似文献   

4.
By measurement of energy charge (ATP+1/2ADP / ATP+ADP+AMP) and mitochondrial phosphorylative activity in liver tissue, it was possible to estimate the states of ATP generation and ATP utilization of normal and regenerative liver. In the liver of partially hepatectomized rabbits, a characteristic decrease in energy charge and increase in mitochondrial phosphorylative activity as compared with those of normal liver were noted, consistent with the notion that ATP-consuming reactions such as protein and nucleic acid syntheses are enhanced in the regenerative process. When normal or hepatectomized rabbits were singly circulated extracorporeally, the mitochondrial phosphorylative activity increased with a concomitant rise in energy charge. In cross-circulation between normal and hepatectomized rabbits, the energy charge of the normal partner decreased markedly with a concomitant elevation in mitochondrial phosphorylative activity, while those in the remnant liver of the hepatectomized partners were not significantly different from those of singly circulated hepatectomized rabbits. The decreased energy charge levels of the normal partner were prevented by the premedication of insulin without a significant effect to the hepatectomized partner. It is suggested that there is a humoral factor stimulating the hepatic energy-requiring biosynthetic process in the blood of hepatectomized rabbits.  相似文献   

5.
In unwashed mitochondria the oxidation of L-lactate (with NAD+) proceeds in presence of the added lactate dehydrogenase. The respiration is characterized by the high rate in state 4 and is stimulated by ADP. This process takes place in unwashed mitochondria and homogenate of the heart in absence of added lactate dehydrogenase. Oxidation of lactate with NAD+ is inhibited by rotenone. It has been also revealed that the oxidation of glutamate is insufficiently altered in presence of lactate (with NAD+) in unwashed mitochondria as compared with the washed ones. It is supposed that the stimulating effect of lactate with NAD+ on the mitochondria respiration is not so much a result of the membrane-damaged action as a result of oxidation of lactate dehydrogenase reaction products: phosphorylative oxidation of pyruvate and nonconjugated oxidation of NADH. Utilization of these products takes place in the main respiratory chain, including its first stage.  相似文献   

6.
7.
The PDC (pyruvate dehydrogenase complex) is strongly inhibited by phosphorylation during starvation to conserve substrates for gluconeogenesis. The role of PDHK4 (pyruvate dehydrogenase kinase isoenzyme 4) in regulation of PDC by this mechanism was investigated with PDHK4-/- mice (homozygous PDHK4 knockout mice). Starvation lowers blood glucose more in mice lacking PDHK4 than in wild-type mice. The activity state of PDC (percentage dephosphorylated and active) is greater in kidney, gastrocnemius muscle, diaphragm and heart but not in the liver of starved PDHK4-/- mice. Intermediates of the gluconeogenic pathway are lower in concentration in the liver of starved PDHK4-/- mice, consistent with a lower rate of gluconeogenesis due to a substrate supply limitation. The concentration of gluconeogenic substrates is lower in the blood of starved PDHK4-/- mice, consistent with reduced formation in peripheral tissues. Isolated diaphragms from starved PDHK4-/- mice accumulate less lactate and pyruvate because of a faster rate of pyruvate oxidation and a reduced rate of glycolysis. BCAAs (branched chain amino acids) are higher in the blood in starved PDHK4-/- mice, consistent with lower blood alanine levels and the importance of BCAAs as a source of amino groups for alanine formation. Non-esterified fatty acids are also elevated more in the blood of starved PDHK4-/- mice, consistent with lower rates of fatty acid oxidation due to increased rates of glucose and pyruvate oxidation due to greater PDC activity. Up-regulation of PDHK4 in tissues other than the liver is clearly important during starvation for regulation of PDC activity and glucose homoeostasis.  相似文献   

8.
In non-diabetic rats, the mitochondrial phosphorylative activity per unit of cytochrome a(+a3) in the remnant liver 3 hours after hepatectomy increased to approximately 140% of sham-operated controls without significant decrease in the energy charge. In diabetic rats the enhancement in mitochondrial phosphorylative activity following hepatectomy was inhibited in proportion to the severity of impaired insulin secretion, with a concomitant decrease in hepatic energy charge. It is suggested that insulin plays an important role in initiating an enhancement of mitochondrial oxidative phosphorylation.  相似文献   

9.
Disturbance of methyl group metabolism in alloxan-diabetic sheep   总被引:1,自引:0,他引:1  
Alloxan-induced diabetes results in changes in the activities of a number of enzymes related to methyl group metabolism in sheep. Decreases in the activities of phospholipid methyltransferase and betaine-homocysteine methyltransferase in diabetic sheep liver indicate a reduced rate of choline synthesis and oxidation. A 65-fold increase in the activity of glycine methyltransferase and a 4-fold rise in the activity of gamma-cystathionase in diabetic sheep liver with elevated urinary excretion of cyst(e)ine suggest that catabolism of the methyl group of methionine and homocysteine was enhanced in the diabetic state.  相似文献   

10.
Mitochondria from liver, kidney, brain, and skeletal muscle metabolized acetaldehyde. Acetaldehyde oxidation by liver and kidney mitochondria was maximal at low levels of acetaldehyde and was sensitive to rotenone, suggesting the involvement of a NAD+-dependent aldehyde dehydrogenase with a high affinity for acetaldehyde. Acetaldehyde oxidation was stimulated 50% by ADP, suggesting that, in state 4, reoxidation of NADH is rate limiting for acetaldehyde oxidation. In state 4, acetaldehyde oxidation was decreased by NAD+-dependent substrates, as well as by succinate and ascorbate. The inhibition by the latter two substrates was prevented by ADP, dinitrophenol, valinomycin, and gramicidin, but not by oligomycin. Since these compounds are linked to energy transduction and utilization, the data suggest that the inhibition is mediated via energy-dependent reversed electron transport. In state 3, all of these substrates caused considerably less inhibition of acetaldehyde oxidation, suggesting that the activity of aldehyde dehydrogenase, and not of NADH reoxidation, is probably rate limiting for acetaldehyde oxidation. The ionophores valinomycin and gramicidin stimulated acetaldehyde oxidation to a greater extent than ADP. These ionophores also stimulated acetaldehyde oxidation in the presence of ADP. Stimulation by valinomycin occurred in the presence of monovalent cations transported by this ionophore, e.g., K+, Rb+, Cs+. Stimulation by gramicidin also occurred in the presence of these cations, but did not occur with Na+ or Li+. Na+ prevents the stimulation of acetaldehyde oxidation, which occurs in the presence of gramicidin and K+. The stimulation by valinomycin and gramicidin was energy dependent and required the presence of a permeant anion. In the absence of an ionophore, potassium phosphate had no effect on acetaldehyde oxidation. These data suggest that the oxidation of acetaldehyde by rat liver and kidney mitochondria is influenced by the oxidation-reduction state of the mitochondria and by the cationic environment. With brain and muscle mitochondria, the rate of acetaldehyde oxidation increased two- to threefold as the concentration of acetaldehyde was raised from 0.167 to 0.50 mm. Acetaldehyde oxidation in these mitochondria was also sensitive; to rotenone, indicating dependence on NAD+. ADP, valinomycin, gramicidin, and succinate, compounds which either increased or decreased the rate of acetaldehyde oxidation by liver and kidney mitochondria, had no effect on acetaldehyde oxidation by muscle or brain mitochondria. In state 4, mitochondria from Becker-transplantable hepatocellular carcinoma HC-252 oxidized acetaldehyde at the same rate as liver mitochondria. However, in the presence of ADP, dinitrophenol, valinomycin and gramicidin, the rate of acetaldehyde oxidation by the tumor mitochondria was two to three times greater than that of liver mitochondria, suggesting the presence of a more active; acetaldehyde-oxidizing system in tumor than in liver mitochondria.  相似文献   

11.
A significant proportion of standard metabolic rate is devoted to driving mitochondrial proton leak, and this futile cycle may be a site of metabolic control during hibernation. To determine if the proton leak pathway is decreased during metabolic depression related to hibernation, mitochondria were isolated from liver and skeletal muscle of nonhibernating (active) and hibernating arctic ground squirrels (Spermophilus parryii). At an assay temperature of 37 degrees C, state 3 and state 4 respiration rates and state 4 membrane potential were significantly depressed in liver mitochondria isolated from hibernators. In contrast, state 3 and state 4 respiration rates and membrane potentials were unchanged during hibernation in skeletal muscle mitochondria. The decrease in oxygen consumption of liver mitochondria was achieved by reduced activity of the set of reactions generating the proton gradient but not by a lowered proton permeability. These results suggest that mitochondrial proton conductance is unchanged during hibernation and that the reduced metabolism in hibernators is a partial consequence of tissue-specific depression of substrate oxidation.  相似文献   

12.
17β-estradiol (E2) is considered to modulate the ATP synthase activity through direct binding to the oligomycin sensitive-conferring protein. We have previously demonstrated that E2 increases the amplitude of depolarization associated with the addition of ADP to energized mitochondria (i.e., to initiate a phosphorylative cycle) suggesting a direct action on the phosphorylative system of mitochondria. The purpose of the present study was to investigate the underlying mechanisms responsible for this effect. We show here that E2 modulates the activity of mitochondrial ATP synthase by promoting the intrinsic uncoupling (“slipping”) of the ATP synthase. E2 depressed RCR, ADP/O ratio and state 3 respiration, whereas state 4 respiration was increased and VFCCP (uncoupled respiration) remained unaltered. In contrast to the stimulatory effect on state 4 respiration, state 2 respiration and Volig were not affected by E2. The effect of E2 appeared to be directed towards ATP synthase, since glutamate/malate respiration, uncoupled from the electron transport chain, was unaffected by E2. Apparently, E2 allows a proton back-leak through the Fo component of ATP synthase. This action of E2 is dependent on the presence of ATP, is more pronounced at high membrane potentials, and it is reversed by oligomycin (a Fo-ATP synthase inhibitor) but not by resveratrol (a F1-ATP synthase inhibitor). Altogether, our data provide a mechanistic explanation for the effect of E2 at the level of mitochondrial ATP synthase.  相似文献   

13.
The oxidation of 14C-labelled branched-chain alpha-keto acids corresponding to the branched-chain amino acids valine, isoleucine and leucine has been studied in isolated mitochondria from heart, liver and skeletal muscle. 1. Heart and liver mitochondria have similar capacities to oxidize these alpha-keto acids based on protein content. Skeletal muscle mitochondria also show significant activity. 2. Half maximum rates are obtained with approximately 0.1 mM of the alpha-keto acids under optimal conditions. Added NAD and CoA had no effect on the oxidation rate, showing that endogenous mitochondrial NAD and CoA are required for the oxidation. 3. Addition of carnitine esters of fatty acids (C6--C16), succinate, pyruvate, or alpha-ketoglutarate inhibited the oxidation of the branched chain alpha-keto acids, especially in a high-energy state (no ADP added). In heart mitochondria the addition of AD (low-energy state) decreased the inhibitory effects of acylcarnitines of medium chain length or of pyruvate, and abolished the inhibitory effect of succinate. It is suggested that the oxidation rate is regulated mainly by the redox state of the mitochondria under the conditions used. 4. The results are discussed in relation to the regulation of branched-chain amino acid metabolism in the body.  相似文献   

14.
It has been shown that KM values for ADP when rat liver mitochondria oxidized succinate were strictly dependent on the values of the respiratory control ratios. The Ki values for palmitoyl-CoA inhibition of the ADP-stimulated succinate oxidation and the inhibition of the uncoupler-stimulated ATPase activity were equal to 0.5 muM. Mitochondria from livers of starved rats showed 30% inhibition of the state 3 respiratory rate (compared to the uncoupled respiratory rate) which was abolished by addition of carnitine. It was supposed that this inhibition was due to the influence of acyl-CoAs bound to the inner mitochondrial membrane on the adeninenucleotide translocase. Mitochondria from livers of fed rats showed a strong inhibition of succinate oxidation both in state 4 and state 3, although the rate of uncoupled respiration was normal. It was assumed that in this case the changes in mitochondrial behaviour was caused by the decrease in the concentration of ADP and ATP in the matrix space of mitochondria.  相似文献   

15.
The aim of the present study was to evaluate the changes caused by adjuvant-induced arthritis in liver mitochondria and to investigate the effects of the nonsteroidal anti-inflammatory drug nimesulide. The main alterations observed in liver mitochondria from arthritic rats were: higher rates of state IV and state III respiration with beta-hydroxybutyrate as substrate; reduced respiratory control ratio and impaired capacity for swelling dependent on beta-hydroxybutyrate oxidation. No alterations were found in the activities of NADH oxidase and ATPase. Nimesulide produced: (1) stimulation of state IV respiration; (2) decrease in the ADP/O ratio and in the respiratory control ratio; (3) stimulation of ATPase activity of intact mitochondria; (4) inhibition of swelling driven by the oxidation of beta-hydroxybutyrate; (5) induction of passive swelling due to NH(3)/NH(4)+ redistribution. The activity of NADH oxidase was insensitive to nimesulide. Mitochondria from arthritic rats showed higher sensitivity to nimesulide regarding respiratory activity. The results of this work allow us to conclude that adjuvant-induced arthritis leads to quantitative changes in some mitochondrial functions and in the sensitivity to nimesulide. Direct evidence that nimesulide acts as an uncoupler was also presented. Since nimesulide was active in liver mitochondria at therapeutic levels, the impairment of energy metabolism could lead to disturbances in the liver responses to inflammation, a fact that should be considered in therapeutic intervention.  相似文献   

16.
1. Changes in liver glutathione reductase and glutathione peroxidase activities in relation to age and sex of rats were measured. Oxidation of GSH was correlated with glutathione peroxidase activity. 2. Glutathione reductase activity in foetal rat liver was about 65% of the adult value. It increased to a value slightly higher than the adult one at about 2-3 days, decreased until about 16 days and then rose after weaning to a maximum at about 31 days, finally reaching adult values at about 45 days old. 3. Weaning rats on to an artificial rat-milk diet prevented the rise in glutathione reductase activity associated with weaning on to the usual diet high in carbohydrate. 4. In male rats glutathione peroxidase activity in the liver increased steadily up to adult values. There were no differences between male and female rats until sexual maturity, when, in females, the activity increased abruptly to an adult value that was about 80% higher than that in males. 5. The rate of GSH oxidation in rat liver homogenates increased steadily from 3 days until maturity, when the rate of oxidation was about 50% higher in female than in male liver. 6. In the liver a positive correlation between glutathione peroxidase activity and GSH oxidation was found. 7. It is suggested that the coupled oxidation-reduction through glutathione reductase and glutathione peroxidase is important for determining the redox state of glutathione and of NADP, and also for controlling the degradation of hydroperoxides. 8. Changes in glutathione reductase and glutathione peroxidase activities are discussed in relation to the redox state of glutathione and NADP and to their effects on the concentration of free CoA in rat liver and its possible action on ketogenesis and lipogenesis.  相似文献   

17.
Liver mitochondrial bioenergetics of Goto-Kakizaki (GK) rats (a model of non-insulin dependent diabetes mellitus) reveals a Delta Psi upon energization with succinate significantly increased relatively to control animals. The repolarization rate following ADP phosphorylation is also significantly increased in GK mitochondria in parallel with increased ATPase activity. The increase in the repolarization rate and ATPase activity is presumably related to an improved efficiency of F(0)F(1)-ATPase, either from a better phosphorylative energy coupling or as a consequence of an enlarged number of catalytic units. Titrations with oligomycin indicate that diabetic GK liver mitochondria require excess oligomycin pulses to completely abolish phosphorylation, relative to control mitochondria. Therefore, accepting that the number of operational ATP synthase units is inversely proportional to the amount of added oligomycin, it is concluded that liver mitochondria of diabetic GK rats are provided with extra catalytic units relative to control mitochondria of normal rats. Other tissues (kidney, brain and skeletal muscle) were evaluated for the same bioenergetic parameters, confirming that this feature is exclusive to liver from diabetic GK rats.  相似文献   

18.
Sweet potato mitochondria exhibited respiratory control duringthe oxidation of malate and succinate with ADP/O ratios approachingthe theoretical P/O values. Prior to the addition of ADP themitochondria showed a considerable rate of substrate oxidation,defined as the basic respiration, which was of the same magnitudeas state 4 respiration. Electrons from state 4 and the basicrespiration were at least partially mediated by the cytochromechain, as shown by effects of cyanide, azide and amytal, andby spectrophotometric evidence. The nature of ATPase was studied and the influence of inhibitorsof ATPase activity on oxidation helped to establish the relationshipbetween the several states of oxidation and ATPase activity.The ADP/O ratio and ADP-stimulated respiration were slightlydecreased by fluoride, while state 4, the basic respirationand ATPase activity were effectively inhibited. Chlorpromazineinhibited DNP-stimulated ATPase activity, respiration uncoupledby DNP and all the states of malate oxidation. However, state4 and basic respiration were less sensitive than was state 3of malate oxidation to 0.3 mM chlorpromazine. It was concluded that mitochondrial ATPase played a role inthe basic respiration and in state 4 oxidation. 1Present address: Department of Biochemistry Tel-Aviv University,Tel-Aviv, Israel (Received August 1, 1969; )  相似文献   

19.
We compared NAD-dependent state 4 and state 3 respiration, NADH oxidation and Complex I specific activity in liver mitochondria from 4- and 30-month-old rats. All the activities examined were significantly decreased with aging. In both groups of animals, the flux control coefficients measured by rotenone titration indicated that Complex I is largely rate controlling upon NADH aerobic oxidation while, in state 3 respiration, it shares the control with other steps in the pathway. Moreover, we observed a trend wherein flux control coefficients of Complex I became higher with age. This indication was strengthened by examining the rotenone inhibition thresholds showing that Complex I becomes more rate controlling, over all the examined activities, during aging. Our results point out that age-related alterations of the mitochondrial functions are also present in tissues considered less prone to accumulate mitochondrial DNA mutations.  相似文献   

20.
The aim of the present work was to investigate the mechanisms of oxidative damage of rat liver mitochondria in vitro, under hypochlorous acid (HOCl)-induced oxidative stress, and in vivo, under acute carbon tetrachloride-induced intoxication in rats. Hypochlorous acid (50–300 μM), the main inflammatory agent, inhibited liver mitochondria respiratory activity and caused uncoupling in the respiratory and phos-porylation processes. The toxic damage of rat liver after 24 h of acute carbon tetrachloride-induced intoxication (4 g/kg, intragastrically) was accompanied by a significant reduction in succinate- and glutamate-dependent respiration rate in state 3 (by 65%, p < 0.001, and by 50%, p < 0.01, respectively). The respiration control ratio approached 1, reflecting the loss of respiration control. The phosphorylation coefficient significantly decreased due to uncoupling of the oxidation and phosphorylation processes. The mitochondrial alterations were associated with oxidation of intramitochondrial GSH by 25% (p < 0.05), the marked inhibition of succinate dehydrogenase (complex II) by 35% (p < 0.05), and the rise of blood plasma nitric oxide level by 45% (p < 0.05). The impairment of mitochondrial respiratory function may result from the inhibition of enzymatic activities in the respiratory chain and the damage of mitochondrial membrane during intoxication and plays a key role in the development of the CCl4-induced hepatotoxicity. Melatonin administration under CCl4-induced intoxication (three times at a dose of 10 mg/kg) increased the rate of succinate oxidation in state 3 by 30% (p < 0.05) and reversed the increase in glutathione peroxidase activity. Melatonin prevented an elevation of nitric oxide level in the blood plasma of intoxicated animals but did not protect mitochondrial functions under acute intoxication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号