首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The X-ray crystal structure of the complex between the synthetic antitumour and antiviral DNA binding ligand SN 7167 and the DNA oligonucleotide d(CGCGAATTCGCG)2 has been determined to an R factor of 18.3% at 2.6 A resolution. The ligand is located within the minor groove and covers almost 6 bp with the 1-methylpyridinium ring extending as far as the C9-G16 base pair and the 1-methylquinolinium ring lying between the G4-C21 and A5-T20 base pairs. The ligand interacts only weakly with the DNA, as evidenced by long range contacts and shallow penetration into the groove. This structure is compared with that of the complex between the parent compound SN 6999 and the alkylated DNA sequence d(CGC[e6G]AATTCGCG)2. There are significant differences between the two structures in the extent of DNA bending, ligand conformation and groove binding.  相似文献   

2.
A theoretical study of the binding to DNA of netropsin and a bisquaternary ammonium heterocycle, SN 18071, is undertaken with an energy minimizing program based on empirical potential functions. The positioning of the ligand is achieved by force and torque calculations and its internal flexibility is taken into account. The binding preference of both drugs studied for the AT minor groove of B-DNA is shown to depend on both the electrostatic potential generated by the base sequence and the quality of the steric fit of the ligand in the groove. Ligand-DNA hydrogen bonds are shown to aid binding, but not to be essential in establishing binding preferences.  相似文献   

3.
A new asymmetric cyanine dye has been synthesised and its interaction with different DNA has been investigated. In this dye, BEBO, the structure of the known intercalating cyanine dye BO has been extended with a benzothiazole substituent. The resulting crescent-shape of the molecule is similar to that of the well-known minor groove binder Hoechst 33258. Indeed, comparative studies of BO illustrate a considerable change in binding mode induced by this structural modification. Linear and circular dichroism studies indicate that BEBO binds in the minor groove to [poly (dA-dT)](2), but that the binding to calf thymus DNA is heterogeneous, although still with a significant contribution of minor groove binding. Similar to other DNA binding asymmetric cyanine dyes, BEBO has a large increase in fluorescence intensity upon binding and a relatively large quantum yield when bound. The minor groove binding of BEBO to [poly (dA-dT)](2) affords roughly a 180-fold increase in intensity, which is larger than to that of the commonly used minor groove binding probes DAPI and Hoechst 33258.  相似文献   

4.
5.
We have used DNA footprinting and fluorescence melting experiments to study the sequence-specific binding of a novel minor groove binding ligand (thiazotropsin A), containing an isopropyl substituted thiazole polyamide, to DNA. In one fragment, which contains every tetranucleotide sequence, sub-micromolar concentrations of the ligand generate a single footprint at the sequence ACTAGT. This sequence preference is confirmed in melting experiments with fluorescently labelled oligonucleotides. Experiments with DNA fragments that contain variants of this sequence suggest that the ligand also binds, with slightly lower affinity, to sequences of the type XCYRGZ, where X is any base except C, and Z is any base except G.  相似文献   

6.
Two new crescent-shaped unsymmetrical cyanine dyes have been synthesised and their interactions with DNA have been investigated by different spectroscopic methods. These dyes are analogues to a minor groove binding unsymmetrical cyanine dye, BEBO, recently reported by us. In this dye, the structure of the known intercalating cyanine dye BO was extended with a benzothiazole substituent. To investigate how the identity of the extending heterocycle affects the binding to DNA, the new dyes BETO and BOXTO have a benzothiazole group and a benzoxazole moiety, respectively. Whereas BEBO showed a heterogeneous binding to calf thymus DNA, linear and circular dichroism studies of BOXTO indicate a high preference for minor groove binding. BETO also binds in the minor groove to mixed sequence DNA but has a contribution of non-ordered and non-emissive species present. A non-intercalative binding mode of the new dyes, as well as for BEBO, is further supported by electrophoresis unwinding assays. These dyes, having comparable spectral properties as the intercalating cyanine dyes, but bind in the minor groove instead, might be useful complements for staining of DNA. In particular, the benzoxazole substituted dye BOXTO has attractive fluorescence properties with a quantum yield of 0.52 when bound to mixed sequence DNA and a 300-fold increase in fluorescence intensity upon binding.  相似文献   

7.
Comparison of interaction energy between an oligonucleotide and a DNA-binding ligand in the minor and major groove modes was made by use of restrained molecular dynamics. Distortion in DNA was found for the major groove mode whereas less significant changes for both ligand and DNA were detected for the minor groove binding after molecular dynamics simulation. The conformation of the ligand obtained from the major groove mode resembles that computed with the ligand soaked in water. The van der Waals contact energy was found to be as significant as electrostatic energy and more important for difference in binding energy between these two binding modes. The importance of van der Waals force in groove binding was supported by computations on the complex formed by the repressor peptide fragment from the bacteriophage 434 and its operator oligonucleotide.  相似文献   

8.
Polyamides composed of N-methylpyrrole (Py), N-methylimidazole (Im) and N-methylhydroxypyrrole (Hp) amino acids linked by beta-alanine (beta) bind the minor groove of DNA in 1:1 and 2:1 ligand to DNA stoichiometries. Although the energetics and structure of the 2:1 complex has been explored extensively, there is remarkably less understood about 1:1 recognition beyond the initial studies on netropsin and distamycin. We present here the 1:1 solution structure of ImPy-beta-Im-beta-ImPy-beta-Dp bound in a single orientation to its match site within the DNA duplex 5'-CCAAAGAGAAGCG-3'.5'-CGCTTCTCTTTGG-3' (match site in bold), as determined by 2D (1)H NMR methods. The representative ensemble of 12 conformers has no distance constraint violations greater than 0.13 A and a pairwise RMSD over the binding site of 0.80 A. Intermolecular NOEs place the polyamide deep inside the minor groove, and oriented N-C with the 3'-5' direction of the purine-rich strand. Analysis of the high-resolution structure reveals the ligand bound 1:1 completely within the minor groove for a full turn of the DNA helix. The DNA is B-form (average rise=3.3 A, twist=38 degrees ) with a narrow minor groove closing down to 3.0-4.5 A in the binding site. The ligand and DNA are aligned in register, with each polyamide NH group forming bifurcated hydrogen bonds of similar length to purine N3 and pyrimidine O2 atoms on the floor of the minor groove. Each imidazole group is hydrogen bonded via its N3 atom to its proximal guanine's exocyclic amino group. The important roles of beta-alanine and imidazole for 1:1 binding are discussed.  相似文献   

9.
[N-MeCys3,N-MeCys7]TANDEM, an undermethylated analogue of Triostin A, contains two N-methyl groups on the cysteine residues only. Footprinting results showed that [N-MeCys3,N-MeCys7]TANDEM binds strongly to DNA rich in A.T residues [Low, C. M. L., Fox, K. R., Olsen, R. K., & Waring, M. J. (1986) Nucleic Acids Res. 14, 2015-2033]. However, it was not known whether specific binding of [N-MeCys3,N-MeCys7]TANDEM requires a TpA step or an ApT step. In 1:1 saturated complexes with the octamers [d(GGATATCC)]2 and [d(GGTTAACC)]2, [N-MeCys3,N-MeCys7]TANDEM binds to each octamer as a bis-intercalator bracketing the TpA step. The octadepsipeptide ring binds in the minor groove of the DNA. Analysis of sugar coupling constants from the phase-sensitive COSY data indicates that the sugar of the thymine in the TpA binding site adopts predominantly an N-type sugar conformation, while the remaining sugars on the DNA adopt an S-type conformation, as has been observed in other Triostin A and echinomycin complexes. The drug does not bind to the octamer [d(GGAATTCC)]2 as a bis-intercalator. Only weak nonintercalative binding is observed to this DNA octamer. These results show unambiguously that [N-MeCys3,N-MeCys7]TANDEM binds sequence specifically at TpA sites in DNA. The factors underlying the sequence specificity of [N-MeCys3,N-MeCys7]TANDEM binding to DNA are discussed.  相似文献   

10.
11.
We here study the interactions of a polyamide with large DNA, and compare to those of minor groove binder distamycin (DST), including high ligand/DNA binding ratios. Specific as well as nonspecific binding is probed using polarized-light spectroscopy combined with singular value decomposition analysis. Circular and linear dichroism data confirm binding geometries consistent with minor groove binding for both of the ligands. Interestingly, at high and intermediate ligand/DNA ratios the polyamide exhibits no significant sequence discrimination between mixed-sequence (calf thymus) and AT DNA as compared to DST. Each ligand is concluded to exhibit two different binding modes depending upon ligand/DNA ratio and nucleo-base sequence. At high binding ratios, distinct differences between the ligands are observed: circular dichroism spectra exciton effects provide evidence of bimolecular interactions of the polyamide when bound to AT-DNA, whereas no effects are seen with DST or mixed-sequence DNA. Also linear dichroism indicates that a change in binding geometry occurs at high polyamide/AT ratios, and that the effect occurs only with polyamide in contrast to DST. Since the effect is insignificant with DST, or with calf thymus DNA, it is concluded that it relates to the sizes of the ligands and the minor grooves, becoming critical in the limit of crowding.  相似文献   

12.
Fluorescence titration measurements have been used to examine the binding interaction of a number of analogues of the bis -benzimidazole DNA minor groove binding agent Hoechst 33258 with the decamer duplex d(GCAAATTTGC)2. The method of continuous variation in ligand concentration (Job plot analysis) reveals a 1:1 binding stoichiometry for all four analogues; binding constants are independent of drug concentration (in the range [ligand] = 0.1-5 microM). The four analogues studied were chosen in order to gain some insight into the relative importance of a number of key structural features for minor groove recognition, namely (i) steric bulk of the N -methylpiperazine ring, (ii) ligand hydrophobicity, (iii) isohelicity with the DNA minor groove and (iv) net ligand charge. This was achieved, first, by replacing the bulky, non-planar N -methylpiperazine ring with a less bulky planar charged imidazole ring permitting binding to a narrower groove, secondly, by linking the N -methylpiperazine ring to the phenyl end of the molecule to give the molecule a more linear, less isohelical conformation and, finally, by introducing a charged imidazole ring in place of the phenolic OH making it dicationic, enabling the contribution of the additional electrostatic interaction and extended conformation to be assessed. Delta G values were measured at 20 degrees C in the range -47.6 to -37.5 kJ mol-1 and at a number of pH values between 5.0 and 7.2. We find a very poor correlation between Delta G values determined by fluorescence titration and effects of ligand binding on DNA melting temperatures, concluding that isothermal titration methods provide the most reliable method of determining binding affinities. Our results indicate that the bulky N -methylpiperazine ring imparts a large favourable binding interaction, despite its apparent requirement for a wider minor groove, which others have suggested arises in a large part from the hydrophobic effect. The binding constant appears to be insensitive to the isohelical arrangement of the constituent rings which in these analogues gives the same register of hydrogen bonding interactions with the floor of the groove.  相似文献   

13.
J Aymami  C M Nunn    S Neidle 《Nucleic acids research》1999,27(13):2691-2698
The crystal structure of the non-self-complementary dodecamer DNA duplex formed by d(CG[5BrC]ATAT-TTGCG) and d(CGCAAATATGCG) has been solved to 2.3 A resolution, together with that of its complex with the tris-benzimidazole minor groove binding ligand TRIBIZ. The inclusion of a bromine atom on one strand in each structure enabled the possibility of disorder to be discounted. The native structure has an exceptional narrow minor groove, of 2.5-2.6 A in the central part of the A/T region, which is increased in width by approximately 0.8 A on drug binding. The ligand molecule binds in the central part of the sequence. The benzimidazole subunits of the ligand participate in six bifurcated hydrogen bonds with A:T base pair edges, three to each DNA strand. The presence of a pair of C-H...O hydrogen bonds has been deduced from the close proximity of the pyrrolidine group of the ligand to the TpA step in the sequence.  相似文献   

14.
Optical methods, such as fluorescence, circular dichroism and linear flow dichroism, were used to study the binding to DNA of four symmetrical cyanine dyes, each consisting of two identical quinoline, benzthiazole, indole, or benzoxazole fragments connected by a trimethine bridge. The ligands were shown to form a monomer type complex into the DNA minor groove. The complex of quinoline-containing ligand with calf thymus DNA appeared to be the most resistant to ionic strength, and it did not dissociate completely even in 1 M NaCl. Binding of cyanine dyes to DNA could also be characterized by possibility to form ligand dimers into the DNA minor groove, by slight preference of binding to AT pairs, as well as by possible intercalation between base pairs of poly(dG)-poly(dC). The correlation found between the binding constants to DNA and the extent of cyanine dyes hydrophobicity estimated as the n-octanol/water partition coefficient is indicative of a significant role of hydrophobic interactions for the ligand binding into the DNA minor groove.  相似文献   

15.
We report the DNA binding properties of two hybrid molecules which result from the combination of the DNA sequence-specific minor groove ligand netropsin with the bithiazole moiety of the antitumor drug bleomycin. The drug-DNA interaction has been investigated by means of electric linear dichroism (ELD) spectroscopy and DNase I footprinting. In compound 1 the two moieties are linked by a flexible aliphatic tether while in compound 2 the two aromatic ring systems are directly coupled by a rigid peptide bond. The results are consistent with a model in which the netropsin moiety of compound 1 resides in the minor groove of DNA and where the appended bithiazole moiety is projected away from the DNA groove. This monocationic hybrid compound has a weak affinity for DNA and shows a strict preference for A and T stretches. ELD measurements indicate that in the presence of DNA compound 2 has an orientation typical of a minor groove binder. Similar orientation angles were measured for netropsin and compound 2. This ligand which has a biscationic nature tightly binds to DNA (Ka = 6.3 x 10(5) M-1) and is mainly an AT-specific groove binder. But, depending on the nature of the sequence flanking the AT site first targeted by its netropsin moiety, the bithiazole moiety of 2 can accommodate various types of nucleotide motifs with the exception of homooligomeric sequences. As evidenced by footprinting data, the bithiazole group of bleomycin acts as a DNA recognition element, offering opportunities to recognize GC bp-containing DNA sequences with apparently a preference (although not absolute) for a pyrimidine-G-pyrimidine motif. Thus, the bithiazole unit of bleomycin provides an additional anchor for DNA binding and is also capable of specifically recognizing particular DNA sequences when it is appended to a strongly sequence selective groove binding entity. Finally, a model which schematizes the binding of compound 2 to the sequence 5'-TATGC is proposed. This model readily explains the experimentally observed specificity of this netropsin-bithiazole conjugate.  相似文献   

16.
Abstract

Atheoretical study is presented of complex formation between DNA fragments of different base sequences and isolexins, “isohelical base reading polymers”, formed of heteroaromatic pentagonal rings joined by appropriate linkers. Extensive computations are performed for the isolexin composed of the furan-pyrrole-furan sequence. They involve charged ligands with propioamidinium groups at both ends as well eis neutral molecules with terminal methyl, carbonyl and amino groups. Two different groups (C=O and NH) are used as linkers between the base reading moieties. The role of these elements on the binding preference of the ligands has been examined. The results show that the mere possibility of formation of hydrogen bonds between a ligand and the nucleic acid bases is not sufficient to ensure its binding specificity which is determined largely by the interplay of electrostatic factors. Thus the dicationic isolexins uniformly prefer AT sequences. For the neutral isolexins the nature of the groups forming the linkers is a major factor in defining the specificity, although these groups do not participate directly in the interaction with DNA The C=O linkers favour binding to AT sequence while the N-H linkers permit preferential binding to the GAG sequence. Finally, for the first time in theoretical computations, a ligand is proposed which should bind preferentially to the minor groove of GC sequences: this ligand is a neutral isolexin composed of three furan rings linked by two N-H groups. This ligand is considered as an improvable prototype. Altogether the results presented open the path for the designing of minor groove ligands specific for any desirable DNA base sequence.  相似文献   

17.
The synthesis of a new versatile "Hoechst 33258-like" Boc-protected amino acid building block for peptide synthesis is described. It is demonstrated that this new ligand is an effective mimic of Hoechst 33258 in terms of DNA affinity and sequence specificity. Furthermore, this minor groove binder was conjugated to a DNA condensing peptide (KSPKKAKK) by continuous solid-phase peptide synthesis, and the conjugate exhibited increased DNA affinity (ca. 10-fold), but similar sequence preference compared to Hoechst 33258 as analyzed by DNaseI footprinting. Finally, the fluorescence quantum yield of the new chromophore is found to increase 30% upon binding to double stranded DNA.  相似文献   

18.
Phage Mu transposase (A-protein) is primarily responsible for transposition of the Mu genome. The protein binds to six att sites, three at each end of Mu DNA. At most att sites interaction of a protein monomer with DNA is seen to occur over three minor and two consecutive major grooves and to result in bending up to about 90 degrees. To probe the directionality and locus of these A-protein-induced bends, we have used the antitumor antibiotic (+)-CC-1065 as a structural probe. As a consequence of binding within the minor groove, (+)-CC-1065 is able to alkylate N3 of adenine in a sequence selective manner. This selectivity is partially determined by conformational flexibility of the DNA sequence, and the covalent adduct has a bent DNA structure in which narrowing of the minor groove has occurred. Using this drug in experiments in which either gel retardation or DNA strand breakage are used to monitor the stability of the A-protein--DNA complex or the (+)-CC-1065 alkylation sites on DNA (att site L3), we have demonstrated that of the three minor grooves implicated in the interaction with A-protein, the peripheral two are 'open' or accessible to drug bonding following protein binding. These drug-bonding sites very likely represent binding at at least two A-protein-induced bending sites. Significantly, the locus of bending at these sites is spaced approximately two helical turns apart, and the bending is proposed to occur by narrowing of the minor groove of DNA. The intervening minor groove between these two peripheral sites is protected from (+)-CC-1065 alkylation. The results are discussed in reference to a proposed model for overall DNA bending in the A-protein att L3 site complex. This study illustrates the utility of (+)-CC-1065 as a probe for protein-induced bending of DNA, as well as for interactions of minor groove DNA bending proteins with DNA which may be masked in hydroxyl radical footprinting experiments.  相似文献   

19.
A novel coumarin‐appended PNA binding cyclen derivative ligand, C1 , and its copper(II) complex, C2 , have been synthesized and characterized. The interaction of these compounds with DNA was systematically investigated by absorption, fluorescence, and viscometric titration, and DNA‐melting and gel‐electrophoresis experiments. DNA Melting and viscometric titration experiments indicate that the binding mode of C1 is a groove binding, and C2 is a multiple binding mode that involves groove binding and electrostatic binding. From the absorption‐titration data, we can state that the primary interaction between CT DNA and the two compounds may be H‐bonds between nucleobases. Fluorescence studies indicate that the binding ability of C1 to d(A)9 is as twice or thrice as that of other oligodeoxynucleotides. Agarose gel‐electrophoresis experiments demonstrate that C2 is an excellent chemical nuclease, which can cleave plasmid DNA completely within 24 h.  相似文献   

20.
We present titrations of the human δβ-globin gene region with DNA minor groove binders netropsin, bisnetropsin, distamycin, chromomycin and four bis-quaternary ammonium compounds in the presence of calf thymus topoisomerase II and DNase I. With increasing ligand concentration, stimulation and inhibition of enzyme activity were detected and quantitatively evaluated. Additionally we show a second type of stimulation, the appearance of strong new topoisomerase II cleavage sites at high ligand concentrations. The specific binding sites of the minor groove binders of the DNA sequence and their microscopic binding constants were determined from DNase I footprints. A binding mechanism for minor groove binders is proposed in order to explain these results especially when ligand concentration is increased. © 1998 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号