首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
L A Videla 《FEBS letters》1984,178(1):119-122
The interrelations between the hepatic chemically induced antioxidant-sensitive respiration and the contents of malondialdehyde (MDA) and of reduced glutathione (GSH), were studied in the isolated hemoglobin-free perfused rat liver. Antioxidant-sensitive respiration was induced by the infusion of agents such as ethanol, iron, xanthine or t-butyl hydroperoxide, or by phenylhydrazine pretreatment in vivo. The development of this respiratory component occurred concomitantly with high levels of MDA in the perfused livers, while those of GSH were diminished.  相似文献   

2.
Antioxidant capacity of desferrioxamine in biological systems   总被引:1,自引:0,他引:1  
The antioxidant capacity of desferrioxamine (DF) was investigated in three biological systems. The addition of DF to rat brain homogenates undergoing autoxidation elicited a concentration dependent inhibition of both oxygen uptake and chemiluminescence, with a median inhibitory concentration (IC50) of 0.52 microM. In this system, Fe3+-induced light emission was completely abolished at a DF/Fe3+ molar ratio of 0.6. In rat erythrocyte suspensions supplemented with t-butyl hydroperoxide, DF lengthened the induction period and decreased the rate of oxygen consumption, with an IC50 of 300 microM. Infusion of increasing concentrations of DF to the perfused rat liver elicited a progressive decrease in the rate of oxygen consumption, with no alterations in the mitochondrial respiration. This DF-sensitive respiration has a maximal value of 200 nmol/g of liver/min, with a half-maximal rate at 120 microM DF. These results indicate that DF behaves as an efficient antioxidant either under basal conditions or in chemically-induced oxidative stress, through Fe3+ chelating and/or free-radical scavenging effects.  相似文献   

3.
Red blood cells from Wistar rats were exposed to milimolar concentrations of t-butyl hydroperoxide. Extensive hemoglobin oxidation (methemoglobin formation), t-butyl hydroperoxide cleavage (t-butanol formation) and peroxidation (measured by oxygen consumption and thiobarbituric acid reactive substances) was observed. Significant chemiluminescence was emitted by the system. Hemoglobin oxidation and t-butanol production were independent of oxygen pressure and free radical scavengers, however, luminescence was enhanced as oxygen pressure increased and it was reduced by addition of free radical scavengers. The spectral distribution of the light emitted suggests that the luminescence detected is not due to singlet oxygen dimol emission. The results are in agreement with a lipid peroxidative mechanism initiated by t-butoxy radicals produced in the interaction of hemoglobin and t-butyl hydroperoxide.  相似文献   

4.
In vitro exposure of hepatocytes or liver microsomes to t-butyl hydroperoxide resulted in a marked decrease of liver microsomal calcium pump activity. Decreased calcium pump activity was dependent upon both concentration and time. Liver microsomes could be protected from this effect by glutathione or dithiothreitol. In addition to decreased calcium pump activity, exposure of liver microsomes to t-butyl hydroperoxide produced a concentration-dependent aggregation of microsomal membrane protein as determined by polyacrylamide gel electrophoresis. Inhibition of microsomal calcium pump activity was observed when intact hepatocytes were incubated, in vitro, with t-butyl hydroperoxide. However, aggregation of microsomal membrane protein was not observed when hepatocytes were incubated with t-butyl hydroperoxide. The effects produced by exposure of liver microsomes to this compound do not appear to be a complete model of actions of the compound on intact cells.  相似文献   

5.
Oxygen uptake by erythrocytes exposed to t-butyl hydroperoxide (t-BHP) exhibited an induction period. The rate of oxygen consumption can be reduced by antioxidants and blood plasma. The induction time was not appreciably modified by the antioxidants tested, however, plasma increased it by a factor of two. The in vivo pretreatment with diethyl maleate (0.6 g kg-1) produced increased rates of oxygen uptake without changes in the induction period, while vitamin E (12.5 mg kg-1) elicited lower oxygen consumption rates and longer induction times, compared to those observed in cells from control rats upon addition of the hydroperoxide. These results suggest that the antioxidants tested on the t-BHP lipid peroxidation in erythrocyte suspensions act as inhibitors and/or retarders of the process. Furthermore, lipid peroxidation induced in these conditions seems to depend upon the haemoglobin status of the cells as oxygen uptake, malondialdehyde production and chemiluminescence were significantly higher in methaemoglobin-containing cells than in those containing oxyhaemoglobin.  相似文献   

6.
Using high-resolution oxygraphy, we tested the changes of various parameters characterizing the mitochondrial energy provision system that were induced by peroxidative damage. In the presence of succinate as respiratory substrate, 3 mM t-butyl hydroperoxide increased respiration in the absence of ADP, which indicated partial uncoupling of oxidative phosphorylation. Low activity of coupled respiration was still maintained as indicated by the ADP-activated and oligomycin-inhibited respiration. However, during the incubation the phosphorylative capacity decreased as indicated by the continuous decrease of the mitochondrial membrane potential. Under these experimental conditions the maximum capacity of the succinate oxidase system was inhibited by 50% in comparison with values obtained in the absence of t-butyl hydroperoxide. Our data thus indicate that the oxygraphic evaluation of mitochondrial function represents a useful tool for evaluation of changes participating in peroxidative damage of cell energy metabolism.  相似文献   

7.
The generation of free radicals from lipid hydroperoxides by Ni2+ in the presence of several oligopeptides was investigated by electron spin resonance (ESR) utilizing 5,5-dimethyl-1-pyrroline N-oxide (DMPO) as a spin trap. Incubation of Ni2+ with cumene hydroperoxide or t-butyl hydroperoxide did not generate any detectable free radical. In the presence of glycylglycylhistidine (GlyGlyHis), however, Ni2+ generated cumene peroxyl (ROO.) radical from cumene hydroperoxide, with the free radical generation reaching its saturation level within about 3 min. The reaction was first order with respect to both cumene hydroperoxide and Ni2+. Similar results were obtained using t-butyl hydroperoxide, but the yield of t-butyl peroxyl radical generation was about 7-fold lower. Other histidine-containing oligopeptides such as beta-alanyl-L-histidine (carnosine), gamma-aminobutyryl-L-histidine (homocarnosine), and beta-alanyl-3-methyl-L-histidine (anserine) caused the generation of both cumene alkyl (R.) and cumene alkoxyl (RO.) radicals in the reaction of Ni2+ with cumene hydroperoxide. Similar results were obtained using t-butyl hydroperoxide. Glutathione also caused generation of R. and RO. radicals in the reaction of Ni2+ with cumene hydroperoxide but the yield was approximately 25-fold greater than that produced by the histidine-containing peptides, except GlyGlyHis. The ratio of DMPO/R. and DMPO/RO. produced with glutathione and cumene hydroperoxide was approximately 3:1. Essentially the same results were obtained using t-butyl hydroperoxide except that the ratio of DMPO/R. to DMPO/RO. was approximately 1:1. The free radical generation from cumene hydroperoxide reached its saturation level almost instantaneously while in the case of t-butyl hydroperoxide, the saturation level was reached in about 3 min. In the presence of oxidized glutathione, the Ni2+/cumene hydroperoxide system caused DMPO/.OH generation from DMPO without forming free hydroxyl radical. Since glutathione, carnosine, homocarnosine, and anserine are considered to be cellular antioxidants, the present work suggests that instead of protecting against oxidative damage, these oligopeptides may facilitate the Ni(2+)-mediated free radical generation and thus may participate in the mechanism(s) of Ni2+ toxicity and carcinogenicity.  相似文献   

8.
O Eriksson 《FEBS letters》1991,279(1):45-48
The molecular mechanism of the Ca2(+)-induced permeabilization of rat liver mitochondria was evaluated by studying a new effect of the commonly used general anaesthetic Propofol (2,6-diisopropylphenol). The compound was found to induce an apparent uptake of Ca2+ at steady-state in the Ca2(+)-distribution between the medium and the mitochondria, and to inhibit swelling and release of accumulated Ca2+ induced by inorganic phosphate, t-butyl hydroperoxide, diamide or FCCP plus Ruthenium red. The compound did not stimulate the activity of the Ca2(+)-uniporter and it is concluded that the effects seen are due to the inhibition of the Ca2(+)-dependent, unspecific permeability increase. The results suggest two mechanisms whereby Propofol stabilizes the mitochondrial membrane in the presence of Ca2+: (i) by interaction with the putative pore, thus causing its closure; and (ii) by scavenging of free radicals thus inhibiting its opening during oxidative stress.  相似文献   

9.
Perfusion of livers from fed and fasted rats with 0.07--0.1 mM t-butyl hydroperoxide for 15 min decreased the levels of reduced glutathione (GSH) by 1.5 mumol/g liver in both nutritional states. Glutathione disulfide (GSSG) was increased by 70 and 140 nmol/g liver and glutathione mixed disulfides enhanced by 45 and 150 nmol/g liver in livers from fed and fasted animals, respectively. The ratio of GSH/GSSG was decreased from 243 to 58 in fed animals, and from 122 to 8 in fasted animals. The increase of GSSG and the mixed disulfides was nearly parallel until an apparently critical low GSH content of 1.5 mumol/g was reached. Only in livers from fasted rats 14CO2-production from [1-14C]glucose was stimulated upon t-butyl hydroperoxide infusion at the employed rates. Flux of glucose through pentose phosphate cycle rose from 8 to 12% of glucose utilization via glycolysis, whereas in livers from fed animals this portion remained unchanged at 8% Dithio-erythritol reversed pentose phosphate cycle activity as well as GSSG and protein-bound glutathione contents to the original levels. In livers from fasted rats the activity of glucose-6-phosphate dehydrogenase was increased by 34% by t-butyl hydroperoxide infusion.  相似文献   

10.
Attack of O2 on the phenoxy radical derived from butylated hydroxytoluene resulted in the formation of 2,6-di-t-butyl-4-hydroperoxy-4-methyl-2,5-cyclohexadienone (BOOH). This hydroperoxide was rapidly consumed when incubated with rat liver microsomes in the absence of NADPH. The destruction of BOOH was accompanied by formation of the corresponding alcohol (BOH) and a derivative of the alcohol (B(OH)2) in which a t-butyl methyl group was hydroxylated. This diol was produced also when BOH was incubated with microsomes and NADPH, but at a slower rate. Mass spectral analyses of B(OH)2 formed from substrates labeled with either 2H or 18O, showed that oxygen was transferred from the peroxy group to a t-butyl group (via the heme iron of P-450) without migration of the intermediate alcohol from the enzyme active site. The results support a mechanism involving heterolytic O-O bond cleavage during isomerization of the hydroperoxide to B(OH)2. The chiral diol was produced from BOOH nonstereoselectively, but the NADPH/O2-supported hydroxylation of BOH resulted in the formation of a 20% excess of one enantiomer of B(OH)2. Analyses of products formed from the interaction of cumene hydroperoxide with cytochrome P-450 showed that this substrate undergoes rearrangement also; 2-phenyl-1,2-propanediol was produced, together with cumyl alcohol and acetophenone. These results indicate that isomerization competes with other pathways of hydroperoxide destruction by cytochrome P-450.  相似文献   

11.
1. The respiration and aerobic glycolysis of pig ciliary processes in oxygenated phosphate and bicarbonate buffers have been investigated. 2. Significant amounts of lactic acid are produced only in the presence of added glucose, but this does not change the endogenous respiration rate. 3. Succinate and citrate increase the oxygen uptake considerably, but pyruvate has almost no effect; oxaloacetate and fumarate stimulate slightly in the presence of glucose. Aspartate and fumarate together stimulate pyruvate utilization and are oxidized as fast as citrate. 4. Ouabain inhibits the oxidation of glucose and other substrates by limiting the ADP supply from the sodium transport system. Cyanide and azide inhibit respiration and stimulate glycolysis. 5. The transport mechanism depends largely on ATP from oxidative phosphorylation and regulates the rate of respiration and glycolysis by controlling ADP production from the Na(+)-K(+)-activated adenosine triphosphatase.  相似文献   

12.
Fe(III)-bleomycin catalyzes the decomposition of 13-hydroperoxylinoleic acid and of 15-hydroperoxyarachidonic acid to produce small quantities of singlet oxygen. No singlet oxygen is produced when hydrogen peroxide, ethyl hydroperoxide, cumene hydroperoxide, and t-butyl hydroperoxide are used as substrates. The heme-containing catalysts, methemoglobin and hematin, have identical hydroperoxide substrate requirements for singlet oxygen production. The hydroperoxide requirements for singlet oxygen production correlate with those reported by Dix et al. (Dix, T.A., Fontana, R., Panthani, A., and Marnett, L.J. (1985) J. Biol. Chem. 260, 5358-5365) for the production of peroxyl radicals in the hematin-catalyzed decomposition of hydroperoxides. The bimolecular reaction of peroxyl radicals is a plausible reaction mechanism for the singlet oxygen production in the systems studied.  相似文献   

13.
Glutamine metabolism in the liver is essential for gluconeogenesis and ureagenesis. During the suckling period there is high hepatic protein accretion and the portal vein glutamine concentration is twice that in the adult, whereas hepatic vein glutamine concentration is similar between adult and suckling rats. Therefore, we hypothesized that glutamine uptake by the liver could be greater in the suckling period compared to the adult period. The present studies were, therefore, designed to investigate the transport of glutamine by plasma membranes of rat liver during maturation (suckling--2-week old, weanling--3-week old and adult--12-week old). Glutamine uptake by the plasma membranes of the liver represented transport into an osmotically sensitive space in all age groups. Inwardly directed Na+ gradient resulted in an "overshoot" phenomenon compared to K+ gradient. The magnitude of the overshoot was greater in suckling rats plasma membranes compared to adult membranes. Glutamine uptake under Na+ gradient was electrogenic and maximal at pH 7.5, whereas uptake under K+ gradient was electroneutral. Glutamine uptake with various concentrations of glutamine under Na+ gradient was saturable in all age groups with a Vmax of 1.5 +/- 0.1, 0.7 +/- 0.1 and 0.5 +/- 0.06 nmoles/mg protein/10 seconds in suckling, weanling and adult rats, respectively (P < 0.01). Km values were 0.6 +/- 0.1, 0.5 +/- 0.1 and 0.5 +/- 0.1 mM respectively. Vmax for Na(+)-independent glutamine uptake were 0.6 +/- 0.1, 0.55 +/- 0.07 and 0.54 +/- 0.06 nmoles/mg protein with Km values of 0.54 +/- 0.2, 0. +/- 0.1 and 0.5 +/- 0.2 mM, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Organic peroxides, t-butyl hydroperoxide, 2-butanone peroxide, cumene hydroperoxide and t-butyl peracetate, were determined by an amperometric enzyme electrode. The enzyme electrode was prepared through electrostatic immobilization of horseradish peroxidase (HRP) in a polyvinylferrocenium (PVF) film. A PVF(+)ClO(4)(-) film was coated on a Pt foil at +0.70 V by electrooxidation of polyvinylferrocene in methylene chloride with 0.1 M tetrabutylammonium perchlorate (TBAP). The enzyme modified electrode PVF(+)HRP(-) was prepared by anion-exchange in a solution of HRP(-) in 0.05 M phosphate buffer at pH 8.5. FTIR spectroscopy was used to identify PVF, PVF(+)ClO(4)(-), and PVF(+)HRP(-). The immobilized amount of the enzyme in the film was determined by UV spectroscopy. The effects of the polymeric film thickness, bulk enzyme concentration used in the immobilization treatment and the temperature on the performance of enzyme electrode were investigated. The inhibitory effect of oxygen was also examined. Linearities, lower detection limits, active life times and sensitivities of the electrode were determined for each peroxide.  相似文献   

15.
Light-emission of the perfused lung is induced by t-butyl hydroperoxide, giving chemiluminescence yields that oscillate between 800 and 1500 counts/s depending on the site and position of the lung. The response of the perfused lung to infusion with different hydroperoxides gives a pattern similar to that observed with the liver microsomal fraction; ethyl hydroperoxide shows a much higher chemiluminescence yield than the tertiary (t-butyl and cumene)hydroperoxides. Alveolar oedema affected the light-emission of the perfused lung depending on the time at which oedema developed, decreasing light emission on infusion of hydroperoxide in the oedematous lung and increasing it when oedema appeared after the maximal chemiluminescence yield was already achieved. Paraquat, administered in vivo, augmented light-emission by approximately 2-fold. The effect of paraquat was a time-dependent process. Lung chemiluminescence, compared with liver chemiluminescence, needed higher hydroperoxide concentration to induce light-emission.  相似文献   

16.
The influence of the intracellular glutathione status on bile acid excretion was studied in the perfused rat liver. Perturbation of the thiol redox state by short term additions of diamide (100 microM) or hydrogen peroxide (250 microM) or t-butyl hydroperoxide (250 microM) led to a reversible inhibition of biliary taurocholate release without affecting hepatic uptake; inhibition amounted to 45% for diamide and 90% for the hydroperoxides. Concomitantly, the bile acid accumulated intracellularly. Bile flow increased from 1.3 to 2.0 microliters X min-1 X g liver-1 upon infusion of taurocholate (10 microM); the latter value was suppressed to 1.2 microliters X min-1 X g liver-1 by the addition of t-butyl hydroperoxide (250 microM). Similarly, the hepatic disposition of another bile constituent, bilirubin, was suppressed by 70% upon addition of hydrogen peroxide. While the addition of hydrogen peroxide inhibited also the endogenous release of bile acids almost completely, endogenous bile flow was much less affected, decreasing from 1.3 to 1.0 microliters X min-1 X g liver-1. Measurement of [14C]erythritol clearance showed bile/perfusate ratios of about unity both in the absence and presence of hydrogen peroxide, suggesting canalicular origin of the bile under both conditions. In livers from Se-deficient rats low in Se-GSH peroxidase (less than 5% of controls), hydrogen peroxide inhibited taurocholate transport substantially less, providing evidence for the involvement of glutathione in mediating the inhibition observed in normal livers. The percentage inhibition of taurocholate release and intracellular glutathione disulfide (GSSG) content were closely correlated. The addition of t-butyl hydroperoxide caused a several-fold increase of biliary GSSG release, whereas biliary GSH release was even decreased. The results establish a role of glutathione in canalicular taurocholate disposition.  相似文献   

17.
Ruthenium red and/or EGTA prevent cyclic uptake and release of Ca2+ in mitochondria. These compounds inhibit but do not prevent the swelling of liver mitochondria induced by Ca2+ plus t-butyl hydroperoxide or Ca2+ plus N-ethylmaleimide. Ruthenium red and/or EGTA have complex effects on the release rate of Ca2+ and other cations induced by t-butyl hydroperoxide or N-ethylmaleimide. To determine the relationship between permeability changes and Ca2+ release in the absence of Ca2+ cycling, a novel method of data collection and analysis is developed which allows the relative time courses of Ca2+ release and Mg2+ release or swelling to be accurately and quantitatively compared. This method eliminates errors in time course comparisons which arise from the aging of mitochondrial preparations and allows data from different preparations to be directly contrasted. Using the method, it is shown that permeability changes caused by Ca2+-releasing agents are not secondary effects arising from Ca2+ cycling between uptake and release carriers. In the absence of Ca2+-cycling inhibitors, Ca2+ release induced by t-butyl hydroperoxide or N-ethylmaleimide is, in part, carrier-mediated. In the presence of EGTA and ruthenium red, Ca2+ release induced by either agent is mediated solely by the permeability pathway. No differences are apparent in the solute selectivity of the inner membrane permeability defect induced by Ca2+ plus t-butyl hydroperoxide or Ca2+ plus N-ethylmaleimide. A novel type of Ca2+ release from energized liver mitochondria is reported. This release is induced by EGTA, occurs in the absence of other releasing agents or nonspecific permeability changes, and is rapid (greater than or equal to 50 nmol/min/mg protein).  相似文献   

18.
t-Butyl hydroperoxide was utilized to alter the thiol homeostasis in rat brain mitochondria. Following exposure to t-butyl hydroperoxide (50-500 microM), intramitochondrial GSH content decreased rapidly and irreversibly with a major portion of the depleted GSH being accounted for as protein-SS-Glutathione mixed disulfide. Formation of GSSG was not observed nor was efflux of GSSG or GSH from the mitochondria detected in the incubation medium. The loss of intramitochondrial GSH was accompanied by loss of protein thiols. Unlike liver mitochondria, which can reverse t-butyl hydroperoxide induced formation of GSSG, addition of 50 microM t-butyl hydroperoxide resulted in irreversible loss; indicating greater susceptibility of brain mitochondria to oxidative stress than liver mitochondria.  相似文献   

19.
Lactate is produced by the sheep placenta and is an important metabolic substrate for fetal sheep. However, lactate uptake and release by the fetal liver have not been assessed directly. We measured lactate flux across the liver in 16 fetal sheep at 129 (120-138) days gestation that had catheters chronically maintained in the fetal descending aorta, inferior vena cava, right or left hepatic vein, and umbilical vein. Lactate and hemoglobin concentrations and oxygen saturation were measured in blood drawn from all vessels. Umbilical venous, portal venous, and hepatic blood flow were measured by injecting radionuclide-labeled microspheres into the umbilical vein while obtaining a reference sample from the descending aorta. We found net hepatic uptake of lactate (5.0 +/- 4.4 mg/min per 100 g liver). A large quantity of lactate was delivered to the liver (94.2 +/- 78.1 mg/min per 100 g), so that the hepatic extraction of lactate was only 7.7 +/- 6.5%. Hepatic oxygen consumption was 3.18 +/- 3.3 ml/min per 100 g, and the hepatic lactate/oxygen quotient was 2.07 +/- 1.54. There was no significant correlation between hepatic lactate uptake and hepatic lactate or glucose delivery, hepatic oxygen consumption, hepatic blood flow, hepatic glucose flux, total body oxygen consumption, arterial pH, oxygen content, or oxygen saturation. There was, however, a significant correlation between hepatic lactate uptake and umbilical lactate uptake (r = 0.74, P less than 0.005) such that net hepatic lactate uptake was nearly equivalent to that produced across the umbilical-placental circulation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Acute glucagon treatment of intact rats has been found to cause a stimulation of hepatic mitochondrial respiration as measured by monitoring oxygen uptake polarographically. Rates of State 3 respiration with several NAD-linked substrates and succinate were increased significantly after hormonal treatment and isolation of mitochondria. This stimulation cannot be ascribed to a partial uncoupling effect since State 4 respiration as measured by monitoring oxygen uptake polarographically. Rates of State 3 respiration with either slightly increased or unchanged. Furthermore, rates of uncoupled respiration with these substrates were also stimulated after hormonal treatment. On the other hand, respiratory rates (State 3, 4, and uncoupled) with ascorbate-N,N,N',N'-tetramethyl-p-phenylenediamine as substrate were unaffected by glucagon treatment. The hormonally stimulated rates of respiration produced a corresponding increase in the rate of generation of high energy state as indicated in measurements of Ca2+ uptake by isolated mitochondria. Rates of Ca2+ uptake were monitored by two methods: measurement of initial rates of proton ejection following CaCl2 additions and measurement of disappearance of Ca2+ from the suspension medium using murexide as indicator in a dual wavelength spectrophotometer. A significant stimulation in the initial rate of succinate-dependent Ca2+ uptake was noted after glucagon treatment of animals and isolation of hepatic mitochondria. No effect of the hormonal treatment was seen on the extent of Ca2+ uptake or the stoichiometry of H+ ejected per Ca2+ taken up. That the hormonal effect on Ca2+ transport is at the level of the substrate-induced generation of high energy state is indicated by the observation that no effect of glucagon treatment is seen on ATP-dependent Ca2+ uptake. Glucagon-induced changes in the activities of substrate-metabolizing enzymes are considered unlikely for the following reasons: (a) previously published data showed a lack of a hormonal effect on pyruvate-metabolizing enzymes and (b) data in this study showing no effect of glucagon treatment on the activity of NAD-malate dehydrogenase as measured in mitochondrial lysates. All of these observations are consistent with either an activation of mitochondrial substrate transport and/or a stimulation of mitochondrial electron transport by glucagon treatment. Regardless of the exact mechanism involved, the effect of the hormonal treatment is to produce an increase in ATP synthetic and ion-pumping capability during a period of increased energy demand, i.e. increased gluconeogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号