首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sensitive and selective method for the simultaneous determination of acetylcholine (ACh) and choline (Ch) is reported. ACh and Ch were separated on a reversed-phase column, passed through an immobilized enzymes (acetylcholine esterase and choline oxidase) column, and converted to hydrogen peroxide. The generated hydrogen peroxide was detected by the peroxyoxalate chemiluminescence reaction. The linear determination ranges were from 10 pmol to 10 nmol. The detection limit for both cholines was 1 pmol.  相似文献   

2.
We have studied putative nicotinic acetylcholine receptors in the optic lobe of the newborn chick, using 125I-labeled alpha-bungarotoxin, a specific blocker of acetylcholine receptors in the neuromuscular junction, and [3H]acetylcholine, a ligand which in the presence of atropine selectively labels binding sites of nicotinic character in rat brain cortex (Schwartz et al., 1982). [3H]Acetylcholine binds reversibly to a single class of high affinity binding sites (KD = 2.2 X 10(-8) M) which occur at a tissue concentration of 5.7 pmol/g. A large fraction (approximately 60%) of these binding sites is solubilized by Triton X-100, sodium cholate, or the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate. Solubilization increases the affinity for acetylcholine and several nicotinic drugs from 1.5- to 7-fold. The acetylcholine-binding macromolecule resembles the receptor for alpha-bungarotoxin present in the same tissue with respect to subcellular distribution, hydrodynamic properties, lectin binding, and agonist affinity rank order. It differs from the toxin receptor in affinity for nicotinic antagonists, sensitivity to thermal inactivation, and regional distribution. The solubilized [3H]acetylcholine binding activity is separated from the toxin receptor by incubation with agarose-linked acetylcholine, by affinity chromatography on immobilized Naja naja siamensis alpha-toxin, and by precipitation with a monoclonal antibody to chick optic lobe toxin receptor.  相似文献   

3.
A method for determination of picomolar quantities of acetylcholine and choline in solutions and tissue extracts is described. The analytes are injected into a continuous stream of a simple medium flowing through a sequence of enzyme reactors containing acetylcholinesterase, choline oxidase, and peroxidase. Additional reactors with choline oxidase and catalase are used to remove endogenous choline from the tissue extracts in which the content of acetylcholine is to be measured. Reaction products are detected fluorometrically or luminometrically. The limits of sensitivity are about 10 pmol/sample with luminometric and 0.2 pmol/sample with fluorometric detection.  相似文献   

4.
An assay capable of detecting tens-of-picomole quantities of choline and acetylcholine in milliliter volumes of a physiological salt solution has been developed. Silica column chromatography was used to bind and separate 10–3000 pmol [14C]choline and [14C]acetylcholine standards made up in 3 ml of a bicarbonate-buffered Krebs-Ringer solution. The silica columns bound 95–98% of both choline and acetylcholine. Of the bound choline 84–87% was eluted in 1.5 ml of 0.075 n HCl, whereas 95–98% of the bound acetylcholine was eluted in a subsequent wash with 1.5 ml of 0.030 n HCl in 10% 2-butanone. Vacuum centrifugation of the eluants yielded small white pellets with losses of choline and acetylcholine of only 1%. Dried pellets of unlabeled choline and acetylcholine standards were assayed radioenzymatically using [γ-32P]ATP, choline kinase, and acetylcholinesterase. The net disintegrations per minute of choline[32P]phosphate product was proportional to both the acetylcholine (10–3000 pmol) and choline (30–3000 pmol) standards. The “limit sensitivity” was 8.5 pmol for acetylcholine and 11.4 pmol for choline. Cross-contamination of the choline assay by acetylcholine averaged 1.3%, whereas contamination of the acetylcholine assay by choline averaged 3.1%.  相似文献   

5.
1. The exchangeability with added radioactive acetylcholine of the acetylcholine in isolated presynaptic nerve terminals (synaptosomes) and isolated synaptic vesicles was studied by a Sephadex-column method. 2. A substantial proportion of the synaptosomal acetylcholine is exchangeable with added radioactive acetylcholine. It is liberated by hypo-osmotic shock and ultrasonic treatment, and behaves as though it occupies the cytoplasmic compartment of synaptosomes. 3. Methods of isolating vesicles from hypo-osmotically ruptured synaptosomes in optimum yield are discussed. 4. The acetylcholine of synaptic vesicles isolated on a sucrose density gradient is released by hypo-osmotic conditions, suggesting that it is enclosed by a semi-permeable membrane; however, it is not easily released by ultrasonic treatment. 5. Added radioactive acetylcholine does not exchange with vesicular acetylcholine under a variety of different conditions. These include addition of ATP and Mg(2+), and pre-loading of the synaptosome with radioactive acetylcholine before hypo-osmotic rupture. This failure to exchange is discussed in terms of the possible storage mechanism of vesicular acetylcholine.  相似文献   

6.
Summary Aims: Treatments that increase acetylcholine release from brain slices decrease the synthesis of phosphatidylcholine by, and its levels in, the slices. We examined whether adding cytidine or uridine to the slice medium, which increases the utilization of choline to form phospholipids, also decreases acetylcholine levels and release. Methods: We incubated rat brain slices with or without cytidine or uridine (both 25–400 μM), and with or without choline (20–40 μM), and measured the spontaneous and potassium-evoked release of acetylcholine. Results: Striatal slices stimulated for 2 h released 2650±365 pmol of acetylcholine per mg protein when incubated without choline, or 4600±450 pmol/mg protein acetylcholine when incubated with choline (20 μM). Adding cytidine or uridine (both 25–400 μM) to the media failed to affect acetylcholine release whether or not choline was also added, even though the pyrimidines (400 μM) did enhance choline`s utilization to form CDP-choline by 89 or 61%, respectively. The pyrimidines also had no effect on acetylcholine release from hippocampal and cortical slices. Cytidine or uridine also failed to affect acetylcholine levels in striatal slices, nor choline transport into striatal synaptosomes. Conclusion: These data show that cytidine and uridine can stimulate brain phosphatide synthesis without diminishing acetylcholine synthesis or release.  相似文献   

7.
Abstract: A simple, rapid method is presented for the determination of acetylcholine (ACh) and choline (Ch) in neuronal tissue using HPLC with electrochemical detection. The method is based on the separation of ACh and Ch by reverse-phase HPLC and mixing the effluent as it emerges from the column with acetylcholinesterase and Ch oxidase, which converts endogenous Ch and Ch produced by the hydrolysis of ACh to betaine and hydrogen peroxide. Production of hydrogen peroxide is continuously monitored electrochemically. The sensitivity of the procedure is 1 pmol for Ch and 2 pmol for ACh. Specificity of the method is based on HPLC, two specific enzymatic reactions, and the detection of hydrogen peroxide.  相似文献   

8.
The objective of this study was to develop an assay system that allows continuous monitoring of nitric oxide (NO) released from crystalloid perfused hearts. We utilized chemiluminescence reaction between NO and luminol-H(2)O(2) to quantify the NO level in coronary effluent. Isolated rat hearts were subjected to ordinary Langendorff's perfusion, and the right ventricle was cannulated to sample coronary effluent. After equilibration, the coronary flow rate was set constant and the hearts were paced at 300 bpm. Coronary effluent was continuously sampled and mixed with the chemiluminescent probe containing 0.018 mmol/l luminol plus 10 mmol/l H(2)O(2). Chemiluminescence from the mixture of coronary effluent and the probe was continuously measured. NO concentration was calibrated by various concentrations (0.5-400 pmol/l) of standard NO solution. The lower detection limit of NO was 1 pmol/l. Basal NO release from isolated perfused rat heart was 0.41 +/- 0.17 pmol/min/g of heart weight, and that was significantly suppressed by 0.1 mmol/l of L-NAME to 0.18 +/- 0.10 pmol/min/g of heart weight (n = 7). Application of 0.1 and 0.3 micromol/l acetylcholine increased NO level in the coronary effluent, in a concentration-dependent manner, from 6.6 +/- 1.7 in a baseline condition to 16.3 +/- 7.4 and 30.3 +/- 16.1 pmol/l at each peak, respectively. Thrombin at 1 and 10 U/ml also increased NO level from 17.6 +/- 4.3 in control to 35.5 +/- 10.4 and 48.7 +/- 8.7 pmol/l at each peak, respectively (n = 7). Thus, this assay system is applicable to the continuous real-time measurement of NO released from crystalloid perfused hearts, and it may be useful for the study of physiological or pathophysiological role of NO in coronary circulation.  相似文献   

9.
Abstract: Phosphatidylinositol(PI)-specific phospholipase C activity was detected on the surface of rat astrocytes, rat C6 glioma cells, and rat embryo (REF52) fibroblasts. The cell surface phospholipase C (ecto-PLC) activity was calcium-dependent, did not result from secreted phopholipase C, and was not released from the cell surface by bacterial PI-specific phospholipase C. Agents known to stimulate intracellular PI turnover, including carbachol, L-glutamic acid, acetylcholine, and orthovanadate, did not induce measurable alterations in the activity of the ecto-PLC. The expression of ecto-PLC activity by REF52 fibroblasts was density-dependent: subconfluent cultures of REF52 exhibited low levels of activity (less than 80 pmol of inositol phosphate formed/min/106 cells), whereas in confluent cultures ecto-PLC activity increased to approximately 300 pmol/min/106 cells. In contrast to this behavior and that exhibited by previously reported ecto-PLC-positive cell types, the ecto-PLC activity exhibited by astrocytes (approximately 1,000 pmol/min/106 cells) and by C6 glioma cells (approximately 100 pmol/min/106 cells) was independent of cell culture density up to confluence. The constitutive expression of ecto-PLC activity of astroglial cells may be related to their function as accessory cells in close association with neurons.  相似文献   

10.
Abstract— 1. A chemical method for the determination of acetylcholine has been devised based upon (a) The precipitation of acetylcholine out of solution as an iodine complex. (b) The absorption of the quaternary ester to a ‘carboxyl’ ion exchange resin column. (c) The hydrazinolysis of the acetylcholine to form acetyl hydrazide. (d) The formation of a fluorescent molecule with salicylaldehyde. 2. The method was utilized to determine (a) If tetramethylammonium ions would release acetylcholine from the cat cervical synaptic ganglion. (b) The activity of enzyme choline acetyltransferase in rat brain. 3. The observation that tetramethylammonium ions do release acetylcholine sustains the viability of the hypothesis that acetylcholine forms a primary acyl bond with its receptor.  相似文献   

11.
A microbore high-performance liquid chromatographic method with electrochemical detection was applied to the measurement of acetylcholine in microdialysis samples. There was an excellent linear relationship (r=0.99998) between the concentration of acetylcholine injected onto the column and the peak height (0.05–10 pmol/5 μl). During the validation of this method, we noticed that the peak height for acetylcholine decreased over time, coupled with the appearance of a brown coating on the surface of the platinum electrode. Repeated measurement of acetylcholine standards which had been stored at 4°C and −20°C before and after cleaning the platinum electrode with ethanol or methanol indicated that the decrease in the peak height of acetylcholine is caused by a decrease in sensitivity of the electrode itself. Results with a second microbore high-performance liquid chromatographic system confirmed these findings. On the basis of these results, we recommend that the platinum electrode is cleaned periodically with ethanol or methanol, and that quantitation is regularly calibrated with external acetylcholine.  相似文献   

12.
A method for the estimation of sphingolipids based on the quantitation, by gas-liquid chromatography/chemical ionization, of the long-chain aldehydes released from the native lipids, is described. The method is highly sensitive (6–7 pmol per injection), specific, and can, in addition, provide information on the chain length and degree of unsaturation of the long-chain bases.  相似文献   

13.
A Synaptosomal Preparation from the Guinea Pig Ileum Myenteric Plexus   总被引:6,自引:4,他引:2  
Abstract: Our interest in investigating the presynaptic modulation of acetylcholine release led to the development of a synaptosomal preparation from the guinea pig ileum myenteric plexus-longitudinal muscle. A crude synaptosomal fraction (P2) was obtained by homogenization and differential centrifugation. The preparation exhibited a specific uptake system for choline and for nor-adrenaline (NA), but not for 5-hydroxytryptamine (5-HT). Synaptosomes were isolated from this P2 fraction by an isoosmotic density gradient prepared from sucrose and metrizamide. The resultant synaptosomal fraction was enriched about sevenfold in both choline uptake and in choline acetyltransferase (ChAT). Choline was transported by a high-affinity system with a Km of 6.5 × 10−7 M and a Vmax of 41 pmol/mg protein/min. Electron microscopy confirmed the synaptosomal nature of the gradient fraction. Some synaptosomal profiles contained only small, translucent vesicles whereas others also contained large (approx. 100 nm diameter) electron-opaque vesicles. The crude synaptosomal fraction synthesized acetylcholine (ACh) from exogenous choline and it released the synthesized ACh in a calcium-dependent manner.  相似文献   

14.
In an attempt to quantify the interactions between dopaminergic and cholinergic processes, the consequences of complete or partial activation (with N-n-propylnorapomorphine) or blockade (with spiperone) of dopamine receptors for the acetylcholine levels in the rat striatum were studied. The number of specific striatal binding sites (receptors) of spiperone was nearly three times that of N-n-propylnorapomorphine (76 and 26 pmol g-1 wet weight, respectively). The agonist produced a significant increase in the striatal levels of acetylcholine, but there was no simple relationship between receptor binding and these levels. A linear negative correlation was found between the striatal levels of acetylcholine and specific spiperone binding, showing that further receptor blockade induces a decrease in acetylcholine levels, which is independent of the receptors already occupied by the antagonist. The results of this study are evidence that one striatal dopamine receptor regulates the metabolism of at least 400 molecules of acetylcholine.  相似文献   

15.
A method was developed for the determination of human hemoglobin (Hb) adducts from hexahydrophthalic anhydride (HHPA) and methylhexahydrophthalic anhydride (MHHPA). The procedure includes lysis of erythrocytes, dialysis of the Hb-solution followed by acid hydrolysis. The released hexahydrophthalic (HHP) acid and methylhexahydrophthalic (MHHP) acid were purified using a combined liquid–liquid and solid-phase extraction procedure followed by derivatization with pentafluorobenzyl bromide. The derivatives were analyzed using GC–MS in negative ion chemical ionization mode with ammonia as moderating gas. As internal standards, deuterium-labeled HHP and MHHP acids were used. The detection limits were 0.3 pmol/g Hb for HHP acid and 0.9 pmol/g Hb for MHHP acid. The between-day precisions for HHP acid were 18% at 2 pmol/g Hb and 10% at 13 pmol/g Hb. For MHHP acid, the precision was 27% at 2 pmol/g Hb and 14% at 22 pmol/g Hb. The method was applicable for analysis of Hb adducts from workers occupationally exposed to HHPA and MHHPA.  相似文献   

16.
Equilibrium binding studies performed with fresh membrane fragments from Torpedo marmorata reveal a low affinity for [3H]acetylcholine with an equilibrium dissociation constant in the micromolar range and no indication of cooperative interactions. The low binding affinity is an artifact caused by the presence of endogenous acetylcholine and is not related to the active conformation of the receptor. Endogenous acetylcholine is identified by its interaction with acetylcholine esterase and choline kinase. It is present in presynaptic vesicles as shown in electron micrographs. Leakage of these synaptosomes is of the order of 300 pmol acetylcholine per g tissue as determined by means of binding studies performed with [3H]acetylcholine. In the absence of endogenous acetylcholine, equilibrium binding studies show a high affinity for [3H]acetylcholine and a slight cooperativity of sites (K1D = 30nM; K2D = 10nM). The addition of detergents, local anesthetics or alcohols to a further increase in affinity and to a decrease in cooperativity (K1D = 11nM; K2D = 5nM). No low-affinity binding can be detected in the micromolar range.  相似文献   

17.
Intracerebral microdialysis was combined with a sensitive and specific gas chromatographic-mass spectrometric assay to measure the release of endogenous acetylcholine in the rat striatum in vivo. In rats anesthetized with urethane (1.2 g/kg i.p.), the levels of striatal acetylcholine dialyzed into a Ringer's perfusate were: (a) reliably measurable only in the presence of physostigmine; (b) stable at between 3 and 8 h of perfusion (30-75 pmol/20 min in the presence of 75 microM physostigmine); (c) reduced by calcium-free Ringer's solution, tetrodotoxin (0.1 microM), and vesamicol (1.0 microM); and (d) increased by elevated potassium (100 mM), atropine (3-300 microM), and haloperidol (0.75 mg/kg i.p.). In conscious unrestrained rats, the spontaneous release of striatal acetylcholine was not altered significantly following the administration of urethane. The changes in acetylcholine release observed in this study are consistent with the known actions of some drugs or ionic conditions on striatal cholinergic neurotransmission and are evident under the condition of urethane anesthesia. The present results demonstrate the sensitivity and suitability of this method for monitoring endogenous striatal acetylcholine release in vivo.  相似文献   

18.
Fryer AD  Adamko DJ  Yost BL  Jacoby DB 《Life sciences》1999,64(6-7):449-455
In the lungs, acetylcholine released from the parasympathetic nerves stimulates M3 muscarinic receptors on airway smooth muscle inducing contraction and bronchoconstriction. The amount of acetylcholine released from these nerves is limited locally by neuronal M2 muscarinic receptors. These neuronal receptors are dysfunctional in asthma and in animal models of asthma. Decreased M2 muscarinic receptor function results in increased release of acetylcholine and in airway hyperreactivity. Inflammation has long been associated with hyperreactivity and the role of inflammatory cells in loss of neuronal M2 receptor function has been examined. There are several different mechanisms for loss of neuronal M2 receptor function. These include blockade by endogenous antagonists such as eosinophil major basic protein, decreased expression of M2 receptors following infection with viruses or exposure to pro inflammatory cytokines such as gamma interferon. Finally, the affinity of acetylcholine for these receptors can be decreased by exposure to neuraminidase.  相似文献   

19.
A radiochemical method for the estimation of choline acetyltransferase   总被引:11,自引:8,他引:3  
1. A radiochemical method for the estimation of choline acetyltransferase (choline acetylase) has been devised which involves the formation of labelled acetylcholine from labelled acetate. 2. [1-(14)C]Acetate and coenzyme A are pre-incubated in the presence of non-rate-limiting concentrations of acetyl-coenzyme A synthetase to give [1-(14)C]acetyl-coenzyme A, which then reacts with choline in the presence of the acetyltransferase to give [(14)C]acetylcholine. 3. Any [(14)C]-acetyl-coenzyme A remaining at the end of the reaction is destroyed by the addition of excess of hydroxylamine, and [(14)C]acetylcholine is freed from other labelled compounds by precipitation with sodium tetraphenylborate (Kalignost). 4. The washed precipitate is dissolved in acetonitrile-benzyl alcohol and estimated by scintillation counting. 5. Advantages over other methods are discussed.  相似文献   

20.
After precipitation of proteins; serum, hepatocytes, or glutathione-derivatized bovine serum albumin, by perchloric acid, dithiotheritol was used to reduce glutathione-protein mixed disulfides in the ether-washed, resuspended pellet. Following neutralization and S-carboxymethylation of free sulfhydral groups in the acid soluble fraction by iodoacetic acid, 2,4-dinitrophenyl derivatives of released compounds were produced by addition of ethanolic fluorodinitrobenzene. The 2,4-dinitrophenyl derivative of S-carboxymethylglutathione was measured by high-performance liquid chromatography. The method was found to be reproducible and limited only by the sensitivity of the glutathione analysis (about 10 pmol/sample). Quantitation of protein-bound glutathione was shown to be indepedent of the ratio of bound to soluble glutathione as well as the protein concentration in the sample. This method was found to produce glutathione values identical to those measured after borohydride reduction without the problems of foaming, sample loss, and the need of continuous pH adjustment during reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号