首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dermatan sulfate increases the rate of inhibition of thrombin by heparin cofactor II (HCII) approximately 1000-fold by providing a catalytic template to which both the inhibitor and the protease bind. Dermatan sulfate is a linear polymer of D-glucuronic acid (GlcA) or L-iduronic acid (IdoA) alternating with N-acetyl-D-galactosamine (GalNAc) residues. Heterogeneity in dermatan sulfate results from varying degrees of O-sulfation and from the presence of the two types of uronic acid residues. To characterize the HCII-binding site in dermatan sulfate, we isolated the smallest fragment of dermatan sulfate that bound to HCII with high affinity. Dermatan sulfate was partially N-deacetylated by hydrazinolysis, cleaved with nitrous acid at pH 4, and reduced with [3H]NaBH4. The resulting fragments, containing an even number of monosaccharide units with the reducing terminal GalNAc converted to [3H]2,5-anhydro-D-talitol (ATalR), were size-fractionated and then chromatographed on an HCII-Sepharose column. The smallest HCII-binding fragments were hexasaccharides, of which approximately 6% bound. Based on ion-exchange chromatography, the bound material appeared to comprise a heterogeneous mixture of molecules possessing four, five, or six sulfate groups per hexasaccharide. Subsequently, hexasaccharides with the highest affinity for HCII were isolated by overloading the HCII-Sepharose column. The high-affinity hexasaccharides were fractionated by strong anion-exchange chromatography, and one major peak representing approximately 2% of the starting hexasaccharides was isolated. The high-affinity hexasaccharide was cleaved to disaccharides that were analyzed by anion-exchange chromatography, paper electrophoresis, and paper chromatography. A single disulfated disaccharide, IdoA(2-SO4)----ATalR(4-SO4) was observed, indicating that the hexasaccharide has the following structure: IdoA(2-SO4)----GalNAc(4-SO4)----IdoA(2-SO4)---- GalNAc(4-SO4)----IdoA(2-SO4)----ATalR(4-SO4). Since IdoA(2-SO4)----GalNAc(4-SO4) comprises only approximately 5% of the disaccharides present in intact dermatan sulfate, clustering of these disaccharides must occur during biosynthesis to form the high-affinity binding site for HCII.  相似文献   

2.
Heparin and dermatan sulfate increase the rate of inhibition of thrombin by heparin cofactor II (HCII) approximately 1000-fold by providing a catalytic template to which both the inhibitor and the proteinase bind. A variant form of HCII that binds heparin but not dermatan sulfate has been described recently in two heterozygous individuals (Andersson, T.R., Larsen, M.L., and Abildgaard, U. (1987) Thromb. Res. 47, 243-248). We have now purified the variant HCII (designated HCIIOslo) from the plasma of ne of these individuals. HCIIOslo or normal HCII (11 nM) was incubated with thrombin (9 nM) for 1 min in the presence of heparin or dermatan sulfate. Fifty percent inhibition of thrombin occurred at 26 micrograms/ml dermatan sulfate with normal HCII and greater than 1600 micrograms/ml dermatan sulfate with HCIIOslo. In contrast, inhibition of thrombin occurred at a similar concentration of heparin (1.0-1.5 micrograms/ml) with both inhibitors. To identify the mutation in HCIIOslo, DNA fragments encoding the N-terminal 220 amino acid residues of HCII were amplified from leukocyte DNA by the Taq DNA polymerase chain reaction and both alleles were cloned. A point mutation (G----A) resulting in substitution of His for Arg-189 was found in one allele. The same mutation was constructed in the cDNA of native HCII by oligonucleotide-directed mutagenesis and expressed in Escherichia coli. The recombinant HCIIHis-189 reacted with thrombin in the presence of heparin but not dermatan sulfate, confirming that this mutation is responsible for the functional abnormality in HCIIOslo.  相似文献   

3.
Heparin and dermatan sulfate activate heparin cofactor II (HCII) comparably, presumably by liberating the amino terminus of HCII to bind to exosite I of thrombin. To explore this model of activation, we systematically substituted basic residues in the glycosaminoglycan-binding domain of HCII with neutral amino acids and measured the rates of thrombin inactivation by the mutants. Mutant D, with changes at Arg(184), Lys(185), Arg(189), Arg(192), Arg(193), demonstrated a approximately 130-fold increased rate of thrombin inactivation that was unaffected by the presence of glycosaminoglycans. The increased rate reflects displacement of the amino terminus of mutant D because (a) mutant D inactivates gamma-thrombin at a 65-fold slower rate than alpha-thrombin, (b) hirudin-(54-65) decreases the rate of thrombin inactivation, and (c) deletion of the amino terminus of mutant D reduces the rate of thrombin inactivation approximately 100-fold. We also examined the contribution of glycosaminoglycan-mediated bridging of thrombin to HCII to the inhibitory process. Whereas activation of HCII by heparin was chain-length dependent, stimulation by dermatan sulfate was not, suggesting that dermatan sulfate does not utilize a template mechanism to accelerate the inhibitory process. Fluorescence spectroscopy revealed that dermatan sulfate evokes greater conformational changes in HCII than heparin, suggesting that dermatan sulfate stimulates HCII by producing more effective displacement of the amino terminus.  相似文献   

4.
Inhibition of thrombin by heparin cofactor (HCII) is accelerated approximately 1000-fold by heparin or dermatan sulfate. We found recently that the mutation Arg189----His decreases the affinity of HCII for dermatan sulfate but not for heparin (Blinder, M. A., Andersson, T. R., Abildgaard, U., and Tollefsen, D. M. (1989) J. Biol. Chem. 264, 5128-5133). Other investigators have implicated Arg47 and Lys125 of anti-thrombin (homologous to Arg103 and Lys185 of HCII) in heparin binding. To investigate the corresponding residues in HCII, we have constructed amino acid substitutions (Arg103----Leu, Gln, or Trp; Lys185----Met, Asn, or Thr) by oligonucleotide-directed mutagenesis of the cDNA and expressed the products in Escherichia coli. The recombinant HCII variants were assayed for binding to heparin-Sepharose and for inhibition of thrombin in the presence of various concentrations of heparin or dermatan sulfate. All of the Arg103 variants bound to heparin with normal affinity. Furthermore, inhibition of thrombin by the Arg103----Leu variant occurred at a normal rate in the absence of a glycosaminoglycan and was accelerated by normal concentrations of heparin and dermatan sulfate. These results indicate that HCII, unlike anti-thrombin, does not require a positive charge at this position for the interaction with heparin or dermatan sulfate. The Arg103----Gln and Arg103----Trp variants inhibited thrombin at about one-third of the normal rate in the absence of a glycosaminoglycan, suggesting that these mutations exert an effect on the reactive site (Leu444-Ser445) of HCII. All of the Lys185 variants bound to heparin with decreased affinity but inhibited thrombin at approximately the normal rate in the absence of a glycosaminoglycan. These variants required greater than 10-fold higher concentrations of heparin to accelerate inhibition of thrombin and were not stimulated significantly by dermatan sulfate, suggesting that heparin and dermatan sulfate interact with Lys185 of HCII. These results provide evidence that the glycosaminoglycan-binding site in HCII includes Lys185 but not Arg103, both of which were predicted to be involved by homology to anti-thrombin.  相似文献   

5.
Inhibition of thrombin by heparin cofactor II (HCII) is accelerated 1000-fold by heparin or dermatan sulfate. To investigate the contribution of basic residues of the A helix of HCII to this activation, we constructed amino acid substitutions (K101Q, R103L, and R106L) by site-directed mutagenesis. K101Q greatly reduced heparin cofactor activity and required a more than 10-fold higher concentration of dermatan sulfate to accelerate thrombin inhibition compared with wild-type recombinant HCII. Thrombin inhibition by R106L was not significantly stimulated by dermatan sulfate. These results provide evidence that basic residues of the A helix of HCII (Lys(101) and Arg(106)) are necessary for heparin- or dermatan sulfate-accelerated thrombin inhibition.  相似文献   

6.
Heparin cofactor II (HCII) is a glycoprotein in human plasma that inhibits thrombin and chymotrypsin. Inhibition occurs when the protease attacks the reactive site peptide bond in HCII (Leu444-Ser445) and becomes trapped as a covalent 1:1 complex. Dermatan sulfate and heparin increase the rate of inhibition of thrombin, but not of chymotrypsin, greater than 1000-fold. The N-terminal portion of HCII contains two acidic repeats (Glu56-Asp-Asp-Asp-Tyr-Leu-Asp and Glu69-Asp-Asp-Asp-Tyr-Ile-Asp) that may bind to anion-binding exosite I of thrombin to facilitate covalent complex formation. To examine the importance of the acidic domain, we have constructed a series of 5' deletions in the HCII cDNA and expressed the recombinant HCII (rHCII) in Escherichia coli. Apparent second-order rate constants (k2) for inhibition of alpha-thrombin and chymotrypsin by each variant were determined. Deletion of amino acid residues 1-74 had no effect on the rate of inhibition of alpha-thrombin or chymotrypsin in the absence of a glycosaminoglycan. Similarly, the rate of inhibition of alpha-thrombin in the presence of a glycosaminoglycan was unaffected by deletion of residues 1-52. However, deletion of residues 1-67 (first acidic repeat) or 1-74 (first and second acidic repeats) greatly decreased the rate of inhibition of alpha-thrombin in the presence of heparin, dermatan sulfate, or a dermatan sulfate hexasaccharide that comprises the minimum high-affinity binding site for HCII. Deletion of one or both of the acidic repeats increased the apparent affinity of rHCII for heparin-Sepharose, suggesting that the acidic domain may interact with the glycosaminoglycan-binding site of native rHCII. The stimulatory effect of glycosaminoglycans on native rHCII was decreased by a C-terminal hirudin peptide which binds to anion-binding exosite I of alpha-thrombin. Furthermore, the ability of native rHCII to inhibit gamma-thrombin, which lacks the binding site for hirudin, was stimulated weakly by glycosaminoglycans. These results support a model in which the stimulatory effect of glycosaminoglycans on the inhibition of alpha-thrombin is mediated, in part, by the N-terminal acidic domain of HCII.  相似文献   

7.
Heparin cofactor II (HCII) is an inhibitor of thrombin in plasma that is activated by dermatan sulfate or heparin. An apparently full-length cDNA for HCII was isolated from a human liver lambda gt11 cDNA library. The cDNA consisted of 2215 base pairs (bp), including an open-reading frame of 1525 bp, a stop codon, a 3'-noncoding region of 654 bp, and a poly(A) tail. The deduced amino acid sequence contained a signal peptide of 19 amino acid residues and a mature protein of 480 amino acids. The sequence of HCII demonstrated homology with antithrombin III and other members of the alpha 1-antitrypsin superfamily. Blot hybridization of an HCII probe to DNA isolated from sorted human chromosomes indicated that the HCII gene is located on chromosome 22. Twenty human leukocyte DNA samples were digested with EcoRI, PstI, HindIII, KpnI, or BamHI, and Southern blots of the digests were probed with HCII cDNA fragments. A restriction fragment length polymorphism was identified with BamHI. A slightly truncated form of the cDNA, coding for Met-Ala instead of the N-terminal 18 amino acids of mature HCII, was cloned into the vector pKK233-2 and expressed in Escherichia coli. The resultant protein of apparent molecular weight 54,000 was identified on an immunoblot with 125I-labeled anti-HCII antibodies. The recombinant HCII formed a complex with 125I-thrombin in a reaction that required the presence of heparin or dermatan sulfate.  相似文献   

8.
Inhibition of thrombin by heparin cofactor II (HCII) is accelerated by dermatan sulfate, heparan sulfate, and heparin. Purified HCII or defibrinated plasma was incubated with washed confluent cell monolayers, 125I-thrombin was added, and the rate of formation of covalent 125I-thrombin-inhibitor complexes was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. Fibroblasts and porcine aortic smooth muscle cells accelerated inhibition of thrombin by HCII 2.3-7.5-fold but had no effect on other thrombin inhibitors in plasma. Human umbilical vein endothelial cells and mouse macrophage-derived cells did not accelerate the thrombin-HCII reaction. IMR-90 normal human fetal lung fibroblasts treated with heparinase or heparitinase accelerated the thrombin-HCII reaction to the same degree as untreated cells. In contrast, treatment with chondroitinase ABC almost totally abolished the ability of these cells to activate HCII while chondroitinase AC had little or no effect, suggesting that dermatan sulfate was responsible for the activity observed. [35S]Sulfate-labeled proteoglycans were isolated from IMR-90 fibroblast monolayers and conditioned medium and fractionated into two peaks on Sepharose CL-2B. The lower Mr proteoglycans contained 74-76% dermatan sulfate and were 11-25 times more active with HCII than the higher Mr proteoglycans which contained 68-97% heparan sulfate. The activity of the lower Mr proteoglycans decreased 70-90% by degradation of the dermatan sulfate component with chondroitinase ABC. These results confirm that dermatan sulfate proteoglycans are primarily responsible for activation of HCII by IMR-90 fibroblasts. We suggest that HCII may inhibit thrombin when plasma is exposed to vascular smooth muscle cells or fibroblasts.  相似文献   

9.
Eight different sulfated polysaccharides were isolated from Chlorophyta. All exhibited thrombin inhibition through a heparin cofactor II (HCII)-dependent pathway, and their effects on the inhibition of thrombin were more potent than those of heparin or dermatan sulfate. In particular, remarkably potent thrombin inhibition was found for the sulfated polysaccharides isolated from the Codiales. In the presence of these sulfated polysaccharides, both the recombinant HCII (rHCII) variants Lys(173)-->Leu and Arg(189)-->His, which are defective in interactions with heparin and dermatan sulfate, respectively, inhibited thrombin in a manner similar to native rHCII. This result indicates that the binding site of HCII for each of these eight sulfated polysaccharides is different from the heparin- or dermatan sulfate-binding site. All the sulfated polysaccharides but RS-2 significantly stimulated the inhibition of thrombin by an N-terminal deletion mutant of HCII (rHCII-Delta74). Furthermore, hirudin(54-65) decreased only 2-5-fold the rate of thrombin inhibition by HCII stimulated by the sulfated polysaccharides, while HD22, a single-stranded DNA aptamer that binds exosite II of thrombin, produced an approximately 10-fold reduction in this rate. These results suggest that, unlike heparin and dermatan sulfate, the sulfated polysaccharides isolated from Chlorophyta activate HCII primarily by an allosteric mechanism different from displacement and template mechanisms.  相似文献   

10.
A variety of sulphated polyanions in addition to heparin and dermatan sulphate stimulate the inhibition of thrombin by heparin cofactor II (HCII). Previous investigations indicated that the binding sites on HCII for heparin and dermatan sulphate overlap but are not identical. In this study we determined the concentrations (IC50) of various polyanions required to stimulate thrombin inhibition by native recombinant HCII in comparison with three recombinant HCII variants having decreased affinity for heparin (Lys-173-->Gln), dermatan sulphate (Arg-189-->His), or both heparin and dermatan sulphate (Lys-185-->Asn). Pentosan polysulphate, sulphated bis-lactobionic acid amide, and sulphated bis-maltobionic acid amide resembled dermatan sulphate, since their IC50 values were increased to a much greater degree (>/=8-fold) by the mutations Arg-189-->His and Lys-185-->Asn than by Lys-173-->Gln (Gln and Lys-185-->Asn (>/=6-fold) than by Arg-189-->His (相似文献   

11.
Human plasma heparin cofactor II (HCII) inhibits thrombin by rapidly forming a stable, equimolar complex in the presence of heparin or dermatan sulfate. Cultured human hepatoma-derived cells (PLC/PRF-5) secreted (approximately equal to 200 ng/ml in 3 days) a protein of MW - 72 kD that was immunoisolated and immunoblotted with anti-HCII, co-migrated on SDS-PAGE with human plasma HCII, and formed covalent complexes with thrombin (MW - 101 kD) in the presence but not absence of heparin or dermatan sulfate; these complexes co-migrated with those obtained by incubating thrombin with human plasma under the same conditions. HCII was not detectable (less than 0.13 ng/ml) in post-culture medium from cultured human umbilical vein endothelial cells or human foreskin fibroblasts.  相似文献   

12.
Dermatan sulfate (DS) accelerates the inhibition of thrombin by heparin cofactor II (HCII). A hexasaccharide consisting of three l-iduronic acid 2-O-sulfate (IdoA2SO3)-->N-acetyl-D-galactosamine 4-O-sulfate (GalNAc4SO3) subunits was previously isolated from porcine skin DS and shown to bind HCII with high affinity. DS from porcine intestinal mucosa has a much lower content of this disaccharide but activates HCII with potency similar to that of porcine skin DS. Therefore, we sought to characterize oligosaccharides from porcine mucosal DS that interact with HCII. DS was partially depolymerized with chondroitinase ABC, and oligosaccharides containing 2-12 monosaccharide units were isolated. The oligosaccharides were then fractionated by anion-exchange and affinity chromatography on HCII-Sepharose, and the disaccharide compositions of selected fractions were determined. We found that the smallest oligosaccharides able to bind HCII were hexasaccharides. Oligosaccharides 6-12 units long that lacked uronic acid (UA)2SO3 but contained one or two GalNAc4,6SO3 residues bound, and binding was proportional to both oligosaccharide size and number of GalNAc4,6SO3 residues. Intact DS and bound dodecasaccharides contained predominantly IdoA but little D-glucuronic acid. Decasaccharides and dodecasaccharides containing one or two GalNAc4,6SO3 residues stimulated thrombin inhibition by HCII and prolonged the clotting time of normal but not HCII-depleted human plasma. These data support the hypothesis that modification of IdoA-->GalNAc4SO3 subunits in the DS polymer by either 2-O-sulfation of IdoA or 6-O-sulfation of GalNAc can generate molecules with HCII-binding sites and anticoagulant activity.  相似文献   

13.
Heparin cofactor II (HCII) is a plasma serine protease inhibitor whose ability to inhibit alpha-thrombin is accelerated by a variety of sulfated polysaccharides in addition to heparin and dermatan sulfate. Previous investigations have indicated that calcium spirulan (Ca-SP), a novel sulfated polysaccharide, enhanced the rate of inhibition of alpha-thrombin by HCII. In this study, we investigated the mechanism of the activation of HCII by Ca-SP. Interestingly, in the presence of Ca-SP, an N-terminal deletion mutant of HCII (rHCII-Delta74) inhibited alpha-thrombin, as native recombinant HCII (native rHCII) did. The second-order rate constant for the inhibition of alpha-thrombin by rHCII-Delta74 was 2.0 x 10(8) M(-1) min(-1) in the presence of 50 microgram/ml Ca-SP and 10, 000-fold higher than in the absence of Ca-SP. The rates of native rHCII and rHCII-Delta74 for the inhibition of gamma-thrombin were increased only 80- and 120-fold, respectively. Our results suggested that the anion-binding exosite I of alpha-thrombin was essential for the rapid inhibition reaction by HCII in the presence of Ca-SP and that the N-terminal acidic domain of HCII was not required. Therefore, we proposed a mechanism by which HCII was activated allosterically by Ca-SP and could interact with the anion-binding exosite I of thrombin not through the N-terminal acidic domain of HCII. The Arg(103) --> Leu mutant bound to Ca-SP-Toyopearl with normal affinity and inhibited alpha-thrombin in a manner similar to native rHCII. These results indicate that Arg(103) in HCII molecule is not critical for the interaction with Ca-SP.  相似文献   

14.
125I-labeled heparin cofactor II (HCII) was mixed with plasma and coagulation was initiated by addition of CaCl2, phospholipids, and kaolin or tissue factor. In the presence of 67 micrograms/ml of dermatan sulfate, radioactivity was detected in a band which corresponded to the thrombin-HCII complex (Mr = 96,000) upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis. No other complexes were observed. The thrombin-HCII complex was undetectable when 5 units/ml of heparin was present or when prothrombin-deficient plasma was used. In experiments with purified proteases, HCII did not significantly inhibit coagulation factors VIIa, IXa, Xa, XIa, XIIa, kallikrein, activated protein C, plasmin, urokinase, tissue plasminogen activator, leukocyte elastase, the gamma-subunit of nerve growth factor, and the epidermal growth factor-binding protein. HCII inhibited leukocyte cathepsin G slowly, with a rate constant of 8 X 10(4) M-1 min-1 in the presence of dermatan sulfate. These results indicate that the protease specificity of HCII is more restricted than that of other plasma protease inhibitors and suggest that the anticoagulant effect of dermatan sulfate is due solely to inhibition of thrombin by HCII.  相似文献   

15.
Thrombin (T) inactivation by the serpin, heparin cofactor II (HCII), is accelerated by the glycosaminoglycans (GAGs) dermatan sulfate (DS) and heparin (H). Equilibrium binding and thrombin inactivation kinetics at pH 7.8 and ionic strength (I) 0.125 m demonstrated that DS and heparin bound much tighter to thrombin (K(T(DS)) 1-5.8 microm; K(T(H)) 0.02-0.2 microm) than to HCII (K(HCII(DS)) 236-291 microm; K(HCII(H)) 25-35 microm), favoring formation of T.GAG over HCII.GAG complexes as intermediates for T.GAG.HCII complex assembly. At [GAG] < K(HCII(GAG)) the GAG and HCII concentration dependences of the first-order inactivation rate constants (k(app)) were hyperbolic, reflecting saturation of T.GAG complex and formation of the T.GAG.HCII complex from T.GAG and free HCII, respectively. At [GAG] > K(HCII(GAG)), HCII.GAG complex formation caused a decrease in k(app). The bell-shaped logarithmic GAG dependences fit an obligatory template mechanism in which free HCII binds GAG in the T.GAG complex. DS and heparin bound fluorescently labeled meizothrombin(des-fragment 1) (MzT(-F1)) with K(MzT(-F1)(GAG)) 10 and 20 microm, respectively, demonstrating a binding site outside of exosite II. Exosite II ligands did not attenuate the DS-accelerated thrombin inactivation markedly, but DS displaced thrombin from heparin-Sepharose, suggesting that DS and heparin share a restricted binding site in or nearby exosite II, in addition to binding outside exosite II. Both T.DS and MzT(-F1).DS interactions were saturable at DS concentrations substantially below K(HCII(DS)), consistent with DS bridging T.DS and free HCII. The results suggest that GAG template action facilitates ternary complex formation and accommodates HCII binding to GAG and thrombin exosite I in the ternary complex.  相似文献   

16.
Heparin cofactor II (HCII) is a highly specific serine proteinase inhibitor, which complexes covalently with thrombin in a reaction catalyzed by heparin and other polyanions. The molecular basis for the thrombin specificity may be explained by the identification here of a segment of HCII including residues 54-75 that binds to thrombin. A synthetic peptide, HCII(54-75), based on this segment of HCII, Gly-Glu-Glu-Asp-Asp-Asp-Tyr-Leu-Asp-Leu-Glu- Lys-Ile-Phe-Ala-Glu-Asp-Asp-Asp-Tyr-Ile-Asp inhibited thrombin's cleavage of fibrinogen. Clotting activity of thrombin was inhibited 50% at a concentration of 28 microM. Polyacrylamide gel electrophoresis showed that HCII(54-75) inhibited thrombin's cleavage of both the A alpha and B beta polypeptides in fibrinogen. However, the peptide did not block thrombin's active site, as hydrolysis of chromogenic substrates was not inhibited. HCII(54-75) probably binds to the same site on thrombin as do carboxyl-terminal residues of hirudins, thrombin inhibitors of leeches. HCII(54-75) inhibited binding of thrombin to a synthetic peptide corresponding to residues 54-66 of hirudin PA, but the hirudin peptide was about 30-fold more potent in binding and clotting assays. Both synthetic peptides, as a result of their polyanionic character, might be expected to stimulate the reaction of HCII with thrombin. However, the hirudin-related peptide inhibited this reaction, suggesting that it blocked a site on thrombin required for interaction with HCII. HCII(54-75) had a net stimulatory effect on the thrombin-HCII reaction as a consequence of its lower affinity for thrombin and greater negative charge relative to the hirudin-related peptide. These studies suggest that residues 54-75 of HCII interact with a noncatalytic binding site on thrombin and that this interaction contributes to efficient inhibition of thrombin by HCII.  相似文献   

17.
Glycosaminoglycan-binding proteins, with specific emphasis on dermatan sulfate, have been investigated in human plasma by affinity chromatography, mass spectrometry and Western blotting. Diluted plasma was applied to affinity columns and bound protein was eluted with 500 mM NaCl. Dermatan sulfate and heparan sulfate bound 7% of the total protein. Heparin bound 22% of the total protein, but chondroitin sulfate A bound only 0.23%. Mass spectrometric analysis identified 20 proteins as dermatan-sulfate-binding proteins, most of which were confirmed by Western blotting. Some of these binding proteins, such as fibrinogen, fibronectin, apolipoprotein B, LMW kininogen, inter-alpha-trypsin inhibitor, and factor H, were degraded to various extents during the chromatography step, but this degradation could be prevented by the inclusion of a serine protease inhibitor. The protein fraction binding to the dermatan sulfate column showed amidase activity, whereas that binding to the heparan sulfate and heparin columns showed 1/2 and 1/20, respectively, of the activity of the dermatan sulfate binding fraction. Dermatan sulfate was similar to heparan sulfate with respect to its capacity to bind plasma proteins and its activation of protease, but differed from chondroitin sulfate and heparin in these properties.  相似文献   

18.
This study characterizes the structural and functional significance of sulfhydryl residues in human plasma heparin cofactor II (HCII). For quantification of sulfhydryl groups, the extinction coefficient of HCII was redetermined and found to be 0.593 ml mg-1 cm-1 using second-derivative spectroscopy and multicomponent analysis assuming 4, 10, and 2 residues of tryptophan, tyrosine, and tyrosine-O-sulfate per mole of protein, respectively. The results show that tyrosine-O-sulfate residues in HCII and in cholecystokinin peptide fragments (as model compounds) do not significantly contribute to the absorbance spectrum from 280 to 300 nm. A total of three sulfhydryl groups per mole of HCII was detected by Ellman's reagent titration, with or without treatment with dithioerythritol, indicating the absence of intramolecular disulfide bonds. Incubation of HCII with 0.1-10 mM dithioerythritol did not diminish its heparin-enhanced thrombin inhibition activity. Treatment with various sulfhydryl-specific reagents, including p-mercuribenzoate, HgCl2, and N-substituted maleimide derivatives, inactivated HCII. Titration with Ellman's reagent after these reactions identified the modification site as a cysteinyl residue(s). However, complete methanethio derivatization of the sulfhydryl groups of HCII using methyl methanethiosulfonate did not alter heparin-catalyzed thrombin inhibition. These results indicate that the sulfhydryl groups of HCII are not essential for thrombin inhibition. HCII differs from antithrombin III, which contains an essential disulfide bond for heparin-dependent thrombin inhibition (Longas, M. O., et al. (1980) J. Biol. Chem. 255, 3436). Furthermore, within the "serpin" (serine proteinase inhibitor) superfamily, HCII resembles chicken ovalbumin in occurrence of sulfhydryl residues and reactivity with various sulfhydryl group-directed compounds.  相似文献   

19.
Biglycan and decorin are small dermatan sulfate-containing proteoglycans in the extracellular matrix of the artery wall. The dermatan sulfate chains are known to stimulate thrombin inhibition by heparin cofactor II (HCII), a plasma proteinase inhibitor that has been detected within the artery wall. The purpose of this study was to analyze the HCII-stimulatory activity of biglycan and decorin isolated from normal human aorta and atherosclerotic lesions type II through VI and to correlate activity with dermatan sulfate chain composition and structure. Biglycan and decorin from plaque exhibited a 24-75% and 38-79% loss of activity, respectively, in thrombin-HCII inhibition assays relative to proteoglycan from normal aorta. A significant negative linear relationship was observed between lesion severity and HCII stimulatory activity (r = 0.79, biglycan; r = 0.63, decorin; p < 0.05). Biglycan, but not decorin, from atherosclerotic plaque contained significantly reduced amounts of iduronic acid and disulfated disaccharides DeltaDi-2,4S and DeltaDi-4,6S relative to proteoglycan from normal artery. Affinity coelectrophoresis analysis of a subset of samples demonstrated that increased interaction of proteoglycan with HCII in agarose gels paralleled increased activity in thrombin-HCII inhibition assays. In conclusion, both biglycan and decorin from atherosclerotic plaque possessed reduced activity with HCII, but only biglycan demonstrated a correlation between activity and specific glycosaminoglycan structural features. Loss of the ability of biglycan and decorin in atherosclerotic lesions to regulate thrombin activity through HCII may be critical in the progression of the disease.  相似文献   

20.
The minimum concentrations of heparin, dermatan sulfate, hirudin, and D-Phe-Pro-ArgCH2Cl required to delay the onset of prothrombin activation in contact-activated plasma also prolong the lag phases associated with both factor X and factor V activation. Heparin and dermatan sulfate prolong the lag phases associated with the activation of the three proteins by catalyzing the inhibition of endogenously generated thrombin. Thrombin usually activates factor V and factor VIII during coagulation. The smallest fragment of heparin able to catalyze thrombin inhibition by antithrombin III is an octadecasaccharide with high affinity for antithrombin III. In contrast, a dermatan sulfate hexasaccharide with high affinity for heparin cofactor II can catalyze thrombin inhibition by heparin cofactor II. A highly sulfated bis(lactobionic acid amide), LW10082 (Mr 2288), which catalyzes thrombin inhibition by heparin cofactor II and has both antithrombotic and anticoagulant activities, has been synthesized. In this study, we determined how the minimum concentration of LW10082 required to delay the onset of intrinsic prothrombin activation achieved this effect. We demonstrate that, like heparin and dermatan sulfate, LW10082 delays the onset of intrinsic prothrombin activation by prolonging the lag phase associated with both factor X and factor V activation. In addition, LW10082 is approximately 25% as effective as heparin and 10 times as effective as dermatan sulfate in its ability to delay the onset of prothrombin activation. The strong anticoagulant action of LW10082 is consistent with previous reports which show that the degree of sulfation is an important parameter for the catalytic effectiveness of sulfated polysaccharides on thrombin inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号