首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Regulation of equine infectious anemia virus expression   总被引:5,自引:0,他引:5  
Equine infectious anemia virus (EIAV) is an ungulate lentivirus that is related to human immunodeficiency virus (HIV). Much of the understanding of lentiviral gene regulation comes from studies using HIV. HIV studies have provided insights into molecular regulation of EIAV expression; however, much of the regulation of EIAV expression stands in stark contrast to that of HIV. This review provides an overview of the current state of knowledge of EIAV regulation by comparing and contrasting EIAV gene regulation to HIV. The role of EIAV gene regulation is discussed in relation to EIAV pathogenesis.  相似文献   

3.
4.
Structural proteins of equine infectious anemia virus.   总被引:1,自引:2,他引:1       下载免费PDF全文
Equine infectious anemia virus was found to be comprised of fourteen polypeptides of molecular weight ranging from 10,000 to 79,000. Eighty percent of the virion protein was accounted for by five polypeptides, including two non-glycosylated components (p29 and p13) comprising one-half of the virion protein and three glycoproteins (gp77/79, gp64, and gp40).  相似文献   

5.
Characterization of RNA from equine infectious anemia virus.   总被引:9,自引:0,他引:9       下载免费PDF全文
The genome of equine infectious anemia virus, a nononcogenic retrovirus, has been characterized by velocity sedimentation, electrophoresis in polyacrylamide gels, buoyant density in CS2SO4, and susceptibility to nuclease digestion. The nucleic acid of purified virus was resolved by sedimentation analysis into a fast-sedimenting genome component, which comprises about two-thirds of the virion RNA, and a slow-sedimenting RNA, which is probably comprised of host-derived tRNA and a trace amount of 5S RNA. The fast-sedimenting RNA had a sedimentation coefficient of 62S and a molecular weight of 5.4 X 10(6) to 5.6 X 10(6), as determined by sedimentation velocity and electrophoretic mobility. Upon heat denaturation, [3H]uridine-labeled 62S RNA dissociated into material comprised of 90 to 95% single-stranded species, sedimenting predominantly at 34S, with a molecular weight of 2.7 X 10(6) to 2.9 X 10(6) and 5 to 10% 4S RNA. The 62S RNA was predominantly single-stranded but contained double-stranded regions, as indicated by partial resistance to RNase IA and SI nuclease and by a lower buoyant density in CS2SO4 than that of the single-stranded 34S RNA derived by heat denaturation. These data indicated that the viral genome consisted of two 34S subunits of single-stranded RNA held in a high-molecular-weight complex with 4S RNA by a mechanism involving a small degree of base pairing. Thus, the structure of equine infectious anemia virus RNA is similar to that of other retroviruses.  相似文献   

6.
The Gag proteins of a number of different retroviruses contain late or L domains that promote the release of virions from the plasma membrane. Three types of L domains have been identified to date: Pro-Thr-Ala-Pro (PTAP), Pro-Pro-X-Tyr, and Tyr-Pro-Asp-Leu. It has previously been demonstrated that overexpression of the N-terminal, E2-like domain of the endosomal sorting factor TSG101 (TSG-5') inhibits human immunodeficiency virus type 1 (HIV-1) release but does not affect the release of the PPPY-containing retrovirus murine leukemia virus (MLV), whereas overexpression of the C-terminal portion of TSG101 (TSG-3') potently disrupts both HIV-1 and MLV budding. In addition, it has been reported that, while the release of a number of retroviruses is disrupted by proteasome inhibitors, equine infectious anemia virus (EIAV) budding is not affected by these agents. In this study, we tested the ability of TSG-5', TSG-3', and full-length TSG101 (TSG-F) overexpression, a dominant negative form of the AAA ATPase Vps4, and proteasome inhibitors to disrupt the budding of EIAV particles bearing each of the three types of L domain. The results indicate that (i) inhibition by TSG-5' correlates with dependence on PTAP; (ii) the release of wild-type EIAV (EIAV/WT) is insensitive to TSG-3', whereas this C-terminal TSG101 fragment potently impairs the budding of EIAV when it is rendered PTAP or PPPY dependent; (iii) budding of all EIAV clones is blocked by dominant negative Vps4; and (iv) EIAV/WT release is not impaired by proteasome inhibitors, while EIAV/PTAP and EIAV/PPPY release is strongly disrupted by these compounds. These findings highlight intriguing similarities and differences in host factor utilization by retroviral L domains and suggest that the insensitivity of EIAV to proteasome inhibitors is conferred by the L domain itself and not by determinants in Gag outside the L domain.  相似文献   

7.
A novel strain of equine infectious anemia virus (EIAV) called vMA-1c that rapidly and specifically killed infected equine fibroblasts (ED cells) but not other infectible cell lines was established. This strain was generated from an avirulent, noncytopathic strain of EIAV, MA-1. Studies with this new cytolytic strain of virus have permitted us to define viral parameters associated with EIAV-induced cell killing and begin to explore the mechanism. vMA-1c infection resulted in induction of rapid cell death, enhanced fusogenic activity, and increased rates of spread in equine fibroblasts compared to other strains of EIAV. The highly cytolytic nature of vMA-1c suggested that this strain might be superinfecting equine fibroblasts. Receptor interference studies demonstrated that prior infection of equine fibroblasts with EIAV did not alter the ability of vMA-1c to infect and kill these cells. In similar studies in a canine fibroblast cell line, receptor interference did occur. vMA-1c infection of equine fibroblasts was also associated with large quantities of unintegrated viral DNA, a well-established hallmark of retroviral superinfection. Cloning of the vMA-1c genome identified nucleotide changes that would result in at least one amino acid change in all viral proteins. A chimeric infectious molecular clone containing the vMA-1c tat, S2, and env open reading frames recapitulated most of the characteristics of vMA-1c, including superinfection, fibroblast killing, and fusogenic activity. In summary, in vitro selection for a strain of EIAV that rapidly killed cells resulted in the generation of a virus that was able to superinfect these cells, presumably by the use of a novel mechanism of cell entry. This phenotype mapped to the 3' half of the genome.  相似文献   

8.
9.
10.
11.
12.
Equine infectious anemia (EIAV) is shown to have an associated RNA-instructed DNA polymerase similar in its cofactor requirements and reaction conditions to the RNA tumor virus DNA polymerases. Demonstrating this DNA polymerase activity requires a critical concentration of a nonionic detergent, all four deoxyribonucleoside triphosphates, and a divalent metal ion. The reaction is sensitive to RNase, and a substantial fraction of the FNA synthesized is complementary to viral RNA. The detection of a complex of tritium-labeled polymerase product DNA-template RNA, which sedimented at 60S to 70S, provided evidence that EIAV contains high-molecular-weight RNA. These results, obtained with both virus propagated in cell culture and virus from the serum of an experimentally infected horse, indicate that EIAV may properly be considered a member of the family Retroviridae. They may also be pertinent to the mechanism(s) of viral persistence and periodic recrudescence of disease in chronically infected horses.  相似文献   

13.
14.
Phosphatidylinositol 4,5-biphosphate [PI(4,5)P(2) ], the predominant phosphoinositide (PI) on the plasma membrane, binds the matrix (MA) protein of human immunodeficiency virus type 1 (HIV-1) and equine infectious anemia virus (EIAV) with similar affinities in vitro. Interaction with PI(4,5)P(2) is critical for HIV-1 assembly on the plasma membrane. EIAV has been shown to localize in internal compartments; hence, the significance of its interaction with PI(4,5)P(2) is unclear. We therefore investigated the binding in vitro of other PIs to EIAV MA and whether intracellular association with compartments bearing these PIs was important for assembly and release of virus-like particles (VLPs) formed by Gag. In vitro, EIAV MA bound phosphatidylinositol 3-phosphate [PI(3)P] with higher affinity than PI(4,5)P(2) as revealed by nuclear magnetic resonance (NMR) spectra upon lipid titration. Gag was detected on the plasma membrane and in compartments enriched in phosphatidylinositol 3,5-biphosphate [PI(3,5)P(2) ]. Treatment of cells with YM201636, a kinase inhibitor that blocks production of PI(3,5)P(2) from PI(3)P, caused Gag to colocalize with aberrant compartments and inhibited VLP release. In contrast to HIV-1, release of EIAV VLPs was not significantly diminished by coexpression with 5-phosphatase IV, an enzyme that specifically depletes PI(4,5)P(2) from the plasma membrane. However, coexpression with synaptojanin 2, a phosphatase with broader specificity, diminished VLP production. PI-binding pocket mutations caused striking budding defects, as revealed by electron microscopy. One of the mutations also modified Gag-Gag interaction, as suggested by altered bimolecular fluorescence complementation. We conclude that PI-mediated targeting to peripheral and internal membranes is a critical factor in EIAV assembly and release.  相似文献   

15.
16.
17.
18.
The only retrovirus protein required for the budding of virus-like particles is the Gag protein; however, recent studies of Rous sarcoma virus (RSV) and human immunodeficiency virus have suggested that modification of Gag with ubiquitin (Ub) is also required. As a consequence, the release of these viruses is reduced in the presence of proteasome inhibitors, which indirectly reduce the levels of free Ub within the cell. Here we show that the budding of equine infectious anemia virus (EIAV) from infected equine cells is largely unaffected by these drugs, although use of one inhibitor (MG-132) resulted in a dramatic block to proteolytic processing of Gag. This lack of sensitivity was also observed in transiently transfected avian cells under conditions that greatly reduce RSV budding. Moreover, insensitivity was observed when the EIAV Gag protein was expressed in the absence of all the other virus products, indicating that they are not required for this phenotype. An activity that enables EIAV to tolerate exposure to proteasome inhibitors was mapped to the C-terminal p9 sequence, as demonstrated by the ability of an RSV Gag-p9 chimera to bud in the presence of the drugs. Intriguingly, the p9 sequence contains a short sequence motif that is similar to a surface-exposed helix of Ub, suggesting that EIAV Gag may have captured a function that allows it to bypass the need for ubiquitination. Thus, the mechanism of EIAV budding may not be substantially different from that of other retroviruses, even though it behaves differently in the presence of proteasome inhibitors.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号