首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the role of nitric oxide synthase during tumor growth in oncovirus-induced tumor mutants of Drosophila melanogaster. The lines with different capacity for malignancy differed reliably in the level of enzymatic activity. It was shown using specific inhibitors of neuronal and inducible isoforms that the neuronal isoform was not involved in tumor formation, while the inducible one appears to play an important role in tumor growth inhibition. This isoform was identified with the help of immunoblotting and monoclonal antibodies against inducible nitric oxide synthase.  相似文献   

2.
1. The present study was designed to examine the nitric oxide synthase activities (constitutive and inducible) in the site of injury in response to Th10-Th11 spinal cord hemisection and, to determine whether unilateral disconnection of the spinal cord influences the NOS pools on the contra- and ipsilateral sides in segments located far away from the epicentre of injury.2. A radioassay detection was used to determine Ca2+-dependent and inducible nitric oxide synthase activities. Somal, axonal and neuropil neuronal nitric oxide synthase was assessed by immunocytochemical study. A quantitative assessment of neuronal nitric oxide synthase immunoreactivity was made by an image analyser. The level of neuronal nitric oxide synthase protein was measured by the Western blot analysis.3. Our data show the increase of inducible nitric oxide synthase activity and a decrease of Ca2+-dependent nitric oxide synthase activity in the injured site analysed 1 and 7 days after surgery. In segments remote from the epicentre of injury the inducible nitric oxide synthase activity was increased at both time points. Ca2+-dependent nitric oxide synthase activity had decreased in L5-S1 segments in a group of animals surviving for 7 days. A hemisection performed at thoracic level did not cause significant difference in the nitric oxide synthase activities and in the level of neuronal nitric oxide synthase protein between the contra- and ipsilateral sides in C6-Th1 and L5-S1 segments taken as a whole. Significant differences were observed, but only when the spinal cord was analysed segment by segment, and/or was divided into dorsal and ventral parts. The cell counts in the cervicothoracic (C7-Th1) and lumbosacral (L5-S1) enlargements revealed changes in neuronal nitric oxide synthase immunoreactivity on the ipsilateral side of the injury. The densitometric area measurements confirmed the reduction of somal, neuropil and axonal neuronal nitric oxide synthase immunoreactive staining in the ventral part of rostrally oriented segments.4. Our findings provide evidence that the changes in nitric oxide synthase pools are limited not only to impact zone, but spread outside the original lesion. The regional distribution of nitric oxide synthase activity and neuronal nitric oxide synthase immunoreactivity, measured segment by segment shows that nitric oxide may play a significant role in the stepping cycle in the quadrupeds.  相似文献   

3.
红花黄色素对新生鼠缺氧后一氧化氮合酶表达的影响   总被引:3,自引:0,他引:3  
目的:观察红花黄色素对缺氧后脑内诱生型一氧化氮合酶(iNOS)、神经原型一氧化氮合酶(nNOS)及内皮型一氧化氮合酶(eNOS)基因表达的影响,探讨红花黄色素抗缺氧脑损伤的作用.方法:采用SD新生鼠缺氧模型,于缺氧前30 min腹腔注射红花黄色素生药7g/kg,缺氧40 min后复氧48 h,提取脑组织总RNA,应用RT-PCR技术检测三种NOS mRNA的表达量.结果:新生鼠缺氧再复氧48 h,脑内iNOS、nNOS基因表达上升(P<0.05),预先给予红花黄色素能抑制iNOS、nNOS基因的表达(P<0.05),但eNOS基因表达不受影响.结论:红花黄色素对缺氧脑损伤的保护作用与NOS基因表达有关.  相似文献   

4.
Nitric oxide (NO) plays a role in the pathophysiology of spinal cord injury (SCI). NO is produced by three types of nitric oxide synthase (NOS) enzymes: The constitutive Ca2+/calmodulin-dependent neuronal NOS (nNOS) and endothelial NOS (eNOS) isoforms, and the inducible calcium-independent isoform (iNOS). During the early stages of SCI, nNOS and eNOS produce significant amounts of NO, therefore, the regulation of their activity and expression may participate in the damage after SCI. In the present study, we used Cyclosporin-A (CsA) to further substantiate the role of Ca-dependent NOS in neural responses associated to SCI. Female Wistar rats were subjected to SCI by contusion, and killed 4 h after lesion. Results showed an increase in the activity of constitutive NOS (cNOS) after lesion, inhibited by CsA (2.5 mg/kg i.p.). Western blot assays showed an increased expression of both nNOS and eNOS after trauma, also antagonized by CsA administration.  相似文献   

5.
Cutaneous leishmaniasis (CL) is an infectious disease caused by Leishmania parasite. The expression of inducible nitric oxide synthase (iNOS) and generation of nitric oxide in response to IFN-γ and TNF-α is important in control of infection. The aim of the study was to determine the expression of iNOS in the lesions of Leishmania tropica, and whether there was a correlation between the level of expression and the duration of the disease. Punch biopsy was performed from patients (n = 29) and iNOS immunohistochemical staining was applied. Expression of iNOS protein was detected 82.8% of patients. There was a strong expression with the duration of the disease less than 6 months (p < 0.002). These findings demonstrate that iNOS has a role in L. tropica especially during the early stages of the infection. (Mol Cell Biochem xxx: 147–149, 2005)  相似文献   

6.
In a preliminary article, we reported a series of 4,5-dihydro-1H-pyrazole derivatives as neuronal nitric oxide synthase (nNOS) inhibitors. Here we present the data about the inhibition of inducible nitric oxide synthase (iNOS) of these compounds. In general, we can confirm that these pyrazoles are nNOS selective inhibitors. In addition, taking these compounds as a reference, we have designed and synthesized a series of new derivatives by modification of the heterocycle in 1-position, and by introduction of electron-donating or electron-withdrawing substituents in the aromatic ring. These derivatives have been evaluated as nNOS and iNOS inhibitors in order to identify new compounds with improved activity and selectivity. Compound 3r, with three methoxy electron-donating groups in the phenyl moiety, is the most potent nNOS inhibitor, showing good selectivity nNOS/iNOS.  相似文献   

7.
一氧化氮是重要的信使分子,在生物体内参与众多生理及病理过程。生物体内存在着复杂的一氧化氮合酶活性调控机制以精确调控一氧化氮的生成。在神经系统中,一氧化氮主要由神经型一氧化氮合酶催化生成。神经型一氧化氮合酶的活性主要受到翻译后水平上钙离子和钙调蛋白的调控,其调控方式包括二聚化、多位点的磷酸化和去磷酸化,以及主要由PDZ结构域介导的蛋白质-蛋白质相互作用。一氧化氮本身对其合酶的活性具有负反馈调控作用。近年来的研究提示,细胞质膜上的脂筏微区在神经性一氧化氮合酶的活性调控中也起到重要的调节作用。  相似文献   

8.
Xia CF  Huo Y  Xue L  Zhu GY  Tang CS 《生理学报》2001,53(6):431-434
为探讨抗炎因子--白细胞介素-10(IL-10)对大鼠主动脉一氧化氮(NO)/一氧化氮合酶(NOS)系统的影响,应用Griess试剂、^3H-瓜氨酸生成及蛋白免疫印迹杂交等方法,测定IL-10孵育对血管NO释放、NOS活性及表达的影响。结果发现细菌脂多糖(LPS)呈浓度领带性地激活诱导型NOS(iNOS),促进NO生成。IL-10(10^-10-10^-8g/ml)呈浓度依赖性地上调内皮型NOS(eNOS)蛋白表达及其活性,但对iNOS活性及表达无明显影响,IL-10(10^-9-10^-8g/ml)显著抑制10μg/ml LPS诱导的NO生成和iNOS激活;而高浓度IL-10(10^-7g/ml)则上调iNOS的活性,对eNOS蛋白的表达知活性无明显影响。因此IL-10对NO/NOS系统具有双重影响,一方面可抑制炎症介质诱发的作为炎性物质的iNOS的表达及激活,另一方面可上调内皮源扩血管物质NO的释放。  相似文献   

9.
Luo CX  Zhu XJ  Zhou QG  Wang B  Wang W  Cai HH  Sun YJ  Hu M  Jiang J  Hua Y  Han X  Zhu DY 《Journal of neurochemistry》2007,103(5):1872-1882
Nitric oxide (NO), a free radical with signaling functions in the CNS, is implicated in some developmental processes, including neuronal survival, precursor proliferation, and differentiation. However, neuronal nitric oxide synthase (nNOS) -derived NO and inducible nitric oxide synthase (iNOS) -derived NO play opposite role in regulating neurogenesis in the dentate gyrus after cerebral ischemia. In this study, we show that focal cerebral ischemia reduced nNOS expression and enzymatic activity in the hippocampus. Ischemia-induced cell proliferation in the dentate gyrus was augmented in the null mutant mice lacking nNOS gene (nNOS−/−) and in the rats receiving 7-nitroindazole, a selective nNOS inhibitor, after stroke. Inhibition of nNOS ameliorated ischemic injury, up-regulated iNOS expression, and enzymatic activity in the ischemic hippocampus. Inhibition of nNOS increased and iNOS inhibitor decreased cAMP response element-binding protein phosphorylation in the ipsilateral hippocampus in the late stage of stroke. Moreover, the effects of 7-nitroindazole on neurogenesis after ischemia disappeared in the null mutant mice lacking iNOS gene (iNOS−/−). These results suggest that reduced nNOS is involved in ischemia-induced hippocampal neurogenesis by up-regulating iNOS expression and cAMP response element-binding protein phosphorylation.  相似文献   

10.
We attempted to ascertain the neuroprotective effects and mechanisms of minocycline in inflammatory-mediated neurotoxicity using primary neuron/glia co-cultures treated with lipopolysaccharide (LPS). Neuronal cell death was induced by treatment with LPS for 48 h, and the cell damage was assessed using lactate dehydrogenase (LDH) assays and by counting microtubule-associated protein-2 (MAP-2) positive cells. Through terminal transferase deoxyuridine triphosphate-biotin nick end labeling (TUNEL)-staining and by measuring caspase-3 activity, we found that LPS-induced neuronal cell death was mediated by apoptosis. We determined that pre-treatment with minocycline significantly inhibited LPS-induced neuronal cell death. In addition, LPS induced inducible nitric oxide synthase (iNOS) expression significantly, resulting in nitric oxide (NO) production within glial cells, but not in neurons. Both nitric oxide synthase (NOS) inhibitors (N(G)-monomethyl-L-arginine monoacetate (L-NMMA) and S-methylisothiourea sulfate (SMT)) and minocycline inhibited iNOS expression and NO release, and increased neuronal survival in neuron/glia co-cultures. Pre-treatment with minocycline significantly inhibited the rapid and extensive production of tumor necrosis factor-alpha (TNF-alpha) mediated by LPS in glial cells. We also determined that the signaling cascade of LPS-mediated iNOS induction and NO production was mediated by TNF-alpha by using neutralizing antibodies to TNF-alpha. Consequently, our results show that the neuroprotective effect of minocycline is associated with inhibition of iNOS induction and NO production in glial cells, which is mediated by the LPS-induced production of TNF-alpha.  相似文献   

11.
邵韵平 《生物学杂志》2011,28(5):77-78,90
一氧化氮具有广泛的生理功能,哺乳动物体内的NO是由NO合酶(NOS)氧化L-精氨酸而合成的,合成后的NO迅速跨膜扩散释放,NO合成失调能介导多种疾病。催化NO生物合成的NOS有三种亚型:神经元型NOS(nNOS)、内皮型NOS(eNOS)和诱导型NOS(iNOS),目前,人的三型NOS已纯化并且已分子克隆成功,对一氧化氮合酶的遗传研究确认了NOS家族的基因结构和染色体定位。  相似文献   

12.
This is the first report on the ultrastructural pattern of distribution of nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) in endothelial cells, using the rabbit aorta, and its colocalization with the neuronal isoform (type I) of nitric oxide synthase. About 30% of the endothelial cells showed a positive reaction for NADPH-d compared to about 6% for nitric oxide synthase immunoreactivity. Simultaneous double histochemical-immunocytochemical labelling procedures indicate that all of the cells displaying nitric oxide synthase-positive reactivity also contained NADPH-d; the remainder of NADPH-d-positive endothelial cells were negative for this isoform of nitric oxide synthase. Nitric oxide synthase-immunogold labelling was mostly associated with free ribosomes, while NADPH-d activity was distributed largely in patches in the cytoplasm and in association with the cell membrane.  相似文献   

13.
6-n-Propyl-2-thiouracil (6-PTU), the antithyroid agent, produces a time-, concentration-, and turnover-dependent inactivation of the NO synthetic capability of the neuronal nitric oxide synthase isoform irreversible by either arginine or (6R)-5,6,7,8-tetrahydro-L-biopterin. By contrast 6-PTU produces an inhibition of the cytokine-inducible and endothelial nitric oxide synthases fully reversible by arginine. The inactivation of neuronal nitric oxide synthase by 6-PTU follows first order kinetics, and is inhibited competitively by both arginine and (6R)-5,6,7,8-tetrahydro-L-biopterin, but is not accompanied by either a loss of heme-CO binding, heme fluorescence, or disassembly of dimeric structure. 2-Thiouracil behaves qualitatively identically to 6-PTU. Turnover-dependent inactivation of neuronal nitric oxide synthase by [2-14C]-2-thiouracil is accompanied by incorporation of radioactivity into the polypeptide chain. Ca2+-dependent NO formation by GH3 pituitary cells is inhibited by 6-PTU in a manner enhanced by depletion of either extracellular arginine or intracellular (6R)-5,6,7,8-tetrahydro-L-biopterin. These observations establish that 6-PTU is an alternate substrate, mechanism-based inactivator of the neuronal nitric oxide synthase isoform with the ability to suppress cellular NO formation.  相似文献   

14.
Nitric oxide (NO) has emerged as an important mediator of many physiological functions. Recent reports have shown that NO participates in the wound healing process, however, its role in keloid formation remains unclear. This study aimed to investigate the effect of NO on keloid fibroblasts (KF) and to determine the levels of inducible nitric oxide synthase (iNOS) expression in clinical specimens of keloid. Scar tissue from seven keloid patients with matched perilesion skin tissue controls was studied for inducible nitric oxide synthase expression and location. In addition, primary keloid and normal scar skin fibroblast cultures were set up to investigate the effects of NO in inducing collagen type I expression. Inducible nitric oxide synthase expression, and NO production were elevated in keloid scar tissues but not in matched perilesion skin tissues. Furthermore, exposure of KF to exogenous NO resulted in increased expression of collagen type I in a dose-dependent manner. NO exposure also induced time-course dependent collagen I expression that peaked at 24h in KF. Taken together, these results indicate that excess collagen formations in keloid lesion may be attributed to iNOS overexpression.  相似文献   

15.
Sohn MJ  Noh HJ  Yoo ID  Kim WG 《Life sciences》2007,80(18):1706-1712
We investigated the protective activity of radicicol, an antifungal antibiotic, against inflammation-induced neurotoxicity in neuron-glia cultures. Radicicol potently prevented the loss of neuronal cell bodies and neurites from LPS/IFN-gamma-induced neurotoxicity in rat cortical neuron-glia cultures with an EC(50) value of 0.09 microM. Radicicol inhibited the LPS/IFN-gamma-induced expression of inducible nitric oxide synthase (iNOS) and production of nitric oxide (NO) in microglia. Additionally, radicicol decreased the LPS/IFN-gamma-induced release of tumor necrosis factor-alpha (TNF-alpha) in the cultures. The inhibitory potency of radicicol against the production of NO and TNF-alpha was well correlated with the protection of neurons. These results suggest that the protective effect of radicicol against LPS/IFN-gamma-induced neuronal cell death in neuron-glia cultures is mediated via the inhibition of TNF-alpha release, as well as the suppression of iNOS expression in microglia.  相似文献   

16.
以家榆种子为试材,采用种子活力检测技术、激光共聚焦显微镜技术、蛋白质S-亚硝基化检测技术,结合多种相关抑制剂的使用,研究了NO对种子老化的影响及其作用机制。结果表明:(1)外源NO可显著提升老化处理后种子的活力,NO清除剂cPTIO可降低老化处理后种子的活力,且此影响可被NO供体硝普钠所恢复。(2)硝酸还原酶底物亚硝酸钠、类一氧化氮合酶底物L-精氨酸(L-Arg)均可提高老化处理后种子的活力,2种酶的抑制剂可降低种子活力,且此影响可被NO供体硝普钠所恢复,即硝酸还原酶与类一氧化氮合酶可参与种子老化过程中NO的产生。(3)种子老化过程中NO首先在子叶中合成,随后在胚根尖部、生长点与下胚轴等部位出现,蛋白质S-亚硝基化水平与NO在种子中产生的时间特点一致。研究认为,NO可提高种子抗老化能力,种子内NO可通过硝酸还原酶途径和类一氧化氮合酶途径产生,且与种子蛋白质S-亚硝基化水平相关。  相似文献   

17.
The present study has been designed to pharmacologically expound the significance of inducible nitric oxide synthase in the pathophysiological progression of seizures using mouse models of chemically induced kindled epilepsy and status epilepticus induced spontaneous recurrent seizures. Pentylenetetrazole (40 mg kg−1) (PTZ) administration every second day for a period of 15 days was used to elicit kindled seizure activity in mice. Severity of kindled seizures was assessed in terms of a composite kindled seizure severity score (KSSS). Pilocarpine (100 mg kg−1) was injected every 20 min until the onset of status epilepticus. A spontaneous recurrent seizure severity score (SRSSS) was recorded as a measure of quantitative assessment of the progressive development of spontaneous recurrent seizures induced after pilocarpine status epilepticus. Sub-acute PTZ administration induced the development of severe form of kindled seizures in mice. Further, pharmacological status epilepticus elicited a progressive evolution of spontaneous recurrent seizures in the animals. However, treatment of aminoguanidine, a relatively selective inhibitor of inducible nitric oxide synthase, markedly and dose dependently suppressed the development of both PTZ induced kindled seizures as well as pilocarpine induced spontaneous recurrent seizures. Therefore inducible nitric oxide synthase may be implicated in the development of seizures.  相似文献   

18.
Nitric oxide (NO) has been involved in many pathophysiological brain processes. However, the exact role of NO in the cognitive deficit associated to chronic stress exposure has not been elucidated. In this study, we investigated the participation of hippocampal NO production and their regulation by protein kinase C (PKC) in the memory impairment induced in mice subjected to chronic mild stress model (CMS). CMS mice showed a poor learning performance in both open field and passive avoidance inhibitory task respect to control mice. Histological studies showed a morphological alteration in the hippocampus of CMS mice. On the other hand, chronic stress induced a diminished NO production by neuronal nitric oxide synthase (nNOS) correlated with an increment in gamma and zeta PKC isoenzymes. Partial restoration of nNOS activity was obtained after PKC activity blockade. NO production by inducible nitric oxide synthase isoform was not detected. The magnitude of oxidative stress, evaluated by reactive oxygen species production, after excitotoxic levels of NMDA was increased in hippocampus of CMS mice. Moreover, ROS formation was higher in the presence of nNOS inhibitor in both control and CMS mice. Finally, treatment of mice with nNOS inhibitors results in behavioural alterations similar to those observed in CMS animals. These findings suggest a novel role for nNOS showing protective activity against insults that trigger tissue toxicity leading to memory impairments.  相似文献   

19.
Abstract: Exposure of neuronal PC12 cells, differentiated by nerve growth factor, to tumor necrosis factor-α (TNF-α) and bacterial lipopolysaccharide (LPS) resulted in de novo synthesis of inducible nitric oxide synthase (iNOS) mRNA and protein with an increase up to 24 h. Brain NOS expression was unaffected. The induction of iNOS in differntiated PC12 cells was associated with cell death characterized by features of apoptosis, The NOS inhibitors N -monomethylarginine, aminoguanidine, and 2-amino-5,6-dihydro-6-methyl-4 H -1,3-thiazine HCl prevented TNF-α/LPS-induced cell death and DNA fragmentation, suggesting that the TNF-α/LPS-induced cell death is mediated by iNOS-derived NO. This hypothesis is supported by the finding that addition of l -arginine, which serves as a precursor and limiting factor of enzyme-derived NO production, potentiated TNF-α/LPS-induced loss of viability.  相似文献   

20.
The effect of glutathione depletion, in vivo, on rat brain nitric oxide synthase activity has been investigated and compared to the effect observed in vitro with cultured neurones. Using L-buthionine sulfoximine rat brain glutathione was depleted by 62%. This loss of glutathione was accompanied by a significant increase in brain nitric oxide synthase activity by up to 55%. Depletion of glutathione in cultured neurones, by approximately 90%, led to a significant 67% increase in nitric oxide synthase activity, as judged by nitrite formation, and cell death. It is concluded that depletion of neuronal glutathione results in increased nitric oxide synthase activity. These findings may have implications for our understanding of the pathogenesis of neurodegenerative disorders in which loss of brain glutathione is considered to be an early event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号