首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Z Huang  J H Jett  R A Keller 《Cytometry》1999,35(2):169-175
BACKGROUND: A flow cytometry-based, ultrasensitive fluorescence detection technique has been developed that demonstrates unique advantages in the analysis of large DNA fragments over the currently most widely used technology, pulsed-field gel electrophoresis (PFGE). The technique described herein is used to characterize the restriction fingerprints of the bacteria genome Staphylococcus aureus in this study. METHODS: The isolation of the bacterial genomic DNA and the subsequent complete digestion by a restriction endonuclease were performed inside an agarose plug. Electroelution was used to move the DNA fragments out-of the agarose plug into a solution containing low concentrations of spermine and spermidine, added to stabilize the large DNA fragments. DNA was stained with the bisintercalating dye thiazole orange homodimer (TOTO-1) and subsequently introduced into our ultrasensitive flow cytometer from a capillary. RESULTS: Individual DNA fragments up to 351 kbp were successfully handled and sized. The histograms of the burst sizes were generated from signals associated with individual fragments in <7 min with <2 pg of DNA. The sizing accuracy was better than 98%. In contrast, standard PFGE takes approximately 20 h and requires approximately 1 microg of DNA with a sizing accuracy of approximately 90%. CONCLUSIONS: With the demonstrated success and advantages, our approach has the potential of being applied to fast, accurate bacteria species and strain identification.  相似文献   

2.
Rapid DNA fingerprinting of pathogens by flow cytometry   总被引:2,自引:0,他引:2  
BACKGROUND: A new method for rapid discrimination among bacterial strains based on DNA fragment sizing by flow cytometry is presented. This revolutionary approach combines the reproducibility and reliability of restriction fragment length polymorphism (RFLP) analysis with the speed and sensitivity of flow cytometry. METHODS: Bacterial genomic DNA was isolated and digested with a rare-cutting restriction endonuclease. The resulting fragments were stained stoichiometrically with PicoGreen dye and introduced into an ultrasensitive flow cytometer. A histogram of burst sizes from the restriction fragments (linearly related to fragment length in base pairs) resulted in a DNA fingerprint that was used to distinguish among different bacterial strains. RESULTS: Five different strains of gram-negative Escherichia coli and six different strains of gram-positive Staphylococcus aureus were distinguished by analyzing their restriction fragments with DNA fragment sizing by flow cytometry. Fragment distribution analyses of extracted DNA were approximately 100 times faster and approximately 200,000 times more sensitive than pulsed-field gel electrophoresis (PFGE). When sample preparation time is included, the total DNA fragment analysis time was approximately 8 h by flow cytometry and approximately 24 h by PFGE. CONCLUSIONS: DNA fragment sizing by flow cytometry is a fast and reliable technique that can be applied to the discrimination among species and strains of human pathogens. Unlike some polymerase chain reaction (PCR)-based methods, sequence information about the bacterial strains is not required, allowing the detection of unknown, newly emerged, or unanticipated strains.  相似文献   

3.
Escherichia coli serotype O157:H7 isolates were analyzed using a relatively new DNA fingerprinting method, amplified fragment length polymorphism (AFLP). Total genomic DNA was digested with two restriction endonucleases (EcoRI and MseI), and compatible oligonucleotide adapters were ligated to the ends of the resulting DNA fragments. Subsets of fragments from the total pool of cleaved DNA were then amplified by the polymerase chain reaction (PCR) using selective primers that extended beyond the adapter and restriction site sequences. One of the primers from each set was labeled with a fluorescent dye, which enabled amplified fragments to be detected and sized automatically on an automated DNA sequencer. Three AFLP primer sets generated a total of thirty-seven unique genotypes among the 48 E. coli O157:H7 isolates tested. Prior fingerprinting analysis of large restriction fragments from these same isolates by pulsed-field gel electrophoresis (PFGE) resulted in only 21 unique DNA profiles. Also, AFLP fingerprinting was successful for one DNA sample that was not typable by PFGE, presumably because of template degradation. AFLP analysis, therefore, provided greater genetic resolution and was less sensitive to DNA quality than PFGE. Consequently, this DNA typing technology should be very useful for genetic subtyping of bacterial pathogens in epidemiologic studies.  相似文献   

4.
Large, fluorescently stained restriction fragments of lambda phage DNA are sized by passing individual fragments through a focused continuous wave laser beam in an ultrasensitive flow cytometer at a rate of 60 fragments per second. The size of the fluorescence burst emitted by each stained DNA fragment, as it passes through the laser beam, is measured in one millisecond. One hundred sixty four seconds of fluorescence burst data allow linear sizing of DNA with an accuracy of better than two percent over a range of 10 to 50 kbp. This corresponds to analyzing less than 1 pg of DNA. Sizing of DNA fragments by this approach is much faster, requires much less DNA, and can potentially analyze large fragments with better resolution and accuracy than with gel-based electrophoresis.  相似文献   

5.
Unexpected loss of genomic DNA from agarose gel plugs   总被引:3,自引:0,他引:3  
R B Fritz  P R Musich 《BioTechniques》1990,9(5):542, 544, 546-542, 544, 550
Intact chromosomal DNAs are routinely prepared by embedding cells in agarose plugs before lysis. The large sizes of the genomic DNAs cause their retention while other macromolecules diffuse into and out of the gel matrix during lysis, washing and restriction cleavage incubations. However, in an analysis of agarose-embedded chromosomal DNAs cleaved with restriction enzymes, fragments larger than 30 kilobases were found to have eluted from the gel plugs. Since loss of fragments from gel plugs may affect qualitative and quantitative interpretations of electrophoretic patterns, an analysis of the diffusion of DNA segments from agarose plugs was performed. The two variables monitored were the time dependence and the DNA fragment size dependence of the diffusion process. The results indicate that small fragments (less than or equal to 2 kilobases) are quickly lost from 1% agarose gel plugs; moreover, significant amounts of large DNA segments (i.e., the 48.5-kilobase lambda phage chromosome) are also lost. In addition to urging caution in the analysis of restriction cleavage data, these observations suggest that intact small organelle genomes and extrachromosomal DNAs also may be lost from genomic DNAs prepared in agarose gel plugs.  相似文献   

6.
Analysis of the entire Agrobacterium tumefaciens C58 genome by pulsed-field gel electrophoresis (PFGE) reveals four replicons: two large molecules of 3,000 and 2,100 kb, the 450-kb cryptic plasmid, and the 200-kb Ti plasmid. Digestion by PacI or SwaI generated 12 or 14 fragments, respectively. The two megabase-sized replicons, used as probes, hybridize with different restriction fragments, showing that these replicons are two independent genetic entities. A 16S rRNA probe and genes encoding functions essential to the metabolism of the organism were found to hybridize with both replicons, suggesting their chromosomal nature. In PFGE, megabase-sized circular DNA does not enter the gel. The 2.1-Mb chromosome always generated an intense band, while the 3-Mb band was barely visible. After linearization of the DNA by X-irradiation, the intensity of the 3-Mb band increased while that of the 2.1-Mb remained constant. This suggests that the 3-Mb chromosome is circular and that the 2.1-Mb chromosome is linear. To confirm this hypothesis, genomic DNA, trapped in an agarose plug, was first submitted to PFGE to remove any linear DNA present. The plug was then recovered, and the remaining DNA was digested with either PacI or SwaI and then separated by PFGE. The fragments corresponding to the small chromosome were found to be absent, while those corresponding to the circular replicon remained, further proof of the linear nature of the 2.1-Mb chromosome.  相似文献   

7.
We describe an approach to determine DNA fragment sizes based on the fluorescence detection of single adsorbed fragments on specifically coated glass cover slips. The brightness of single fragments stained with the DNA bisintercalation dye TOTO-1 is determined by scanning the surface with a confocal microscope. The brightness of adsorbed fragments is found to be proportional to the fragment length. The method needs only minute amount of DNA, beyond inexpensive and easily available surface coatings, like poly-L-lysine, 3-aminoproyltriethoxysilane and polyornithine, are utilizable. We performed DNA-sizing of fragment lengths between 2 and 14 kb. Further, we resolved the size distribution before and after an enzymatic restriction digest. At this a separation of buffers or enzymes was unnecessary. DNA sizes were determined within an uncertainty of 7-14%. The proposed method is straightforward and can be applied to standardized microtiter plates.  相似文献   

8.
Large restriction fragments of genomic DNA from Staphylococcus species were separated by pulsed-field gel electrophoresis (PFGE). Five different strains of S. aureus (ISP8, SAU3A, PS96, ATCC 6538, ATCC 15564) and three representative strains of S. haemolyticus SM102, S. warneri MCS4, S. cohnii LK478 from human hosts, and one strain of S. aureus (ATCC 8432) from an avian host were used in this study. Since Staphylococcus is A + T rich (approximately 67%), restriction fragments were obtained by digesting chromosomal DNA with endonucleases that recognize GC-rich sequences. Five enzymes Csp I, Sma I, Ecl XI, Ksp I, or Sac II were used for generation of few (7 to 16) distinctly separated fragments, with average sizes in the range of 200-300 kb. The size distribution of restriction fragments for each enzyme for each strain produced a strain-identifying fingerprint, and the genome size of each strain was determined from such restriction fragments separated by PFGE.  相似文献   

9.
本文介绍了构建水稻二化螟和三化螟"双酶切限制性酶切位点关联DNA测序"(Double digest restrictionsite associated DNA sequencing,ddRADseq)文库的方法。利用安捷伦2100生物分析仪对4种单酶切及2种双酶切的酶切产物片段大小及分布范围进行分析,筛选出Mlu C I和Nla III两种限制性内切酶组合对螟虫基因组DNA进行酶切。酶切后的DNA片段两端连接上特定的P1、P2接头后,用Pippin Prep回收大小为285-435 bp的DNA片段。通过PCR扩增进行文库的富集并引入index序列。构建好的ddRADseq文库用琼脂糖凝胶电泳和生物分析仪进行质量检测。本方法所构建的文库DNA片段长度、分布和摩尔浓度能够达到Illumina平台测序的技术要求。本研究证实了利用Mlu C I和Nla III组合酶切构建水稻螟虫基因组ddRADseq文库的可行性,为在水稻螟虫中利用ddRADseq技术开展生物地理学、种群遗传学和系统发育重建等方面的研究奠定基础。  相似文献   

10.
The cleavage patterns of 23 rare-cutting restriction endonucleases (rcREs) on high molecular weight DNA, isolated from leaves of Arabidopsis thaliana (Arabidopsis), have been analysed using pulsed field gel electrophoresis (PFGE). The DNA digested with rcREs can be used for restriction fragment length polymorphism (RFLP) analysis. We show that RFLPs are more readily identified in restriction fragments that require resolution by PFGE than in smaller restriction fragments. Taking advantage of the low dispersed repetitive DNA content of the Arabidopsis genome, whole yeast artificial chromosomes (YACs) were used as probes to PFGE resolved genomic DNA. This enabled whole YAC clones to be used as RFLP markers and long range restriction maps to be constructed. These techniques should enhance the analysis of regions of the genome of Arabidopsis (and other organisms with low levels of dispersed repetitive DNA) that are the subject of chromosome walking strategies to isolate particular loci.  相似文献   

11.
The genomic cleavage map of the type strain Fibrobacter succinogenes S85 was constructed. The restriction enzymes AscI, AvrII, FseI, NotI, and SfiI generated DNA fragments of suitable size distribution that could be resolved by pulsed-field gel electrophoresis (PFGE). An average genome size of 3.6 Mb was obtained by summing the total fragment sizes. The linkages between the 15 AscI fragments of the genome were determined by combining two approaches: isolation of linking clones and cross-hybridization of restriction fragments. The genome of F. succinogenes was found to be represented by the single circular DNA molecule. Southern hybridization with specific probes allowed the eight genetic markers to be located on the restriction map. The genome of this bacterium contains at least three rRNA operons. PFGE of the other three strains of F. succinogenes gave estimated genome sizes close to that of the type strain. However, RFLP patterns of these strains generated by AscI digestion are completely different. Pairwise comparison of the genomic fragment distribution between the type strain and the three isolates showed a similarity level in the region of 14.3% to 31.3%. No fragment common to all of these F. succinogenes strains could be detected by PFGE. A marked degree of genomic heterogeneity among members of this species makes genomic RFLP a highly discriminatory and useful molecular typing tool for population studies. Received: 23 October 1996 / Accepted: 31 December 1996  相似文献   

12.
Two strains of urease-positive thermophilic Campylobacter (UPTC), CF89–12 and CF89–14, which were identified as UPTC by biochemical characterization, were found for the first time in river water in the Far East, namely, in Japan. The biochemical characteristics were identical to those of strains described previously by Bolton and colleagues. Furthermore, these two strains were positive for arylsulphatase. Consequently, it was demonstrated that UPTC may possibly be differentiated phenotypically from Campylobacter lari by the arylsulphatase test, as well as urease and nalidixic acid tests. Analysis by pulsed-field gel electrophoresis (PFGE) after digestion with Apa I, Sal I and Sma I, which were found to produce distributions of DNA fragments to be suitable for analysis of the genomic DNA from the thermophilic Campylobacter , respectively, demonstrated that these three restriction enzymes produced distributions of a relatively limited number of genomic DNA fragments and also demonstrated that the PFGE profiles obtained with the three restriction enzymes were indistinguishable between the two strains, respectively. The PFGE analysis and conventional fixed-field agarose gel electrophoresis suggested that the both genomes were approximately 1862 kb in length. Even though the two isolates of UPTC were isolated from water in different rivers in Japan, the results suggested that a single strain. as opposed to two distinct strains, was isolated. PFGE profiles after digestion with Sal I and Sma I, respectively, were also demonstrated to be distinctly different among strains isolated in Japan and previously in Europe. This is the first example of the isolation of UPTC from natural sources in countries other than those in Europe.  相似文献   

13.
Pulsed field gel electrophoresis (PFGE) allows separation of large restriction fragments from bacterial genome. Restriction fragments obtained by digestion of Staphylococcus aureus DNA with rare cutting enzymes (Sma I, and Csp I) were separated by PFGE. To arrange the physical order of the fragments generated by digestion with one enzyme, probes were prepared by nonspecific priming and polymerase chain reaction (PCR), using individual fragments of the other enzymatic digest as a template. Probes were then used for Southern hybridization to the PFGE separated fragment distribution of the two infrequent cleaving enzymes (Sma I and Csp I). Using probes generated from four Sma I fragments and five Csp I fragments as individual templates, a partial physical order of Csp I fragments of the genome of S. aureus ISP8 has been determined in relation to a previously published Sma I map of S. aureus genome.  相似文献   

14.
Here we describe bacterial genotyping by direct linear analysis (DLA) single-molecule mapping. DLA involves preparation of restriction digest of genomic DNA labeled with a sequence-specific fluorescent probe and stained nonspecifically with intercalator. These restriction fragments are stretched one by one in a microfluidic device, and the distribution of probes on the fragments is determined by single-molecule measurement of probe fluorescence. Fluorescence of the DNA-bound intercalator provides information on the molecule length. Because the probes recognize short sequences, they encounter multiple cognate sites on 100- to 300-kb-long DNA fragments. The DLA maps are based on underlying DNA sequences of microorganisms; therefore, the maps are unique for each fragment. This allows fragments of similar lengths that cannot be resolved by standard DNA sizing techniques to be readily distinguished. DNA preparation, data collection, and analysis can be carried out in as little as 5 h when working with monocultures. We demonstrate the ability to discriminate between two pathogenic Escherichia coli strains, O157:H7 Sakai and uropathogenic 536, and we use DLA mapping to identify microorganisms in mixtures. We also introduce a second color probe to double the information used to distinguish molecules and increase the length range of mapped fragments.  相似文献   

15.
Abstract Pulsed-field gel electrophoresis (PFGE) was applied to characterize Rhizobium bacteria isolated from the root nodules of Acacia senegal and Prosopis chilensis trees growing in Sudan and Keya. For the electrophoresis, the total DNA of 42 isolates, embedded in agarose, was digested by a rare-cutting restriction endonuclease, Xba I. The PFGE run resulted in good resolution of the DNA fragments and gave the strains distinctive fingerprint patterns. The patterns were analysed visually and using automated clustering analysis, which divided the strains into groups resembling the results generated by numerical taxonomy. However, several strains had unique banding patterns, which indicates that these strains are genetically very diverse.  相似文献   

16.
Optical mapping, a single DNA molecule genome analysis platform that can determine methylation profiles, uses fluorescently labeled DNA molecules that are elongated on the surface and digested with a restriction enzyme to produce a barcode of that molecule. Understanding how the cyanine fluorochromes affect enzyme activity can lead to other fluorochromes used in the optical mapping system. The effects of restriction digestion on fluorochrome labeled DNA (Ethidium Bromide, DAPI, H33258, EthD-1, TOTO-1) have been analyzed previously. However, TOTO-1 is a part of a family of cyanine fluorochromes (YOYO-1, TOTO-1, BOBO-1, POPO-1, YOYO-3, TOTO-3, BOBO-3, and POPO-3) and the rest of the fluorochromes have not been examined in terms of their effects on restriction digestion. In order to determine if the other dyes in the TOTO-1 family inhibit restriction enzymes in the same way as TOTO-1, lambda DNA was stained with a dye from the TOTO family and digested. The restriction enzyme activity in regards to each dye, as well as each restriction enzyme, was compared to determine the extent of digestion. YOYO-1, TOTO-1, and POPO-1 fluorochromes inhibited ScaI-HF, PmlI, and EcoRI restriction enzymes. Additionally, the mobility of labeled DNA fragments in an agarose gel changed depending on which dye was intercalated.  相似文献   

17.
Y Zhang  K Geider 《Applied microbiology》1997,63(11):4421-4426
Erwinia amylovora strains, isolated from several host plants in various geographic regions during different years, were analyzed by pulsed-field gel electrophoresis (PFGE) after digestion of the DNA from lysed, agar-embedded cells with rare-cutting restriction enzymes. The banding patterns obtained with enzyme XbaI digests revealed significant differences among strains from different areas. North American strains E9 and Ea-Rb, a Rubus strain, were highly divergent from other E. amylovora strains. French strains were different from central European and English strains. E. amylovora strains from central Europe and New Zealand had identical PFGE patters, as had strains from Egypt, Greece, and Turkey. PFGE of genomic DNA from American and English strains gave rise to dissimilar patterns. Patterns of some American strains resembled those from strains isolated in other parts of the world. The restriction fragment length polymorphisms observed by PFGE analysis can be used to group strains and may give hints about the course of distribution of the plant disease. From the sizes of the restriction fragments obtained, a molecular mass of approximately 4.5 Mb was calculated for the genome of E. amylovora.  相似文献   

18.
The SpeI/DpnI map of the 5.9 Mb Pseudomonas aeruginosa PAO (DSM 1707) genome was refined by two-dimensional (2D) pulsed-field gel electrophoresis techniques (PFGE) which allow the complete and consistent physical mapping of any bacterial genome of interest. Single restriction digests were repetitively separated by PFGE employing different pulse times and ramps in order to detect all bands with optimum resolution. Fragment order was evaluated from the pattern of 2D PFGE gels: 1. Partial-complete digestion. A partial restriction digest was separated in the first dimension, redigested to completion, and subsequently perpendicularly resolved in the second dimension. 2D-gel comparisons of the ethidium bromide stain of all fragments and of the autoradiogram of end-labeled partial digestion fragments was nearly sufficient for the construction of the macrorestriction map. 2. Reciprocal gels. A complete restriction digest with enzyme A was run in the first dimension, redigested with enzyme B, and separated in the second orthogonal direction. The order of restriction digests was reverse on the second gel. In case of two rare-cutters, fragments were visualized by ethidium bromide staining or hybridization with genomic DNA. If a frequent and a rare cutter were employed, linking fragments were identified by end-labeling of the first digest. 3. A few small fragments were isolated by preparative PFGE and used as a probe for Southern analysis.--38 SpeI and 15 DpnI fragments were positioned on the map. The zero point was relocated to the 'origin of replication'. The anonymous mapping techniques described herein are unbiased by repetitive DNA, unclonable genomic regions, unfavourable location of restriction sites, or cloning artifacts as frequently encountered in other top-down or bottom-up approaches.  相似文献   

19.
Reproducible, discriminative, high-throughput methods are required for the identification of bacterial strains and isolates in a clinical environment. A new molecular typing method for bacteria was developed and tested on Salmonella and E. coli species. The technique is called subtracted restriction fingerprinting and is based on double restriction enzyme digestion of genomic DNA followed by end labeling. The "detection" enzyme produces TTAA overhangs that are filled in with digoxigenated nucleotides for subsequent detection, while the "subtraction" enzyme produces GCGC overhangs that are filled in with biotinylated nucleotides that permit the removal of this subset of fragments with either streptavidin-coated magnetic particles or AffiniTip streptavidin columns. The two restriction enzymes are selected to produce a fragment size profile suitable for a specific analytical system. In this demonstration of the principle of subtracted restriction fingerprinting, analysis of Salmonella enterica subsp. enterica serovar Dublin and E. coli on a 30-cm 1.2% agarose gel revealed up to 50 sharp evenly spaced bands, which were sufficient for the discrimination between various isolates and substrains. The restriction enzyme combinations suitable for the analysis of Salmonella and E. coli are presented. The method requires fewer enzymatic steps than amplified fragment length polymorphism, does not need the specialized DNA preparation essential for pulsed field gel electrophoresis, and has a higher reproducibility than PCR-based methods.  相似文献   

20.
The kinetics of cleavage of DNA from Adenovirus Type 1 (Ad1), Type 5 (Ad5) and Type 6 (Ad6) by restriction endonuclease EcoRI was investigated by quantitative evaluation of the fluorescence from ethidium stained DNA fragments separated on agarose gels. The apparent rate constants of cleavage at different cleavage sites have been determined and large differences in the cleavage rates of the individual sites within one type of DNA were found. From the kinetics of cleavage information on the sequence of the DNA fragments can be obtained. The order of the fragment A, B, C, D of Ad6 DNA obtained after complete cleavage by restriction endonuclease Eco RI was found to be A-D-C-B; the order of the corresponding fragments A, B, C of Ad1 and Ad5 DNA was found to be A-C-B.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号