首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
14C-Labeled phosphatidylcholine (PC) and lysophosphatidylcholine (lysoPC) species with two homologous saturated acyl chains and of a saturated acyl chain of various lengths, respectively, were each incorporated into the outer leaflet of the membrane lipid bilayer of intact human erythrocytes, and the transbilayer movement into the inner leaflet during incubation at 37 degrees C of the lipid-loaded erythrocytes was followed. The labeled PC and lysoPC molecules present in the outer leaflet were extracted with egg-yolk PC liposome suspension and BSA solution, respectively, and the amount which moved into the inner leaflet during the incubation was measured by determining the residual amount of the labeled lipid in the membrane. Translocation of lysoPC molecules was also measured by assaying the decrease in the amount of the added labeled lysoPC in the membrane during the incubation on the basis of the previously reported fact that lysoPC molecules are all converted metabolically to PC or glycerylphosphorylcholine plus fatty acid as soon as they are translocated from the outer to the inner leaflet. Every lipid tested showed significant transbilayer movement during the course of the incubation for up to 10 h. With the C8, C10, and C12 species of PC the rate of the transbilayer movement increases with decreasing acyl chain length. The same is true with the C14, C16, and C18-lysoPC species.  相似文献   

2.
Addition of an amphiphilic lipid, such as phosphatidylcholine (PC) species with two identical saturated chains or lysophosphatidylcholine (lysoPC) species with one saturated acyl chain of various lengths, into a suspension of intact human erythrocytes resulted in lipid incorporation into the erythrocytes membrane to produce echinocytes (crenated cells). The altered shape gradually reverted on incubation at 37 degrees C until the cells reassumed their normal disc shape. The rate of such recovery of shape increased with decreasing acyl chain length for both PC with C8-C12 acyl chains and lysoPC with a C14-C18 acyl chain, and was strongly influenced by incubation temperature. The identical rate of recovery of shape was observed for cells with normal, decreased or increased ATP content, implying that the metabolic state of the cell had no influence on the recovery process. Recovery of shape is therefore considered to be caused by translocation of the incorporated lipid molecules from the outer to the inner leaflet of the membrane lipid bilayer and the rate of recovery increases with decreasing hydrophobicity of the lipid.  相似文献   

3.
Intact human erythrocytes were treated, under non-haemolytic conditions at 37 degrees C, with synthetic phosphatidylcholine which has homologous, saturated acyl chains of 8-18 even-numbered carbon atoms (C8-C18-PC) or with lysophosphatidylcholine which has a saturated acyl chain of 8-18 carbon atoms (C8-C18-lysoPC). The C8-C14-PC and C12-C18-lysoPC species were rapidly incorporated into the erythrocytes and induced a shape change of the crenation (echinocyte formation) type. The site of the incorporation was found to be most probably on the outer leaflet of the membrane lipid bilayer. The extent of the shape change was dependent on the amount of each lipid incorporated. When the same amount of a PC or lysoPC species was incorporated into the membrane, about the same extent of crenation was induced, independent of acyl chain length. However, C16-PC, C18-PC, C8-lysoPC and C10-lysoPC, which were not incorporated into the erythrocytes, did not induce any shape change. It is therefore suggested that the hydrophobic moiety of these amphiphilic lipids may greatly contribute to their transfer from the outer medium into the erythrocyte membrane, but do not influence so much the perturbation of the membrane lipid bilayer which may be responsible for induction of the shape change.  相似文献   

4.
The rate of production of 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (PAF) and 1-acyl-2-acetyl-sn-glycero-3-phosphocholine (acylPAF) was measured in macrophages following the incorporation of [3H]acetate. Upon activation by A23187, guinea pig alveolar macrophages incorporated [3H]acetate into PAF, but a little radioactivity was found in acylPAF. However, labeling of acylPAF and PAF with [3H]acetate was greatly enhanced in A23187-stimulated alveolar macrophages that had been pretreated with phenylmethanesulphonyl fluoride (PMSF). [3H]PAF was predominantly converted to 1-[3H]alkyl-2-acyl glycerophosphocholine, but [14C]acylPAF rapidly hydrolyzed to 14C-labeled free fatty acid by the incubation with lysates prepared from macrophages. The deacetylation of [14C]acylPAF and [3H]PAF by acetylhydrolase and also the hydrolysis of [14C]lysoPC by lysophospholipase were strongly inhibited in macrophages that had been pretreated with PMSF, while PMSF failed to inhibit the activities of acetyltransferase and acyltransferase. The relative proportions of PAF and acylPAF were quite different in different types of cells. In contrast to alveolar macrophages, peritoneal macrophages, neutrophils and spleen cells from guinea pigs incorporated 2-4 times more [3H]acetate into acylPAF than into PAF. The presence of high levels of acylPAF in peritoneal macrophages was confirmed by GLC-MS analysis. The activities of lysophospholipase, acetylhydrolase and acetyltransferase were measured in alveolar and peritoneal macrophages to determine whether the preferential formation of acylPAF as compared to PAF in peritoneal macrophages was due to differences in these activities between alveolar and peritoneal macrophages. The activity of acetylhydrolase of peritoneal macrophages was almost the same as that in alveolar macrophages. The activity of acetyltransferase in peritoneal macrophages was about half of that in alveolar macrophages. However, the activity of lysophospholipase in peritoneal macrophages was one-sixth of that in alveolar macrophages. These results suggest that lysophospholipase is one of the primary factors involved in the control of the production of acylPAF in activated cells, and that it acts by modulating the availability of lysoPC for the synthesis of acylPAF. Furthermore, high levels of activity of lysophospholipase allow the preferential formation of PAF, via the rapid hydrolysis of lysoPC which would act as a competitive inhibitor of the incorporation of acetate into lysoPAF.  相似文献   

5.
To identify the specific component(s) in the target membrane involved in fusion of vesicular stomatitis virus (VSV), we examined the interaction of the virus with human erythrocyte membranes with asymmetric and symmetric bilayer distributions of phospholipids. Fusion was monitored spectrofluorometrically by the octadecylrhodamine dequenching assay. Fusion of VSV with lipid-symmetric erythrocyte ghosts was rapid at 37 degrees C and low pH, whereas little or no fusion was observed with lipid-asymmetric ghosts. Conversion of phosphatidylserine in the lipid-symmetric ghost membrane to phosphatidylethanolamine by means of the enzyme phosphatidylserine decarboxylase did not alter the target membrane's susceptibility to VSV fusion. Spin-labeled phospholipid analogues with phosphatidylserine, phosphatidylethanolamine, and phosphatidylcholine headgroups incorporated into the outer leaflet of lipid-asymmetric erythrocytes did not render those membranes fusogenic. Electron spin resonance spectra showed an increased mobility of a phosphatidylcholine spin-label incorporated into the outer leaflet of lipid-symmetric erythrocyte ghosts as compared to that of lipid-asymmetric ghosts. These results indicate that the susceptibility to VSV fusion is not dependent on any particular phospholipid but rather is related to packing characteristics of the target membrane.  相似文献   

6.
TEMPO-phosphatidylcholine (PC) spin probes which have homologous saturated acyl chains of 10, 12, 14 and 16 carbon atoms, were synthesized as analogues of PC. Transfer of TEMPO-PCs from liposomal membrane to the ghost membrane of human erythrocyte and transverse diffusion of TEMPO-PCs within the membrane of intact erythrocytes were determined by measurement of spontaneous increase and decrease in signal amplitude of an anisotropic triplet spectrum, due to dilution of the label by natural phospholipid of the membrane and reduction of the label by the cytoplasmic content of the erythrocyte, respectively. TEMPO-PC molecules in TEMPO-PC liposomes, except dipalmitoyl TEMPO-PC, were rapidly incorporated into the ghost membrane by incubation at 37 degrees C; the PC having shorter acyl chains was transferred faster. The cytoplasmic content of the erythrocyte rapidly reduced the nitroxide radical of the spin probe. The central peak height of ESR signal was once increased by incorporation of TEMPO-PC into the erythrocyte membrane and then was spontaneously decreased during further incubation at 37 degrees C. This decrease indicates that PC molecules traverse from the outer to the inner layer of the membrane lipid bilayer. The decrease of signal amplitude was faster with PC of shorter acyl chain. These findings suggest that both transfer between membranes and transverse diffusion in the membrane may be favored to the PC species with shorter acyl chains.  相似文献   

7.
We determined whether the membrane defect in hereditary pyropoikilocytosis (HPP) is associated with thermally induced changes in the lipid bilayer, the stability of which was probed by the rate of translocation of phosphatidylcholine (PC) over the two leaflets. [14C]PC was incorporated into the outer leaflet of the lipid bilayer of the intact erythrocytes using a PC-specific phospholipid exchange protein. The transbilayer equilibration of this PC was determined by measuring the time-dependent changes in its accessibility to exogenous phospholipase A2. The rate of transbilayer equilibration of PC was increased in HPP cells at 37 degrees C when compared to normal erythrocytes (rate constants, 0.07 +/- 0.02 and 0.03 +/- 0.01 h-1, respectively). A further dramatic increase in PC transbilayer equilibration was noted in HPP cells incubated at 44 degrees C (rate constant, 0.15 +/- 0.02 h-1). A similar marked acceleration in transbilayer movement of PC was also seen in normal erythrocytes when incubated at 46 degrees C (rate constant, 0.13 +/- 0.03 h-1). Despite the enhanced transbilayer mobility of PC in HPP cells when compared to normal erythrocytes, no major alteration in the asymmetric distribution could be observed when probed with phospholipase A2. Since changes in transbilayer mobility of PC and cell morphology occur in HPP cells at lower temperature than in normal red cells, it may be concluded that the enhanced thermal sensitivity of spectrin is the major factor responsible for these changes. Our results therefore support the view that the structural integrity of the skeletal network is essential for stabilization of the lipid bilayer of the red cell membrane.  相似文献   

8.
Sonication of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-sn-glycero-3-phosphocholine (lysoPC, up to approximately 30 mol %) produces small unilamellar vesicles (SUV, 250-265 A diameter). Phosphorus-31 NMR of the POPC/lysoPC vesicles gives rise to four distinct peaks for POPC and lysoPC in the outer and in the inner bilayer leaflet which can be used to localize and quantify the phospholipids in both vesicle shells. Addition of paramagnetic ions (3 mM Pr3+) enhances outside/inside chemical shift differences and allows monitoring of membrane integrity by the absence of Pr3+ in the vesicle interior. 31P NMR shows that lysoPC in these highly curved POPC/lysoPC vesicles prefers the outer bilayer leaflet. LysoPC incorporation into POPC SUV furthermore causes a substantial and concentration-dependent decrease in spin-spin relaxations (T*2) of the outside POPC phosphorus signals from 55 ms for pure POPC vesicles (v1/2, 5.8 Hz) to 29.5 ms (v1/2, 10.8 Hz) for POPC/lysoPC vesicles containing 25 mol % lysoPC. Our findings are consistent with the idea of a cone-shaped lysoPC molecule which, for geometric reasons, is preferentially accommodated in the outer bilayer leaflet. LysoPC incorporation into POPC SUV restricts POPC headgroup motion and tightens phospholipid packing, but only in the outer bilayer shell.  相似文献   

9.
Two mechanisms have been proposed for maintenance of transbilayer phospholipid asymmetry in the erythrocyte plasma membrane, one involving specific interactions between the aminophospholipids of the inner leaflet of the bilayer and the cytoskeleton, particularly spectrin, and the other involving the aminophospholipid translocase. If the former mechanism is correct, then erythrocytes which have lost their asymmetric distribution of phospholipids should display altered bilayer/cytoskeleton interactions. To test this possibility, normal erythrocytes, erythrocytes from patients with chronic myelogenous leukemia or sickle disease, and lipid-symmetric and -asymmetric erythrocyte ghosts were labeled with the radioactive photoactivable analogue of phosphatidylethanolamine, 2-(2-azido-4-nitrobenzoyl)-1-acyl-sn-glycero-3-phospho[14C]ethanolamine ([14C]AzPE), previously shown to label cytoskeletal proteins from the bilayer. The labeling pattern of cytoskeletal proteins in pathologic erythrocytes and lipid-asymmetric erythrocyte ghosts was indistinguishable from normal erythrocytes, indicating that the probe detects no differences in bilayer/cytoskeleton interactions in these cells. In contrast, in lipid-symmetric erythrocyte ghosts, labeling of bands 4.1 and 4.2 and actin, and to a lesser extent ankyrin, by [14C]AzPE was considerably reduced. Significantly, however, labeling of spectrin was unaltered in the lipid-symmetric ghosts, suggesting that its relationship with the bilayer is normal in these lipid-symmetric cells. These results do not support a model in which spectrin is involved in the maintenance of an asymmetric distribution of phospholipids in erythrocytes.  相似文献   

10.
Phospholipid asymmetry in the isolated sarcoplasmic reticulum membrane   总被引:1,自引:0,他引:1  
The total phospholipid content and distribution of phospholipid species between the outer and inner monolayers of the isolated sarcoplasmic reticulum membrane was measured by phospholipase A2 activities and neutron diffraction. Phospholipase measurements showed that specific phospholipid species were asymmetric in their distribution between the outer and inner monolayers of the sarcoplasmic reticulum lipid bilayer; phosphatidylcholine (PC) was distributed 48/52 +/- 2% between the outer and inner monolayer of the sarcoplasmic reticulum bilayer, 69% of the phosphatidyl-ethanolamine (PE) resided mainly in the outer monolayer of the bilayer, 85% of the phosphatidylserine (PS) and 88% of the phosphatidylinositol (PI) were localized predominantly in the inner monolayer. The total phospholipid distribution determined by these measurements was 48/52 +/- 2% for the outer/inner monolayer of the sarcoplasmic reticulum lipid bilayer. Sarcoplasmic reticulum phospholipids were biosynthetically deuterated and exchanged into isolated vesicles with both a specific lecithin and a general exchange protein. Neutron diffraction measurements directly provided lipid distribution profiles for both PC and the total lipid content in the intact sarcoplasmic reticulum membrane. The outer/inner monolayer distribution for PC was 47/53 +/- 1%, in agreement with phospholipase measurements, while that for the total lipid was 46/54 +/- 1%, similar to the phospholipase measurements. These neutron diffraction results regarding the sarcoplasmic reticulum membrane bilayer were used in model calculations for decomposing the electron-density profile structure (10 A resolution) of isolated sarcoplasmic reticulum previously determined by X-ray diffraction into structures for the separate membrane components. These structure studies showed that the protein profile structure within the membrane lipid bilayer was asymmetric, complementary to the asymmetric lipid structure. Thus, the total phospholipid asymmetry obtained by two independent methods was small but consistent with a complementary asymmetric protein structure, and may be related to the highly vectorial functional properties of the calcium pump ATPase protein in the sarcoplasmic reticulum membrane.  相似文献   

11.
31P- and 1H-NMR spectroscopy of small, unilamellar egg yolk phosphatidylcholine (PC) vesicles in the presence of the lanthanide ion Dy3+ have been used to study the effect of various n-alcohols on the permeability induced by the action of the enzyme phospholipase A2 (PLA2). The method allows the monitoring of the number of PC and lysoPC molecules in the outer and inner monolayers. The results indicate that the initial rate of hydrolysis of PC by PLA2 is increased by all the n-alcohols but in a chain-length dependent manner and that the maximum rate occurs at n = 8 (octan-1-ol). The subsequent rate is dependent upon the rate of transbilayer lipid exchange (flip-flop) of PC molecules from the inner to the outer monolayer. The vesicles only become permeable to the Dy3+ ions when lysoPC is mobilised in the flip-flop process of exchange of lipid molecules between the two monolayers. The n-alcohols affect both the time taken to initiate flip-flop of inner monolayer PC and the subsequent rate of permeability to Dy3+. The n-alcohols are seen to affect all the above rates in an identical chain-length dependent manner, indicating a common cause for all observations which we identify as the degree of clustering of the n-alcohol molecules in the bilayer. The results are discussed in terms of the chain-length dependent mechanism of n-alcohol interactions with the membrane and the mechanism by which the vesicles become permeable to Dy3+ ions.  相似文献   

12.
Transmembrane distribution of sterol in the human erythrocyte   总被引:2,自引:0,他引:2  
The transbilayer cholesterol distribution of human erythrocytes was examined by two independent techniques, quenching of dehydroergosterol fluorescence and fluorescence photobleaching of NBD-cholesterol. Dehydroergosterol in conjunction with leaflet selective quenching showed that, at equilibrium, 75% of the sterol was localized to the inner leaflet of resealed erythrocyte ghosts. NBD-cholesterol and fluorescence photobleaching displayed two diffusion values in both resealed ghosts and intact erythrocytes. The fractional contribution of the fast and slow diffusion constants of NBD-labelled cholesterol represent its inner and outer leaflet distribution. At room temperature the plasma membrane inner leaflet of erythrocyte ghosts as well as intact erythrocytes cells contained 78% of the plasma membrane sterol. The erythrocyte membrane transbilayer distribution of sterol was independent of temperature. In conclusion, dehydroergosterol and NBD-cholesterol data are consistent with an enrichment of cholesterol in the inner leaflet of the human erythrocyte.  相似文献   

13.
[14C]Choline was incorporated into microsomal membranes in vivo, and from CDP-[14C]choline in vitro, and the site of incorporation determined by hydrolysis of the outer leaflet of the membrane bilayer using phospholipase C from Clostridium welchii. Labelled phosphatidylcholine was found to be concentrated in the outer leaflet of the membrane bilayer with a specific activity approximately three times that of the inner leaflet. During incorporation of CDP-choline and treatment with phospholipase C the vesicles retained labelled-protein contents indicating that they remained intact. When the microsomes were opened with taurocholate after incorporation of [14C]choline in vivo, the labelled phosphatidylcholine behaved as a single pool. Selective hydrolysis of labelled phosphatidylcholine in intact vesicles is not, therefore, a consequence of specificity of phospholipase C. These results indicate that the phosphatidylcholine of the outer leaflet of the microsomal membrane bilayer is preferentially labelled by the choline-phosphotransferase pathway and that this pool of phospholipid does not equilibrate with that of the inner leaflet.  相似文献   

14.
Tracer quantities of 3H-labeled lysoPC and 32P-labeled natural rabbit surfactant were given intratracheally via a bronchoscope and [14C]palmitate was given intravenously to 25 rabbits with labeled PC and lysoPC measured in the alveolar wash, lung homogenate, lamellar bodies and microsomes at five times from 10 min to 6 h after tracheal injection. Surprisingly, only 31% of the administered lysoPC remained in its original form in the total lungs (alveolar wash + lung homogenate) by 10 min, of which 77% was in the alveolar wash. Meanwhile, by 10 min an additional 37% was already converted to PC, of which more than 98% was in the lung homogenate. LysoPC continued to be rapidly and efficiently converted to PC, with 62% conversion measured at 3 h. The converted lysoPC initially appeared with high specific activity in microsomes, then in lamellar bodies, and finally in the alveolar wash. The intravascular palmitate labeled lung PC had similar specific activity-time profiles in the subcellular fractions, while intratracheally administered natural rabbit surfactant had a constantly low specific activity in microsomes and much higher specific activities in lamellar bodies and alveolar wash. Another 25 rabbits received intratracheal lysoPC labeled in both the choline and palmitate moieties and then were studied from 1 to 24 h after tracheal injection. The ratio of the palmitate to choline labels indicated uptake and conversion to PC primarily by direct acylation rather than transacylation and by intact reuptake and conversion rather than breakdown and resynthesis. LysoPC is an attractive 'metabolic probe' of surfactant metabolism which undergoes very rapid and efficient intracellular conversion to PC via a subcellular pathway that parallels the remodeling and de novo synthetic pathways.  相似文献   

15.
Isolated bovine rod outer segments and photoreceptor disks actively incorporated [1-14C]docosahexaenoate (22:6) into phospholipids when incubated in the presence of CoA, ATP, and Mg2+. About 80% of the esterified fatty acid was in phosphatidylcholine (PC). Microsomal and mitochondrial fractions incorporated as much 22:6 as rod outer segments, but it was distributed among various phospholipids and neutral glycerides. The isolated photoreceptor membrane thus contains an acyl-CoA synthetase which activates the fatty acid and a docosahexaenoyl-CoA-lysophosphatidylcholine acyltransferase activity. The specific radioactivity of PC was higher in rod outer segments than in the other subcellular fractions. About 2/3 of the label in photoreceptor membrane PC was in its dipolyunsaturated molecular species and 1/3 in hexaenes. Dipolyunsaturated PCs showed high turnover rates of 22:6 in all three subcellular membranes, especially in mitochondria. Retinal membranes in vitro seem to take up free [14C]22:6 from the medium by simple diffusion or partition into the membrane lipid. The ability of these membranes to activate and esterify [1-14C]22:6 indicates that docosahexaenoate-containing molecular species of retina lipids, including those of photoreceptor membranes, are subject to acylation-deacylation reactions in situ.  相似文献   

16.
Mechanism of red blood cell acanthocytosis and echinocytosis in vivo   总被引:1,自引:0,他引:1  
Patients with abetalipoproteinemia have an inborn absence of the major apoprotein of low density plasma lipoproteins, an abnormal serum and red cell lipid profile, and spiny erythrocytes, called acanthocytes. We now show that these deformed cells are reversibly converted to a normal shape, that of a biconcave disk, by incubation with 3 to 10 X 10(-5) M chlorpromazine. We suppose that chlorpromazine acts by expanding the cytoplasmic leaflet of the bilayer, thus promoting inward curvature. Ghosts isolated from the acanthocytes are themselves spiny but are also converted to normal, concave disks by chlorpromazine or merely by a brief incubation at 37 degrees C in low ionic strength buffer. We attribute the latter to a redistribution of lipids between the two leaflets of the membrane bilayer. Similar observations were made with red cells and ghosts from a patient with benign echinocytosis. These observations suggest that the morphological abnormality in acanthocytes and echinocytes can be ascribed to the same mechanism as crenation in vitro; that is, a bilayer couple effect in which an excess of surface area in the outer leaflet over the inner leaflet of the membrane bilayer drives outward curvature. It is striking that cells which were chronically abnormal in shape in vivo contain the information to become biconcave disks immediately upon simple chemical treatment in vitro.  相似文献   

17.
The regulation of human plasma lecithin:cholesterol acyltransferase (LCAT) by changes in bilayer fluidity of substrate egg phosphatidylcholine (egg PC) unilamellar vesicles was investigated using pyrene excimer fluorescence to measure fluidity. Fluidity was decreased by adding up to 20% cholesterol or increased by adding up to 10% egg 2-lysophosphatidylcholine (lysoPC). The fluidizing effect of lysoPC was suppressed by the addition of cholesterol. LCAT activity with 10% cholesterol vesicles was decreased by adding 5% lysoPC, yet activity with 5% cholesterol vesicles was unaffected by adding 5% lysoPC. This difference may be explained by a balance between the known LCAT inhibitory effect of lysoPC and its ability to increase bilayer fluidity and thereby increase LCAT activity. LCAT esterification of up to 37% of vesicle cholesterol failed to alter the lysoPC/cholesterol balance sufficiently to influence activity in this system. The findings of our studies are in keeping with modulation of LCAT activity by bilayer fluidity, but fluidity changes caused by enzyme action are not sufficient to regulate that activity.  相似文献   

18.
The location of 2′,3′-cyclic nucleotide 3′-phosphodiesterase in human erythrocyte membranes was determined. This was accomplished by comparing the enzyme's accessibility with that of glyceraldehyde-3-phosphate dehydrogenase (cytoplasmic surface marker) and acetylcholinesterase (external marker) in sealed and unsealed ghosts and normal and inverted membrane vesicles. The results showed that 2′,3′-cyclic nucleotide 3′-phosphodiesterase, like glyceraldehyde-3-phosphate dehydrogenase, meets several criteria for an inner (cytoplasmic) membrane location: (1) the enzyme was accessible to substrate in unsealed ghosts and inside-out vesicles but not in sealed or right-side-out vesicles, (2) latent activity in sealed ghosts could be exposed with detergent (Triton X-100), (3) activity in unsealed ghosts was gradually sequestered during resealing and could be re-exposed with detergent, and (4) the enzyme was susceptible to trypsin proteolysis only in unsealed ghosts. These results demonstrate that the active site of 2′,3′-cyclic nucleotide 3′-phosphodiesterase faces the cytoplasm of erythrocytes and that the enzyme may not span the lipid bilayer of the membrane. The localization of the phosphodiesterase on the inner membrane surface of erythrocytes suggests that the similar enzyme of myelin may be embedded within the major dense line of the compact lamellae.  相似文献   

19.
Interpretation of freeze-fracture and thin-section results shows that fusion of the peripheral vesicle with the plasmalemma of a Phytophthora palmivora zoospore occurs at several discrete sites and results in the formation and expansion of a particle-free bilayer membrane diaphragm and in the appearance of a polymorphic network of membrane-bounded tunnels, the lumina of which are continuous with the cytoplasm. The outer half of the bilayer membrane diaphragm appears continuous with the outer half of the plasma membrane; the inner half of the bilayer membrane diaphragm with the inner half of the peripheral vesicle membrane; and the inner half of the plasmalemma with the outer half of the peripheral vesicle membrane. Interpretation of our results leads us to formulate a hypothesis for a sequence of several intermediate stages involved in membrane fusion. The initial fusion event is viewed as a local catastrophe (Thom, R. 1972. Stabilite Structurelle et Morphogenese. W. A. Benjamin Inc., Reading, Mass.) involving the sudden reorganization of apposed elements of the inner half of the plasmalemma and the outer half of the peripheral vesicle membrane. Fusion of apposed components at the rim of the perimeter of fusion results in the formation of a toroid hemi-micelle which provides continuity between the inner half of the plasmalemma and the outer half of the peripheral vesicle membrane. Simultaneously, apposed components at the site of fusion may reorganize into an inverted membrane micelle. A bilayer membrane diaphragm is then formed by apposition and flowing of components form the outer half of the plasmalemma and the inner (exoplasmic) half of the peripheral vesicle membrane. The existence of large areas of membrane contact before fusion may lead to several fusion events and the formation of a polymorphic network of membrane- bound tunnels.  相似文献   

20.
The synthesis of phosphatidylcholine (PC) in rod outer segments (ROS) catalysed by lysophosphatidylcholine acyltransferase and phosphatidylethanolamine N-methyltransferase (PE N-MTase) was studied and the effects of natural (FA and lysophospholipids) and synthetic (Triton X-100, deoxycholate and CHAPS) surfactants was evaluated. In all experimental conditions used, incorporation of labelled oleate into lysophosphatidylcholine (lysoPC) was at least 40 times greater than oleate incorporation into any other lysophospholipid. Acylation of lysoPC was slightly affected by Triton X-100 and was totally inhibited in the presence of 10 mM sodium deoxycholate (NaDOC) or CHAPS. Below their critical micelle concentration (cmc) Triton X-100 and NaDOC stimulated acylation of all ROS lysophospholipids analysed. The activity of PE N-MTase was stimulated at detergent concentrations below the cmc and inhibited at concentrations above the cmc for all three detergents tested. The effect of FA with differing degree of unsaturation on PC synthesis was evaluated. Oleic acid (10 microM) inhibited methyl group incorporation into total PC, whereas from 100 microM onward, the methylating activity increased with preferential synthesis of PC. Docosahexaenoic acid, in turn, inhibited PE N-MTase activity at every concentration tested. These results suggest that PC synthesis in ROS membranes is modified by bioregulators and surfactants altering the physico-chemical state of the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号