首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A cDNA clone (WL : AGA.1) encoding wheat leaf ADP-glucose pyrophosphorylase has been isolated from a gt11 expression library, by immunological screening with anti-spinach leaf ADP-glucose pyrophosphorylase serum. The WL : AGA.1 cDNA is 948 bp long and contains approximately 55% of the complete wheat leaf ADP-glucose pyrophosphorylase mRNA sequence, estimated from Northern blot experiments. A wheat endosperm cDNA library was subsequently constructed in gt11 and six clones hybridising to the cDNA insert of clone WL : AGA.1 were isolated. The longest of these wheat endosperm ADP-glucose pyrophosphorylase cDNAs, clone WE : AGA.7, is nearly full-length (1798 bp), indicated by Northern blot analysis of wheat endosperm mRNA and nucleotide sequence analysis.Southern hybridisation analysis and restriction enzyme mapping indicated that the wheat leaf and wheat endosperm ADP-glucose pyrophosphorylase cDNAs and genes are members of two distinct gene families. In addition, restriction enzyme mapping revealed polymorphism in the wheat endosperm ADP-glucose pyrophosphorylase cDNAs, indicating the existence of at least two wheat endosperm ADP-glucose pyrophosphorylase gene sub-families.Subsequent nucleotide sequence analysis indicates that there is approximately 55% identity between wheat leaf and wheat endosperm ADP-glucose pyrophosphorylase cDNAs. In contrast, members of each sub-family of endosperm cDNA, represented by clones WE : AGA.3 and WE : AGA.7, are 96% identical.  相似文献   

3.
Maize genes encoding the small subunit of ADP-glucose pyrophosphorylase   总被引:1,自引:0,他引:1  
Plant ADP-glucose pyrophosphorylase (AGP) is a heterotetrameric enzyme composed of two large and two small subunits. Here, we report the structures of the maize (Zea mays) genes encoding AGP small subunits of leaf and endosperm. Excluding exon 1, protein-encoding sequences of the two genes are nearly identical. Exon 1 coding sequences, however, possess no similarity. Introns are placed in identical positions and exhibit obvious sequence similarity. Size differences are primarily due to insertions and duplications, hallmarks of transposable element visitation. Comparison of the maize genes with other plant AGP small subunit genes leads to a number of noteworthy inferences concerning the evolution of these genes. The small subunit gene can be divided into two modules. One module, encompassing all coding information except that derived from exon 1, displays striking similarity among all genes. It is surprising that members from eudicots form one group, whereas those from cereals form a second group. This implies that the duplications giving rise to family members occurred at least twice and after the separation of eudicots and monocot cereals. One intron within this module may have had a transposon origin. A different evolutionary history is suggested for exon 1. These sequences define three distinct groups, two of which come from cereal seeds. This distinction likely has functional significance because cereal endosperm AGPs are cytosolic, whereas all other forms appear to be plastid localized. Finally, whereas barley (Hordeum vulgare) reportedly employs only one gene to encode the small subunit of the seed and leaf, maize utilizes the two genes described here.  相似文献   

4.
Heat stress reduces maize yield and several lines of evidence suggest that the heat lability of maize endosperm ADP-glucose pyrophosphorylase (AGPase) contributes to this yield loss. AGPase catalyzes a rate-limiting step in starch synthesis. Herein, we present a novel maize endosperm AGPase small subunit variant, termed BT2-TI that harbors a single amino acid change of residue 462 from threonine to isoleucine. The mutant was isolated by random mutagenesis and heterologous expression in a bacterial system. BT2-TI exhibits enhanced heat stability compared to wildtype maize endosperm AGPase.The TI mutation was placed into another heat-stable small subunit variant, MP. MP is composed of sequences from the maize endosperm and the potato tuber small subunit. The MP-TI small subunit variant exhibited greater heat stability than did MP. Characterization of heat stability as well as kinetic and allosteric properties suggests that MP-TI may lead to increased starch yield when expressed in monocot endosperms.  相似文献   

5.
The intracellular location of ADPglucose pyrophosphorylase (AGPase) in wheat during endosperm development was investigated by analysis of the recovery of marker enzymes from amyloplast preparations. Amyloplast preparations contained 20-28% of the total endosperm activity of two plastidial marker enzymes and less than 0.8% of the total endosperm activity of two cytosolic marker enzymes. Amylo plasts prepared at various stages of development, from 8-30 d post anthesis, contained between 2% and 10% of the total AGPase activity; this implies that between 7% and 40% of the AGPase in wheat endosperm is plastidial during this period of development. Two proteins were recognized by antibodies to both the large and small subunits of wheat AGPase. The larger of the two AGPases was the major form of the enzyme in whole cell extracts, and the smaller, less abundant, form of AGPase was enriched in plastid preparations. The results are consistent with data from other graminaceous endosperms, suggesting that there are distinct plastidial and cytosolic isoforms of AGPase composed of different subunits. The plastidial isoform of AGPase from wheat endosperm is relatively insensitive to the allosteric regulators 3-phosphoglycerate and inorganic orthophos phate compared with plastidial AGPase from other species. Amyloplast AGPase showed no sensitivity to physiological concentrations of inorganic orthophosphate. 15 mM 3-phosphoglycerate caused no stimulation of the pyrophosphorolytic reaction, and only 2-fold stimulation of the ADPglucose synthesizing reaction.  相似文献   

6.
cDNA probes encoding the barley endosperm ADP-glucose pyrophosphorylase (AGP) small subunit (bepsF2), large subunit (bepl10), and leaf AGP large subunit (blpl) were hybridized with barley genomic DNA blots to determine copy number and polymorphism. Probes showing polymorphism were mapped on a barley RFLP map. Probes that were not polymorphic were assigned to chromosome arms using wheat-barley telosomic addition lines. The data suggested the presence of a single-copy gene corresponding to each of the cDNA probes. In addition to the major bands, several weaker cross-hybridizing bands indicated the presence of other, related sequences. The weaker bands were specific to each probe and were not due to cross-hybridization with the other probes examined here. The endosperm AGP small subunit (bepsF2) majorband locus was associated with chromosome 1P and designated Aga1. The endosperm AGP large subunit (bepl10) major-band locus was mapped to chromosome 5M and designated Aga7. The endosperm AGP large-subunit minor bands were not mapped. The leaf AGP large-subunit major band was associated with chromosome 7M and designated Aga5. One of the leaf AGP large-subunit minor bands was mapped to chromosome 5P and designated Aga6. A clone for the wheat endosperm AGP large-subunit (pAga7) hybridized to the same barley genomic DNA bands as the corresponding barley probe indicating a high degree of identity between the two probes.  相似文献   

7.
Gómez-Casati DF  Iglesias AA 《Planta》2002,214(3):428-434
ADP-glucose pyrophosphorylase (AGPase; EC 2.7.7.27) was purified and characterized from two wheat (Triticum aestivum L.) tissues: leaf and endosperm. The leaf enzyme, purified over 1,300-fold, was found to be a heterotetramer composed of subunits of 51 and 54 kDa and possessing regulatory properties typical of AGPases from photosynthetic tissues, being mainly regulated by 3-phosphoglycerate (activator; A0.5=0.01 mM) and orthophosphate (inhibitor; I0.5=0.2 mM). Conversely, the enzyme from wheat endosperm was insensitive to activation by 3-phosphoglycerate and other metabolites. It was, however, inhibited by orthophosphate (I0.5=0.7 mM), ADP (I0.5=3.2 mM) and fructose-1,6-bisphosphate (0.5 = 1.5 mM). All of these inhibitory actions were reversed by 3-phosphoglycerate and fructose-6-phosphate. The endosperm enzyme was found to be a heterotetramer composed of subunits of 52 and 53 kDa, which were recognized by antiserum raised to spinach leaf AGPase. The results suggest that wheat endosperm AGPase possesses distinctive regulatory properties that are relevant in vivo.  相似文献   

8.
9.
TW Greene  LC Hannah 《The Plant cell》1998,10(8):1295-1306
ADP-glucose pyrophosphorylase (AGP) represents a key regulatory step in polysaccharide synthesis in organisms ranging from bacteria to plants. Higher plant AGPs are complex in nature and are heterotetramers consisting of two similar but distinct subunits. How the subunits are assembled into enzymatically active polymers is not yet understood. Here, we address this issue by using naturally occurring null mutants of the Shrunken2 (Sh2) and Brittle2 (Bt2) loci of maize as well as the yeast two-hybrid expression system. In the absence of the maize endosperm large AGP subunit (SH2), the BT2 subunit remains as a monomer in the developing endosperm. In contrast, the SH2 protein, in the absence of BT2, is found in a complex of 100 kD. A direct interaction between SH2 and BT2 was proven when they were both expressed in yeast. Several motifs are essential for SH2:BT2 interaction because truncations removing the N or C terminus of either subunit eliminate SH2:BT2 interactions. Analysis of subunit interaction mutants (sim) also identified motifs essential for protein interactions.  相似文献   

10.
Preparations enriched in plastids were used to investigate the location of ADP-glucose pyrophosphorylase (AGPase) in the developing endosperm of maize (Zea mays L.). These preparations contained more than 25% of the total activity of the plastid marker enzymes alkaline pyrophosphatase and soluble starch synthase, less than 2% of the cytosolic marker enzymes alcohol dehydrogenase and pyrophosphate, fructose 6-phosphate 1-phosphotransferase, and approximately 3% of the AGPase activity. Comparison with the marker enzyme distribution suggests that more than 95% of the activity of AGPase in maize endosperm is extra-plastidial. Two proteins were recognized by antibodies to the small subunit of AGPase from maize endosperm Brittle-2 (Bt2). The larger of the two proteins was the major small subunit in homogenates of maize endosperm, and the smaller, less abundant of the two proteins was enriched in preparations containing plastids. These results suggest that there are distinct plastidial and cytosolic forms of AGPase, which are composed of different subunits. Consistent with this was the finding that the bt2 mutation specifically eliminated the extraplastidial AGPase activity and the larger of the two proteins recognized by the antibody to the Bt2 subunit.  相似文献   

11.
Amyloplast-targeted green fluorescent protein (GFP) was used to monitor amyloplast division and starch granule synthesis in the developing endosperm of transgenic rice. Two classical starch mutants, sugary and shrunken, contain reduced activities of isoamylase1 (ISA1) and cytosolic ADP-glucose pyrophosphorylase, respectively. Dividing amyloplasts in the wild-type and shrunken endosperms contained starch granules, whereas those in sugary endosperm did not contain detectable granules, suggesting that ISA1 plays a role in granule synthesis at the initiation step. The transition from phytoglycogen to sugary-amylopectin was gradual in the boundary region between the inner and outer endosperms of sugary. These results suggest that the synthesis of sugary-amylopectin and phytoglycogen involved a stochastic process and that ISA1 activity plays a critical role in the stochastic process in starch synthesis in rice endosperm. The reduction of cytosolic ADP-glucose pyrophosphorylase activity in shrunken endosperm did not inhibit granule initiation but severely restrained the subsequent enlargement of granules. The shrunken endosperm often developed pleomorphic amyloplasts containing a large number of underdeveloped granules or a large cluster of small grains of amyloplasts, each containing a simple-type starch granule. Although constriction-type divisions of amyloplasts were much more frequent, budding-type divisions were also found in the shrunken endosperm. We show that monitoring GFP in developing amyloplasts was an effective means of evaluating the roles of enzymes involved in starch granule synthesis in the rice endosperm.  相似文献   

12.

Background  

ADP-glucose pyrophosphorylase (AGPase), which catalyses a rate limiting step in starch synthesis, is a heterotetramer comprised of two identical large and two identical small subunits in plants. Although the large and small subunits are equally sensitive to activity-altering amino acid changes when expressed in a bacterial system, the overall rate of non-synonymous evolution is ~2.7-fold greater for the large subunit than for the small subunit. Herein, we examine the basis for their different rates of evolution, the number of duplications in both large and small subunit genes and document changes in the patterns of AGPase evolution over time.  相似文献   

13.
Multiple forms of ADP-glucose pyrophosphorylase from tomato fruit.   总被引:3,自引:0,他引:3       下载免费PDF全文
B Y Chen  H W Janes 《Plant physiology》1997,113(1):235-241
ADP-glucose pyrophosphorylase (AGP) was purified from tomato (Lycopersicon esculentum Mill.) fruit to apparent homogeneity. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis the enzyme migrated as two close bands with molecular weights of 50,000 and 51,000. Two-dimensional polyacrylamide gel electrophoresis analysis of the purified enzyme, however, revealed at least five major protein spots that could be distinguished by their slight differences in net charge and molecular weight. Whereas all of the spots were recognized by the antiserum raised against tomato fruit AGP holoenzyme, only three of them reacted strongly with antiserum raised against the potato tuber AGP large subunit, and the other two spots (with lower molecular weights) reacted specifically with antisera raised against spinach leaf AGP holoenzyme and the potato tuber AGP small subunit. The results suggest the existence of at least three isoforms of the AGP large subunit and two isoforms of the small subunit in tomato fruit in vivo. The native molecular mass of the enzyme determined by gel filtration was 220 +/- 10 kD, indicating a tetrameric structure for AGP from tomato fruit. The purified enzyme is very sensitive to 3-phosphoglycerate/inorganic phosphate regulation.  相似文献   

14.
ADP-glucose (Glc) pyrophosphorylase (AGPase), a key regulatory enzyme in starch biosynthesis, is highly regulated. Transgenic approaches in four plant species showed that alterations in either thermal stability or allosteric modulation increase starch synthesis. Here, we show that the classic regulators 3-phosphoglyceric acid (3-PGA) and inorganic phosphate (Pi) stabilize maize (Zea mays) endosperm AGPase to thermal inactivation. In addition, we show that glycerol phosphate and ribose-5-P increase the catalytic activity of maize AGPase to the same extent as the activator 3-PGA, albeit with higher K(a) (activation constant) values. Activation by fructose-6-P and Glc-6-P is comparable to that of 3-PGA. The reactants ATP and ADP-Glc, but not Glc-1-P and pyrophosphate, protect AGPase from thermal inactivation, a result consistent with the ordered kinetic mechanism reported for other AGPases. 3-PGA acts synergistically with both ATP and ADP-Glc in heat protection, decreasing the substrate concentration needed for protection and increasing the extent of protection. Characterization of a series of activators and inhibitors suggests that they all bind at the same site or at mutually exclusive sites. Pi, the classic "inhibitor" of AGPase, binds to the enzyme in the absence of other metabolites, as determined by thermal protections experiments, but does not inhibit activity. Rather, Pi acts by displacing bound activators and returning the enzyme to its activity in their absence. Finally, we show from thermal inactivation studies that the enzyme exists in two forms that have significantly different stabilities and do not interconvert rapidly.  相似文献   

15.
ADP-glucose pyrophosphorylase (AGPase) catalyzes the rate-limiting step in starch biosynthesis in plants and changes in its catalytic and/or allosteric properties can lead to increased starch production. Recently, a maize (Zea mays)/potato (Solanum tuberosum) small subunit mosaic, MP [Mos(1–198)], containing the first 198 amino acids of the small subunit of the maize endosperm enzyme and the last 277 amino acids from the potato tuber enzyme, was expressed with the maize endosperm large subunit and was reported to have favorable kinetic and allosteric properties. Here, we show that this mosaic, in the absence of activator, performs like a wild-type AGPase that is partially activated with 3-phosphoglyceric acid (3-PGA). In the presence of 3-PGA, enzyme properties of Mos(1–198)/SH2 are quite similar to those of the wild-type maize enzyme. In the absence of 3-PGA, however, the mosaic enzyme exhibits greater activity, higher affinity for the substrates, and partial inactivation by inorganic phosphate. The Mos(1–198)/SH2 enzyme is also more stable to heat inactivation. The different properties of this protein were mapped using various mosaics containing smaller portions of the potato small subunit. Enhanced heat stability of Mos(1–198) was shown to originate from five potato-derived amino acids between 322 and 377. These amino acids were shown previously to be important in small subunit/large subunit interactions. These five potato-derived amino acids plus other potato-derived amino acids distributed throughout the carboxyl-terminal portion of the protein are required for the enhanced catalytic and allosteric properties exhibited by Mos(1–198)/SH2.  相似文献   

16.
Crude extracts of starchy endosperm from barley (Hordeum vulgare cv Bomi) contained high pyrophosphorolytic activity (up to 0.5 mumol of glucose-1-P formed min-1 mg-1 of protein) of ADP-glucose pyrophosphorylase (AGP) when assayed in the absence of 3-phosphoglycerate (3-PGA). This high activity was observed regardless of whether AGP had been extracted in the presence or absence of various protease inhibitors or other protectants. Western blot analysis using antibodies specific for either the small or large subunit of the enzyme demonstrated that the large, 60-kD subunit was prone to proteolysis in crude extracts, with a half-time of degradation at 4 degrees C (from 60 to 53 to 51 kD) on the order of minutes. The presence of high concentrations of protease inhibitors decreased, but did not prevent this proteolysis. The small, 51-kD subunit of barley endosperm AGP was relatively resistant to proteolysis, both in the presence or absence of protease inhibitors. For the crude, nonproteolyzed enzyme, 3-PGA acted as a weak activator of the ADP-glucose synthetic reaction (about 25% activation), whereas in the reverse reaction (pyrophosphorolysis) it served as an inhibitor rather than an activator. For both the synthetic and pyrophosphorolytic reactions, inorganic phosphate (Pi) acted as a weak competitive or mixed inhibitor of AGP. The relative insensitivity to 3-PGA/Pi regulation has been observed with both the nonproteolyzed crude enzyme and partially purified (over 60-fold) AGP, the latter characterized by two bands for the large subunit (molecular masses of 53 and 51 kD) and one band for the small subunit (51 kD). Addition of 3-PGA to assays of the partially purified, proteolyzed enzyme had little or no effect on the Km values of all substrates of AGP, but it reduced the Hill coefficient for ATP (from 2.1 to 1.0). These findings are discussed with respect to previous reports on the structure and regulation of higher plant AGP.  相似文献   

17.
Multiple forms of ADPglucose pyrophosphorylase of rice endosperm   总被引:3,自引:0,他引:3  
ADPglucose pyrophosphorylase from developing rice ( Oryza sativa ) endosperm was purified. The final preparation yielded 6 major protein spots as separated by two-dimensional polyacrylamide electrophoresis. All 6 polypeptides had similar molecular weights of ca 50 kDa and cross-reacted with polyclonal antibodies raised against two main protein bands among them. The results suggest that the rice endosperm ADPglucose pyrophorsphorylase is tetrameric and composed of multiple subunits with similar amino acid structure.  相似文献   

18.
In this work we test the hypothesis that yield of rice ( Oryza sativa L.) can be enhanced by increasing endosperm activity of ADP-glucose pyrophosphorylase (AGP), a key enzyme in starch biosynthesis. The potential for increases in yield exist because rice initiates more seeds than are taken to maturity and possesses excess photosynthetic capacity that could be utilized if there were more demand for assimilate. Following an approach already shown to be successful in wheat, experiments were designed to increase demand for assimilate by increasing the capacity for starch synthesis in endosperm. This was accomplished by transforming rice with a modified maize AGP large subunit sequence ( Sh2r6hs) under control of an endosperm-specific promoter. This altered subunit confers upon AGP decreased sensitivity to allosteric inhibition by inorganic phosphate (Pi) and enhanced heat stability, potentially leading to higher AGP activity in vivo. The Sh2r6hs transgene increased AGP activity in developing endosperm by 2.7-fold in the presence of Pi. Increases in AGP activity in transgenic seeds compared with controls were maximal between 10-15 days after anthesis. Starch content of individual seeds at harvest was not increased, but seed weight per plant and total plant biomass were each increased by more than 20%. Increased endosperm AGP activity thus stimulates setting of additional seeds and overall plant growth rather than increasing yield of seeds already set. Results demonstrate that deregulation of endosperm AGP increases overall plant sink strength, leading to larger, more productive plants in a manner similar to that in wheat having similar genetic modification.  相似文献   

19.
Most of the carbon used for starch biosynthesis in cereal endosperms is derived from ADP-glucose (ADP-Glc) synthesized by extra-plastidial AGPase activity, and imported directly across the amyloplast envelope. The properties of the wheat endosperm amyloplast ADP-Glc transporter were analysed with respect to substrate kinetics and specificities using reconstituted amyloplast envelope proteins in a proteoliposome-based assay system, as well as with isolated intact organelles. Experiments with liposomes showed that ADP-Glc transport was dependent on counter-exchange with other adenylates. Rates of ADP-Glc transport were highest with ADP and AMP as counter-exchange substrates, and kinetic analysis revealed that the transport system has a similar affinity for ADP and AMP. Measurement of ADP and AMP efflux from intact amyloplasts showed that, under conditions of ADP-Glc-dependent starch biosynthesis, ADP is exported from the plastid at a rate equal to that of ADP-Glc utilization by starch synthases. Photo-affinity labelling of amyloplast membranes with the substrate analogue 8-azido-[alpha-32P]ADP-Glc showed that the polypeptide involved in substrate binding is an integral membrane protein of 38 kDa. This study shows that the ADP-Glc transporter in cereal endosperm amyloplasts imports ADP-Glc in exchange for ADP which is produced as a by-product of the starch synthase reaction inside the plastid.  相似文献   

20.
Phosphoglucoisomerase from cytosol of immature wheat endosperm was purified 650-fold by ammonium sulphate fractionation, isopropyl alcohol precipitation, DEAE-cellulose chromatography and gel filtration through Sepharose CL-6B. The enzyme, with a molecular weight of about 130,000, exhibited maximum activity at pH 8.1. It showed typical hyperbolic kinetics with both fructose 6-P and glucose 6-P withK m of 0.18 mM and 0.44mM respectively. On either side of the optimum pH, the enzyme had lower affinity for the substrates. Using glucose 6-P as the substrate, the equilibrium was reached at 27% fructose 6-P and 73% glucose 6-P with an equilibrium constant of 2.7. The ΔF calculated from the apparent equilibrium constant was +597 cal mol-1. The activation energy calculated from the Arrhenius plot was 5500 cal mol-1. The enzyme was completely inhibited by ribose 5-P, ribulose 5-P and 6-phosphogluconate, withK i values of 0.17, 0.25 and 0.14 mM respectively. The probable role of the enzyme in starch biosynthesis is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号