首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Eosinophils were examined for the capacity of attacking Strongyloides venezuelensis adult worms in the intestinal mucosa by using interleukin (IL)-5 transgenic mice. In IL-5 transgenic mice, most of the subcutaneously inoculated infective larvae were killed during migration, and only a few worms could reach the small intestine. When the same number of adult worms were surgically implanted in the small intestine of IL-5 transgenic and control mice, fecal egg output as well as the number of adult worms recovered from the intestine was significantly lower in IL-5 transgenic mice. In the intestinal mucosa of IL-5 transgenic mice, large number of eosinophils was present in the lamina propria even before adult worm implantation. The number of eosinophils increased significantly as early as 24 h after implantation and tripled by day 3, whereas mucosal eosinophilia remained low in wild-type mice. Most notably, eosinophils infiltrated into the intestinal epithelium and surrounded adult worms in IL-5 transgenic mice, which was never seen in wild-type control mice. However, IL-5 transgenic mice required the same period as normal mice to completely expel implanted adult worms. The amount of specific IgA as well as total IgA in the stool was high in IL-5 transgenic mice before adult worm implantation, and dropped rapidly after adult worm implantation. The present study suggests that eosinophils are capable of attacking adult nematodes in the intestinal epithelia, probably in conjunction with secretory IgA, although they are not enough for the complete worm expulsion.  相似文献   

2.
Expulsion of two gastrointestinal nematode parasites, Nippostrongylus brasiliensis and Trichinella spiralis, is similar in that both require IL-4Ralpha expression, but different in that T cells and mast cells are required for IL-4-induced expulsion of T. spiralis but not N. brasiliensis. To examine the role of IL-4Ralpha signaling in immunity to these parasites, we studied worm expulsion in chimeric mice that selectively expressed IL-4Ralpha on bone marrow-derived or non-bone marrow-derived cells. N. brasiliensis was expelled by mice that expressed IL-4Ralpha only on non-bone marrow-derived cells, but not by mice that expressed IL-4Ralpha only on bone marrow-derived cells. Although T. spiralis expulsion required IL-4Ralpha expression by both bone marrow- and non-bone marrow-derived cells, IL-4 stimulation eliminated the requirement for IL-4Ralpha expression by bone marrow-derived cells. Thus, direct IL-4Ralpha signaling of nonimmune gastrointestinal cells may be generally required to induce worm expulsion, even when mast cell and T cell responses are also required.  相似文献   

3.
The presence of intestinal helminths can down-regulate the immune response required to control mycobacterial infection. BALB/c mice infected with Mycobacterium bovis following an infection with the intestinal helminth Strongyloides venezuelensis showed reduced interleukin-17A production by lung cells and increased bacterial burden. Also, small granulomas and a high accumulation of cells expressing the inhibitory molecule CTLA-4 were observed in the lung. These data suggest that intestinal helminth infection could have a detrimental effect on the control of tuberculosis (TB) and render coinfected individuals more susceptible to the development of TB.  相似文献   

4.
We previously demonstrated that IL-7 is produced by intestinal goblet cells and is essential for the persistence of colitis. It is well known, however, that goblet cells are decreased or depleted in the chronically inflamed mucosa of animal colitis models or human inflammatory bowel diseases. Thus, in this study, we assess whether intestinal IL-7 is surely required for the persistence of colitis using a RAG-1/2-/- colitis model induced by the adoptive transfer of CD4+CD45RBhigh T cells in combination with parabiosis system. Surprisingly, both IL-7-/-xRAG-1-/- and IL-7+/+xRAG-1-/- host mice developed colitis 4 wk after parabiosis to a similar extent of colitic IL-7+/+xRAG-1-/- donor mice that were previously transferred with CD4+CD45RBhigh T cells. Of note, although the number of CD4+ T cells recovered from the spleen or the bone marrow of IL-7-/-xRAG-1-/- host mice was significantly decreased compared with that of IL-7+/+xRAG-1-/- host mice, an equivalent number of CD4+ T cells was recovered from the lamina propria of both mice, indicating that the expansion of CD4+ T cells in the spleen or in the bone marrow is dependent on IL-7, but not in the lamina propria. Development of colitis was never observed in parabionts between IL-7+/+xRAG-1-/- host and noncolitic IL-7-/-xRAG-1-/- donor mice that were transferred with CD4+CD45RBhigh T cells. Collectively, systemic, but not intestinal, IL-7 is essential for the persistence of colitis, suggesting that therapeutic approaches targeting the systemic IL-7/IL-7R signaling pathway may be feasible in the treatment of inflammatory bowel diseases.  相似文献   

5.
Excessive mucus production is an important pathological feature of asthma. The Th2 cytokines IL-4 and IL-13 have both been implicated in allergen-induced mucus production, inflammation, and airway hyperreactivity. Both of these cytokines use receptors that contain the IL-4Ralpha subunit, and these receptors are expressed on many cell types in the lung. It has been difficult to determine whether allergen-induced mucus production is strictly dependent on direct effects of IL-4 and IL-13 on epithelial cells or whether other independent mechanisms exist. To address this question, we used a cell type-specific inducible gene-targeting strategy to selectively disrupt the IL-4Ralpha gene in Clara cells, an airway epithelial cell population that gives rise to mucus-producing goblet cells. Clara cell-specific IL-4Ralpha-deficient mice and control mice developed similar elevations in serum IgE levels, airway inflammatory cell numbers, Th2 cytokine production, and airway reactivity following OVA sensitization and challenge. However, compared with control mice, Clara cell-specific IL-4Ralpha-deficient mice were nearly completely protected from allergen-induced mucus production. Because only IL-13 and IL-4 are thought to signal via IL-4Ralpha, we conclude that direct effects of IL-4 and/or IL-13 on Clara cells are required for allergen-induced mucus production in the airway epithelium.  相似文献   

6.
Mucus hyperproduction in asthma results from airway inflammation and contributes to clinical symptoms, airway obstruction, and mortality. In human asthmatics and in animal models, excess mucus production correlates with airway eosinophilia. We previously described a system in which TCR transgenic CD4 Th2 cells generated in vitro were transferred into recipient mice and activated in the respiratory tract with inhaled Ag. Th2 cells stimulated airway eosinophilia and a marked increase in mucus production, while mice that received Th1 cells exhibited airway inflammation without eosinophilia or mucus. Mucus could be induced by IL-4-/- Th2 cells at comparable levels to mucus induced by IL-4+/+ Th2 cells. In the current studies we dissect further the mechanisms of Th2-induced mucus production. When IL-4-/- Th2 cells are transferred into IL-4Ralpha-/- mice, mucus is not induced, and BAL eosinophilia is absent. These data suggest that in the absence of IL-4, IL-13 may be critical for Th2-induced mucus production and eosinophilia. To determine whether eosinophils are important in mucus production, IL-5-/- Th2 cells were transferred into IL-5-/- recipients. Eosinophilia was abolished, yet mucus staining in the epithelium persisted. These studies show definitively that IL-5, eosinophils, or mast cells are not essential, but signaling through IL-4Ralpha is critically important in Th2 cell stimulation of mucus production.  相似文献   

7.
IL 4 receptor alpha (IL-4Ralpha) expression by non-bone marrow (BM)-derived cells is required to protect hosts against several parasitic helminth species. In contrast, we demonstrate that IL-4Ralpha expression by BM-derived cells is both necessary and sufficient to prevent Schistosoma mansoni-infected mice from developing severe inflammation directed against parasite ova, whereas IL-4Ralpha expression by non-BM-derived cells is neither necessary nor sufficient. Chimeras that express IL-4Ralpha only on non-BM-derived cells still produce Th2 cytokines, but overproduce IL-12p40, TNF, and IFN-gamma, fail to generate alternatively activated macrophages, and develop endotoxemia and severe hepatic and intestinal pathology. In contrast, chimeras that express IL-4Ralpha only on BM-derived cells have extended survival, even though the granulomas that they develop around parasite eggs are small and devoid of collagen. These observations identify distinct roles for IL-4/IL-13 responsive cell lineages during schistosomiasis: IL-4Ralpha-mediated signaling in non-BM-derived cells regulates granuloma size and fibrosis, whereas signaling in BM-derived cells suppresses parasite egg-driven inflammation within the liver and intestine.  相似文献   

8.
We examined effects of mast cell glycosaminoglycans on the establishment of the intestinal nematode, Strongyloides venezuelensis, in the mouse small intestine. When intestinal mastocytosis occurred, surgically implanted adult worms could not invade and establish in the intestinal mucosa. In mast cell-deficient W/Wv mice, inhibition of adult worm invasion was not evident as compared with littermate +/+ control mice. Mucosal mastocytosis and inhibition of S. venezuelensis adult worm mucosal invasion was tightly correlated. To determine effector molecules for the invasion inhibition, adult worms were implanted with various sulfated carbohydrates including mast cell glycosaminoglycans. Among sulfated carbohydrates tested, chondroitin sulfate (ChS)-A, ChS-E, heparin, and dextran sulfate inhibited invasion of adult worms into intestinal mucosa in vivo. No significant inhibition was observed with ChS-C, desulfated chondroitin, and dextran. ChS-E, heparin, and dextran sulfate inhibited adhesion of S. venezuelensis adult worms to plastic surfaces in vitro. Furthermore, binding of intestinal epithelial cells to adhesion substances of S. venezuelensis, which have been implicated in mucosal invasion, was inhibited by ChS-E, heparin, and dextran sulfate. Because adult worms of S. venezuelensis were actively moving in the intestinal mucosa, probably exiting and reentering during infection, the possible expulsion mechanism for S. venezuelensis is inhibition by mast cell glycosaminoglycans of attachment and subsequent invasion of adult worms into intestinal epithelium.  相似文献   

9.
Schistosoma mansoni: IL-4 is necessary for concomitant immunity in mice.   总被引:4,自引:0,他引:4  
To ask whether type-2 immune responses serve an essential role in concomitant immunity, that is the prevention of superinfection with Schistosoma mansoni, we compared resistance to a challenge infection in infected wild-type (WT) mice and in infected IL-4-/- mice, which are unable to mount Th2 responses during schistosomiasis. Although WT mice are protected from superinfection, resistance is abrogated in the absence of interleukin (IL)-4. We conclude that IL-4 or IL-4-dependent responses, or both, are necessary for resistance to S. mansoni superinfection in mice.  相似文献   

10.
The mechanisms that regulate CD4(+) T cells responses in vivo are still poorly understood. We show here that initial Ag stimulation induces in CD4(+) T cells a program of proliferation that can develop, for at least seven cycles of division, in the absence of subsequent Ag or cytokine requirement. Thereafter, proliferation stops but can be reinitiated by novel Ag stimulation. This initial Ag stimulation does not however suffice to induce the differentiation of naive CD4(+) T cells into effector Th1 cells which requires multiple contacts with Ag-loaded APC. Thus, recurrent exposure to both Ag and polarizing cytokines appears to be essential for the differentiation of IFN-gamma-producing cells. Ag and cytokine availability therefore greatly limits the differentiation, but not the initial proliferation, of CD4(+) T cells into IFN-gamma-producing cells.  相似文献   

11.
Bruton's tyrosine kinase (Btk), the gene mutated in the human immunodeficiency X-linked agammaglobulinemia, is activated by LPS and is required for LPS-induced TNF production. In this study, we have investigated the role of Btk both in signaling via another TLR (TLR2) and in the production of other proinflammatory cytokines such as IL-1beta, IL-6, and IL-8. Our data show that in X-linked agammaglobulinemia PBMCs, stimulation with TLR4 (LPS) or TLR2 (N-palmitoyl-S-[2, 3-bis(palmitoyloxy)-(2R)-propyl]-(R)-cysteine) ligands produces significantly less TNF and IL-1beta than in normal controls. In contrast, a lack of Btk has no impact on the production of IL-6, IL-8, or the anti-inflammatory cytokine, IL-10. Our previous data suggested that Btk lies within a p38-dependent pathway that stabilizes TNF mRNA. Accordingly, TaqMan quantitative PCR analysis of actinomycin D time courses presented in this work shows that overexpression of Btk is able to stabilize TNF, but not IL-6 mRNA. Furthermore, using the p38 inhibitor SB203580, we show that the TLR4-induced production of TNF, but not IL-6, requires the activity of p38 MAPK. These data provide evidence for a common requirement for Btk in TLR2- and TLR4-mediated induction of two important proinflammatory cytokines, TNF and IL-1beta, and reveal important differences in the TLR-mediated signals required for the production of IL-6, IL-8, and IL-10.  相似文献   

12.
13.
14.
15.
To elucidate the pathogenesis of Helicobacter pylori-associated gastritis, we studied immune responses of C57BL/6J wild-type (WT), SCID, and gene deficient (IFN-gamma-/- and IL-4-/-) mice following infection with a pathogenic isolate of H. pylori (SPM326). During early infection in WT mice, mononuclear and polymorphonuclear cells accumulated in the gastric lamina propria, and the numbers of cells in the inflamed mucosa expressing IFN-gamma, but not IL-4, mRNA rose significantly (p < 0.005), consistent with a local Th1 response. Splenic T cells from the same infected WT mice produced high levels of IFN-gamma, no detectable IL-4, and low amounts of IL-10 following in vitro H. pylori urease stimulation, reflecting a systemic Th1 response. Infected C57BL/6J SCID mice did not develop gastric inflammation despite colonization by many bacteria. Infected C57BL/10J and BALB/c mice also did not develop gastric inflammation and displayed a mixed Th1/Th2 splenic cytokine profile. These data imply a major role for the Th1 cytokine IFN-gamma in H. pylori-associated gastric inflammation in C57BL/6J mice. Compared with WT animals, infected IL-4-/- animals had more severe gastritis and higher levels of IFN-gamma production by urease-stimulated splenocytes (p < 0.01), whereas IFN-gamma-/- mice exhibited no gastric inflammation and higher levels of IL-4 production by stimulated splenocytes. These findings establish C57BL/6J mice as an important model for H. pylori infection and demonstrate that up-regulated production of IFN-gamma, in the absence of the opposing effects of IL-4 (and possibly IL-10), plays a pivotal role in promoting H. pylori-induced mucosal inflammation.  相似文献   

16.
DL-alpha-Difluoromethylornithine (DFMO), a specific inhibitor of ornithine decarboxylase [EC 4.1.1.17] (ODC), inhibited concanavalin A-induced proliferation of splenic mononuclear cells (SMNC). The inhibition was not reversed by interleukin-2 (IL-2) addition. Although DFMO did not affect the production of IL-2 or the expression of high-affinity IL-2 receptor, IL-2-dependent proliferation of SMNC was inhibited by DFMO, and the inhibition was reversed by exogenous putrescine. The inhibition of IL-2-dependent DNA synthesis appeared to be related to the decrease in intracellular polyamines. When the proliferation of SMNC was induced by IL-2, ODC activity was also increased. A similar result was obtained in the proliferation of an IL-2-dependent T cell line, CTLL. The time course of ODC induction was similar to that of IL-2 production by concanavalin A-stimulated SMNC. These results indicate that polyamine biosynthesis is necessary for IL-2-dependent proliferation, but not for IL-2 production or IL-2 receptor expression.  相似文献   

17.
The murine Litomosoides sigmodontis model of filarial infection provides the opportunity to elucidate the immunological mechanisms that determine whether these nematode parasites can establish a successful infection or are rejected by the mammalian host. BALB/c mice are fully susceptible to L. sigmodontis infection and can develop patent infection, with the microfilarial stage circulating in the bloodstream. In contrast, mice on the C57BL background are largely resistant to the infection and never produce a patent infection. In this study, we used IL-4 deficient mice on the C57BL/6 background to address the role of IL-4 in the development of L. sigmodontis parasites in a resistant host. Two months after infection, adult worm recovery and the percentage of microfilaraemic mice in infected IL-4 deficient mice were comparable with those of the susceptible BALB/c mice while, as expected, healthy adults were not recovered from wild type C57BL/6 mice. The cytokine and antibody responses reveal that despite similar parasitology the two susceptible strains (BALB/c and IL-4 deficient C57BL/6) have markedly different immune responses: wild type BALB/c mice exhibit a strong Th2 immune response and the IL-4 deficient C57BL/6 mice exhibit a Th1 response. We also excluded a role for antibodies in resistance through infection of B-cell deficient C57BL/6 mice. Our data suggest that the mechanisms that determine parasite clearance in a resistant/non-permissive host are Th2 dependent but that in a susceptible/permissive host, the parasite can develop in the face of a Th2 dominated response.  相似文献   

18.
TLR4 is important for immunity to various unicellular organisms and has been implicated in the immune responses to helminth parasites. The immune response against helminths is generally Th2-mediated and studies have shown that TLR4 is required for the development of a Th2 response against allergens and helminth antigens in mice. C3H/HeJ mice, which have a point mutation in the Tlr4 gene, were used in this study to determine the role of TLR4 in protective immunity to the nematode Strongyloides stercoralis. It was demonstrated that TLR4 was not required for killing larval S. stercoralis during the innate immune response, but was required for killing the parasites during the adaptive immune response. No differences were seen in the IL-5 and IFN-gamma responses, antibody responses or cell recruitment between wild type and C3H/HeJ mice after immunization. Protective immunity was restored in immunized C3H/HeJ mice by the addition of wild type peritoneal exudate cells in the environment of the larvae. It was therefore concluded that the inability of TLR4-mutant mice to kill larval S. stercoralis during the adaptive immune response is due to a defect in the effector cells recruited to the microenvironment of the larvae.  相似文献   

19.
Steroid hormones are synthesized using cholesterol as precursor. To determine the functional importance of the low density lipoprotein (LDL) receptor and hormone-sensitive lipase (HSL) in adrenal steroidogenesis, adrenal cells were isolated from control, HSL(-/-), LDLR(-/-), and double LDLR/HSL(-/-) mice. The endocytic and selective uptake of apolipoprotein E-free human high density lipoprotein (HDL)-derived cholesteryl esters did not differ among the mice, with selective uptake accounting for >97% of uptake. In contrast, endocytic uptake of either human LDL- or rat HDL-derived cholesteryl esters was reduced 80-85% in LDLR(-/-) and double-LDLR/HSL(-/-) mice. There were no differences in the selective uptake of either human LDL- or rat HDL-derived cholesteryl esters among the mice. Maximum corticosterone production induced by ACTH or dibutyryl cyclic AMP and lipoproteins was not altered in LDLR(-/-) mice but was reduced 80-90% in HSL(-/-) mice. Maximum corticosterone production was identical in HSL(-/-) and double-LDLR/HSL(-/-) mice. These findings suggest that, although the LDL receptor is responsible for endocytic delivery of cholesteryl esters from LDL and rat HDL to mouse adrenal cells, it appears to play a negligible role in the delivery of cholesterol for acute adrenal steroidogenesis in the mouse. In contrast, HSL occupies a vital role in adrenal steroidogenesis because of its link to utilization of selectively delivered cholesteryl esters from lipoproteins.  相似文献   

20.
B1 cells are a significant source of natural serum IgM, thereby serving as a first line of defense against systemic bacterial and viral infections. They can migrate to the intestinal lamina propria and differentiate into IgA-producing plasma cells and thus might play a similar role in mucosal immunity. To investigate the contribution of B1 cells to the intestinal IgA response induced by the commensal flora in immunocompetent animals, we generated gnotobiotic and conventionally reared Ig allotype chimeric mice. In this system B1- and B2-derived Abs can be distinguished based on different allotypes. FACS analysis of peritoneal cavity cells and analysis of B1- and B2-derived serum IgM indicated stable B1/B2 chimerism and the establishment of a functional B1 population. Monoassociation with either Morganella morganii, Bacteroides distasonis, or segmented filamentous bacteria induced germinal center reactions in Peyer's patches and led to the production of intestinal IgA, partially reactive with bacterial Ag. A considerable amount of serum IgM was B1 cell derived in both monoassociated and conventionally reared mice. However, most of the total as well as bacteria-specific intestinal IgA was produced by B2 cells. These data suggest that intestinal IgA production induced by commensal bacteria is mainly performed by B2, not B1, cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号