首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of gonadotropic hormones (juvenile (JH) and 20-hydroxyecdysone (20E)) on heat stress resistance was for the first time studied in wild type D. melanogaster line females infected with different genotypes of the Wolbachia pipientis alpha-proteobacterium. It was found that an experimental increase in JH level induces a decrease in the heat stress resistance, while an increase in 20E level induces its increase in sixday females both uninfected with the Wolbachia and infected with different bacterium strains (wMelCS, wMelPop, and wMel). However, the intensity of response differs: a decrease in the survival with an increase in JH level and its increase with an increase in 20E level are more pronounced in females infected with pathogenic wMelPop strain and less pronounced in females infected with the wMelCS genotype than in uninfected females and females infected with the wMel genotype. Data obtained suggest that the wMelCS genotype induces a decrease and wMelPop induces an increase in the level of stress hormone (dopamine), since previously we demonstrated that an increase in the JH level in mature females increases the dopamine level, an increase in the 20E level decreases it, and an increase/decrease in the dopamine level, in turn, leads to a decrease/increase of the Drosophila female resistance to heat stress.  相似文献   

2.
The heat stress resistance of Drosophila melanogaster females carrying a hypomorphic mutation of the DILP6 insulin-like protein gene (dilp6 41 ) under a change in the level of stress-related hormones (juvenile hormone and octopamine) is studied. It is revealed that the dilp6 41 mutation decreases the heat stress resistance of mature D. melanogaster females. An experimental decrease in the level of juvenile hormone is shown to restore the stress resistance of mutant females to the level of stress resistance observed in wild type Canton S females. These data suggest that the effects of the dilp6 41 mutation on the stress resistance of females are mediated by an increased level of juvenile hormone. An experimental increase in the octopamine level that causes an increase in juvenile hormone level supports this hypothesis: the resistance to heat stress decreases in females of both lines and this decrease is more significant in mutant females than in the control line. Thus, it is established for the first time that the effect of the hypomorphic dilp6 gene mutation on the heat stress resistance of D. melanogaster females is mediated by juvenile hormone.  相似文献   

3.
CELLS infected with attenuated type 1 poliovirus (LSc) at 39° C synthesize only 20% of the viral proteins produced at 35° C. Polyacrylamide gel electrophoresis of viral peptides shows that only four peptides (with molecular weights of 230,000, 212,000, 196,000 and 160,000) are produced at the restrictive temperature1. It was suggested that the last three are cleavage products of the 230,000 molecular weight peptide. Furthermore, since smaller peptides were never observed it was suggested that proteolysis might eliminate them from infected cells at 39° C. Nonsense and deletion mutations cause degradation of incomplete peptides of β-galactosidase2 and the lac repressor3. We have studied whether there is significant proteolysis of the peptides of attenuated poliovirus in vivo at 39° C. There is extensive degradation of viral peptides at the restrictive temperature and essentially no degradation at the permissive temperature. The peptides of wild type virulent virus are not degraded at either 35° C or 39° C.  相似文献   

4.
Small heat shock proteins (sHSPs) have been shown to be involved in stress tolerance. However, their functions in Prunus mume under heat treatment are poorly characterized. To improve our understanding of sHSPs, we cloned a sHSP gene, PmHSP17.9, from P. mume. Sequence alignment and phylogenetic analysis indicated that PmHSP17.9 was a member of plant cytosolic class III sHSPs. Besides heat stress, PmHSP17.9 was also upregulated by salt, dehydration, oxidative stresses and ABA treatment. Leaves of transgenic Arabidopsis thaliana that ectopically express PmHSP17.9 accumulated less O2 ? and H2O2 compared with wild type (WT) after 42 °C treatment for 6 h. Over-expression of PmHSP17.9 in transgenic Arabidopsis enhanced seedling thermotolerance by decreased relative electrolyte leakage and MDA content under heat stress treatment when compared to WT plants. In addition, the induced expression of HSP101, HSFA2, and delta 1-pyrroline-5-carboxylate synthase (P5CS) under heat stress was more pronounced in transgenic plants than in WT plants. These results support the positive role of PmHSP17.9 in response to heat stress treatment.  相似文献   

5.
The effect of various duration of heat stress (38°C) on the activity of ecdysone 20-monooxygenase converting ecdysone into 20-hydroxyecdysone has been studied in D. virilis of wild type and mutant strain females, which differ by the mode of heat stress response of ecdysone and 20-hydroxyecdysone. We are the first to show that heat stress induces activity of ecdysone 20-monooxygenase in Drosophila females and enzyme activity correlates with the level of 20-hydroxyecdysone.  相似文献   

6.
The effect of strong hypomorphic mutation of the insulin-like protein gene (dilp6) on metabolism of octopamine (one of the main biogenic amines in insects) was studied in Drosophila melanogaster males and females. The activity of tyrosine decarboxylase (the key enzyme of octopamine synthesis) and the activity of octopamine-dependent N-acetyltransferase (the enzyme of its degradation) were measured. It was demonstrated that the activity of both studied enzymes is decreased under normal conditions in the dilp641 mutants (as we previously demonstrated, this is correlated with an increased level of octopamine). It was also found that hypomorphic mutation of the dilp6 gene decreases the intensity of tyrosine decarboxylase response to heat stress. Thus, it was demonstrated for the first time that insulin-like DILP6 protein in drosophila influences the level of octopamine (regulating the activity of the enzyme degrading octopamine).  相似文献   

7.
8.
Vacuolar-type H+-ATPase (V-ATPase), a multi-subunit endomembrane proton pump, plays an important role in plant growth and response to environmental stresses. In the present study, transgenic tobacco that overexpressed the V-ATPase c subunit gene from Iris lactea (IrlVHA-c) was used to determine the function of IrlVHA-c. Quantitative PCR analysis showed that IrlVHA-c expression was induced by salt stress in I. lactea roots and leaves. Subcellular localization of green fluorescent protein (GFP) as marker combined with FM4-64 staining showed that the IrlVHA-c-GFP was localized to the endosomal compartment in tobacco cells. Compared with the wild-type, the IrlVHA-c transgenic tobacco plants exhibited greater seed germination rates, root length, fresh weight, and higher relative water content (RWC) of leaves under salt stress. Furthermore, the IrlVHA-c transgenic tobacco leaves have lower stomatal densities and larger stomatal apertures than wild-type. Under salt stress, superoxide dismutase (SOD) activity in the transgenic tobacco was significantly enhanced. Moreover, the level of malondialdehyde (MDA) in the transgenic tobacco was significantly lower than that in wild-type plants under salt stress. Taken together, these results suggested that the IrlVHA-c plays an important role in salt tolerance in transgenic tobacco by influencing stomatal movement and physiological changes.  相似文献   

9.
A yellow pigmented bacterium designated strain MBLN094T within the family Flavobacteriaceae was isolated from a halophyte Salicornia europaea on the coast of the Yellow Sea. This strain was a Gram-stain negative, aerobic, non-spore forming, rod-shaped bacterium. Phylogenetic analysis of the 16S rRNA gene sequence of strain MBLN094T was found to be related to the genus Zunongwangia, exhibiting 16S rRNA gene sequence similarity values of 97.0, 96.8, 96.4, and 96.3% to Zunongwangia mangrovi P2E16T, Z. profunda SM-A87T, Z. atlantica 22II14-10F7T, and Z. endophytica CPA58T, respectively. Strain MBLN094T grew at 20?37°C (optimum, 25?30°C), at pH 6.0?10.0 (optimum, 7.0?8.0), and with 0.5?15.0% (w/v) NaCl (optimum, 2.0?5.0%). Menaquinone MK-6 was the sole respiratory quinone. The polar lipids were phosphatidylethanolamine, two unidentified aminolipids, and four unidentified lipids. Major fatty acids were iso-C17:0 3-OH, summed feature 3 (C16:1ω6c and/or C16:1 ω7c), and iso-C15:0. The genomic DNA G + C content was 37.4 mol%. Based on these polyphasic taxonomic data, strain MBLN094T is considered to represent a novel species of the genus Zunongwangia, for which the name Zunongwangia flava sp. nov. is proposed. The type strain is MBLN094T (= KCTC 62279T = JCM 32262T).  相似文献   

10.
11.

Key message

Arabidopsis det1 mutants exhibit salt and osmotic stress resistant germination. This phenotype requires HY5, ABF1, ABF3, and ABF4.

Abstract

While DE-ETIOLATED 1 (DET1) is well known as a negative regulator of light development, here we describe how det1 mutants also exhibit altered responses to salt and osmotic stress, specifically salt and mannitol resistant germination. LONG HYPOCOTYL 5 (HY5) positively regulates both light and abscisic acid (ABA) signalling. We found that hy5 suppressed the det1 salt and mannitol resistant germination phenotype, thus, det1 stress resistant germination requires HY5. We then queried publically available microarray datasets to identify genes downstream of HY5 that were differentially expressed in det1 mutants. Our analysis revealed that ABA regulated genes, including ABA RESPONSIVE ELEMENT BINDING FACTOR 3 (ABF3), are downregulated in det1 seedlings. We found that ABF3 is induced by salt in wildtype seeds, while homologues ABF4 and ABF1 are repressed, and all three genes are underexpressed in det1 seeds. We then investigated the role of ABF3, ABF4, and ABF1 in det1 phenotypes. Double mutant analysis showed that abf3, abf4, and abf1 all suppress the det1 salt/osmotic stress resistant germination phenotype. In addition, abf1 suppressed det1 rapid water loss and open stomata phenotypes. Thus interactions between ABF genes contribute to det1 salt/osmotic stress response phenotypes.
  相似文献   

12.
13.
A Gram-stain negative, aerobic, motile by flagella, rod-shaped strain (THG-T16T) was isolated from rhizosphere of Hibiscus syriacus. Growth occurred at 10–40 °C (optimum 28–30 °C), at pH 6.0–8.0 (optimum 7.0) and at 0–1.0% NaCl (optimum 0%). Based on 16S rRNA gene sequence analysis, the near phylogenetic neighbours of strain THG-T16T were identified as Nibribacter koreensis KACC 16450T (98.6%), Rufibacter roseus KCTC 42217T (94.7%), Rufibacter immobilis CCTCC AB 2013351T (94.5%) and Rufibacter tibetensis CCTCC AB 208084T (94.4%). The DNA G+C content of strain THG-T16T was determined to be 46.7 mol%. DNA–DNA hybridization values between strain THG-T16T and N. koreensis KACC 16450T, R. roseus KCTC 42217T, R. immobilis CCTCC AB 2013351T, R.tibetensis CCTCC AB 208084T were 33.5?±?0.5% (31.7?±?0.7% reciprocal analysis), 28.1?±?0.2% (25.2?±?0.2%), 17.1?±?0.9% (10.2?±?0.6%) and 8.1?±?0.3% (5.2?±?0.1%). The polar lipids were identified as phosphatidylethanolamine, two unidentified aminophospholipids, an unidentified aminolipid and three unidentified lipids. The quinone was identified as MK-7 and the polyamine as sym-homospermidine. The major fatty acids were identified as C16:1 ω5c, C17:1 ω6c, iso-C15:0, summed feature 3 (C16:1 ω7c and/or C16:1 ω6c) and summed feature 4 (iso-C17:1 I and/or anteiso-C17:1 B). On the basis of the phylogenetic analysis, chemotaxonomic data, physiological characteristics, and DNA–DNA hybridization data, strain THG-T16T represents a novel species of the genus Nibribacter, for which the name Nibribacter flagellatus sp. nov. is proposed. The type strain is THG-T16T(=?KACC 19188T?=?CCTCC AB 2016246T).  相似文献   

14.
The effect of five constant temperatures (16, 20, 24, 28 and 32 °C) on the development, survival and reproduction of Tetranychus cinnabarinus (Boisduval) [=?Tetranychus urticae Koch (red form)] fed on cassava leaves was examined in the laboratory at 85% relative humidity. Development time of various immature stages decreased with increasing temperature, with total egg-to-adult development time varying from 27.7 to 6.7 days. The lower thermal threshold for development was 10.8 °C and the thermal constant from egg to adult was 142.4 degree-days. Pre- and post-oviposition period and female longevity all decreased as temperature increased. The longest oviposition period was observed at 20 °C with 20.4 days. Under different temperatures, mated females laid, on average, 1.0, 2.9, 4.7, 4.7 and 4.9 eggs per day, respectively. The maximum fecundity (81.5 eggs per female) was at 28 °C and the intrinsic rate of increase (r m ) was highest (0.25) at 32 °C. The results of this study indicate that T. cinnabarinus population could increase rapidly when cassava leaves serve as a food source. At the appropriate temperature T. cinnabarinus could seriously threaten growth of cassava.  相似文献   

15.
16.
Elucidation of mechanisms underlying plant tolerance to cadmium, a widespread toxic soil pollutant, and accumulation of Cd in plants are urgent tasks. For this purposes, the pea (Pisum sativum L.) mutant SGECdt (obtained by treatment of the laboratory pea line SGE with ethylmethane sulfonate) was reciprocally grafted with the parental line SGE, and four scion/rootstock combinations were obtained: SGE/SGE, SGECdt/SGECdt, SGE/SGECdt, and SGECdt/SGE. They were grown in hydroponics in the presence of 1 μM CdCl2 for 30 d. The SGE and SGECdt scions on the SGECdt rootstock had a higher root and shoot biomass and an elevated root and shoot Cd content compared with the grafts having SGE rootstock. Only the grafts with the SGE rootstock showed chlorosis and roots demonstrating symptoms of Cd toxicity. The content of nutrient elements in roots (Fe, K, Mg, Mn, Na, P, and Zn) was higher in the grafts having the SGECdt rootstock, and three elements, namely Ca, Fe, and Mn, were efficiently transported by the SGECdt root to the shoot of these grafts. The content of other measured elements (K, Mg, Na, P, and Zn) was similar in the root and shoot in all the grafts. Then, the non-grafted plants were grown in the presence of Cd and subjected to deficit or excess concentrations of Ca, Fe, or Mn. Exclusion of these elements from the nutrient solution retained or increased differences between SGE and SGECdt in growth response to Cd toxicity, whereas excess of Ca, Fe, or Mn decreased or eliminated such differences. The obtained results assign a principal role of roots to realizing the increased Cd-tolerance and Cdaccumulation in the SGECdt mutant. Efficient translocation of Ca, Fe, and Mn from roots to shoots appeared to counteract Cd toxicity, although Cd was actively taken up by roots and accumulated in shoots.  相似文献   

17.
In recent years, several strains capable of degrading 1,4-dioxane have been isolated from the genera Pseudonocardia and Rhodococcus. This study was conducted to evaluate the 1,4-dioxane degradation potential of phylogenetically diverse strains in these genera. The abilities to degrade 1,4-dioxane as a sole carbon and energy source and co-metabolically with tetrahydrofuran (THF) were evaluated for 13 Pseudonocardia and 12 Rhodococcus species. Pseudonocardia dioxanivorans JCM 13855T, which is a 1,4-dioxane degrading bacterium also known as P. dioxanivorans CB1190, and Rhodococcus aetherivorans JCM 14343T could degrade 1,4-dioxane as the sole carbon and energy source. In addition to these two strains, ten Pseudonocardia strains could degrade THF, but no Rhodococcus strains could degrade THF. Of the ten Pseudonocardia strains, Pseudonocardia acacia JCM 16707T and Pseudonocardia asaccharolytica JCM 10410T degraded 1,4-dioxane co-metabolically with THF. These results indicated that 1,4-dioxane degradation potential, including degradation for growth and by co-metabolism with THF, is possessed by selected strains of Pseudonocardia and Rhodococcus, although THF degradation potential appeared to be widely distributed in Pseudonocardia. Analysis of soluble di-iron monooxygenase (SDIMO) α-subunit genes in THF and/or 1,4-dioxane degrading strains revealed that not only THF and 1,4-dioxane monooxygenases but also propane monooxygenase-like SDIMOs can be involved in 1,4-dioxane degradation.  相似文献   

18.
Piriformospora indica, a root endophytic fungus, has been reported to promote growth of many plants under normal condition and allow the plants to survive under stress conditions. However, its impact on an important medicinal plant Aloe vera L. has not been well studied. Therefore, this study was undertaken to investigate the effect of P. indica on salinity stress tolerance of A. vera plant. P. indica inoculated and non-inoculated A. vera plantlets were subjected to four levels of salinity treatment- 0, 100, 200 and 300 mM NaCl. The salinity stress decreased the ability of the fungus to colonize roots of A. vera but the interaction of A. vera with P. indica resulted in an overall increase in plant biomass and greater shoot and root length as well as number of shoots and roots. The photosynthetic pigment (Chl a, Chl b and total Chl) and gel content were significantly higher for the fungus inoculated A. vera plantlets, at respective salinity concentrations. Furthermore, the inoculated plantlets had higher phenol, flavonoid, flavonol, aloin contents and radical scavenging activity at all salinity concentrations. The higher phenolic and flavonoid content may help the plants ameliorate oxidative stress resulting from high salinity.  相似文献   

19.
The insulin/insulin-like growth factor signaling pathway is involved in the regulation of the synthesis of insect gonadotropic hormones, juvenile (JH) and 20-hydroxyecdysone (20E). We carried out the immunohistochemical analysis of the insulin receptor (InR) expression in the corpus allatum (the JH-producing gland) and in the ovarian follicular cells (a site for the synthesis of 20E precursor, ecdysone) in the process of sexual maturation of D. melanogaster females and examined the influence of exogenous JH on the InR expression in these tissues. For the first time, it was demonstrated that InR was expressed in follicular cells and that its expression in corpus allatum and follicular cells of Drosophila females was stage-specific, i.e., the expression intensity in young females greatly exceeded that in mature individuals. We also found a negative feedback loop in the regulation of JH levels by the insulin signaling pathway in Drosophila adults: the experimental increase in the JH titers in young females dramatically reduced the InR expression intensity in corpus allatum and follicular cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号