首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Parathyroid hormone (PTH), which increases cAMP levels, also induces an increase in the activity of the brain isozyme of creatine kinase and in DNA synthesis in osteoblast-enriched bone cell cultures by a cAMP-independent mechanism. The following results lead us to the conclusion that PTH induction of brain isozyme of creatine kinase activity and DNA synthesis occurs by activation of membranal phospholipid metabolism leading to increased protein kinase C activity and Ca2+ mobilization, a mechanism demonstrated for several growth factors and other hormones. (1) Binding of membranal phospholipids by agents such as gentamycin or antiphospholipid antibodies abolishes the stimulation by PTH of creatine kinase activity and DNA synthesis but not of cAMP production. (2) Treatment of cell cultures with exogenous phospholipase C increases brain isozyme of creatine kinase activity and DNA synthesis, but not cAMP production; these stimulations are also blocked by serum containing anti-phospholipid antibodies. PTH has no additional effect on stimulation of creatine kinase activity by phospholipase C (and only a slight effect on DNA synthesis). (3) A synthetic diacylglycerol (1-oleyl-2-acetyl glycerol) or phorbol ester (phorbol 12-myristate 13-acetate) or Ca2+ ionophore, A23187 induces creatine kinase activity and DNA synthesis in the cultures. However, this effect is not blocked by antiphospholipid sera and PTH has no additional effect. (4) Inhibition of protein kinase C activity by drugs reported to inhibit the enzyme (retinoic acid, quercetin) abolishes the stimulation of brain isozyme of creatine kinase activity and of DNA synthesis by PTH.  相似文献   

2.
The growth of a human B lymphoma cell line B104, an experimental model for mature B cells, was inhibited by ionomycin but not 12-O-tetradecanoylphorbol-13-acetate (TPA). Ionomycin inhibited B104 cells from entering into the M phase of the cell cycle without affecting DNA synthesis. The inhibition of cell division of B104 cells by ionomycin occurred within 24 h after stimulation. Because such a mode of action resembles that of anti-IgM antibodies, signals transduced by Ca2+ may be responsible for the inhibition of cell division of B104 cells by anti-IgM antibodies. Indeed, EGTA suppressed the inhibition of cell division of B104 cells caused not only by ionomycin, but also by anti-IgM antibody. Although TPA itself did not have any ability to promote the growth of B104 cells, it could cancel the inhibition of cell division of B104 cells by ionomycin and increase the proportion of B104 cells entering into the M phase of the cell cycle. Staphylococcus aureus Cowan I causes the greatest proliferation of normal human peripheral blood B cells during the period from 48 to 72 h after stimulation. When ionomycin was added to S. aureus Cowan I-stimulated peripheral blood B cells at 48 h of culture, it inhibited cell division during this period without affecting DNA synthesis. In the presence of TPA, this activity of ionomycin was suppressed, and the proportion of M-phase cells increased. These results suggest that cell division of mature B cells is regulated by the signals mediated by Ca2+ and protein kinase C in a mode quite different from that of regulation of DNA synthesis.  相似文献   

3.
With hepatocytes in suspension, freshly isolated from meal-fed rats, no significant effect of ionomycin on the rate of de novo fatty acid synthesis was observed, whereas phorbol myristate acetate (PMA) was strongly stimulatory. The combination of ionomycin and PMA produced the same stimulation as was seen with PMA alone. Stimulation of fatty acid synthesis by vasopressin was comparable and not additive to that observed with PMA, indicating that activation of protein kinase C is solely responsible for this metabolic effect of vasopressin. Both vasopressin and PMA increased acetyl-CoA carboxylase activity in isolated rat hepatocytes.  相似文献   

4.
5.
Selective induction of DNA synthesis in T and B lymphocytes   总被引:78,自引:0,他引:78  
  相似文献   

6.
The tumor-promoting phorbol ester, 12-0-tetradecanoyl-phorbol-13-acetate (TPA), stimulates starch-elicited mouse peritoneal macrophages to undergo DNA synthesis in vitro, apparently without the generation of an endogenous macrophage growth factor (MGF). No evidence was found for any synergistic interaction between TPA and exogenous colony stimulating factors (CSFs) for macrophage DNA synthesis. Low concentrations of glucocorticoids and also prostaglandins E1 and E2 suppress both the CSF-1-stimulated and the TPA-stimulated macrophage DNA synthesis; these same drugs inhibit the CSF-1-mediated and TPA-mediated enhancement of macrophage plasminogen activator (PA) activity. Thus glucocorticoids and prostaglandins E1 and E2 oppose the action of growth factors and the tumor promoter on macrophage and precursor cell function.  相似文献   

7.
An earlier report from this laboratory documented a substantial increase in the rates of dolichol-linked oligosaccharide intermediate synthesis and protein N-glycosylation in purified murine splenic B lymphocytes (B cells) activated by treatment with bacterial lipopolysaccharide (LPS). In this study the developmental patterns for the induction of lipid-mediated protein N-glycosylation, membrane protein, and phosphatidylcholine (PC) biosynthesis were compared during the proliferative response of B cells to LPS. By electron microscopy it could be seen that a distinct endoplasmic reticulum (ER) network began to develop by 24-48 h after exposure of the purified B cells to LPS. The rate of synthesis of membrane protein increased markedly during the first 10 h after activation, reaching a maximum at 30-40 h. The induction of protein N-glycosylation was delayed slightly relative to membrane protein synthesis, with glycoprotein synthesis increasing sharply approximately 20 h after activation. When phospholipid synthesis was monitored by measuring [CH3-3H]choline incorporation into PC, the rate of labeling increased slowly during the first 35 h, but more substantially between 35 and 90 h. The incorporation of labeled choline into PC was drastically reduced by 5'-deoxy-5'-isobutylthio-3-deazaadenosine, an inhibitor of CDP-choline synthesis, indicating that the incorporation of radiolabeled choline is primarily a measurement of the rate of de novo synthesis of PC. In vitro assays revealed that while choline kinase activity was virtually unchanged, CDP-choline synthetase activity increased gradually throughout the activation period. Diacylglycerol cholinephosphotransferase activity, an ER-associated enzyme, was present at low levels between 0 and 35 h, but increased fivefold between 35 and 90 h. On the basis of the developmental patterns for the rates of protein N-glycosylation, membrane protein insertion, and PC biosynthesis determined by metabolic labeling experiments, we tentatively conclude that all of the ER-associated membrane proteins involved in these biosynthetic processes are not induced concurrently during the activation of B cells by LPS.  相似文献   

8.
Treatment of bovine chromaffin cells with 40 mM KCl stimulates a 3-fold increase in total methionine enkephalin immunoreactivity (medium plus cells) and a 4-fold increase in proenkephalin mRNA (mRNAenk). These effects of KCl, which are dependent on extracellular calcium, can be blocked by treatment with 12-O-tetradecanoylphorbol-13-acetate (TPA), although release of methionine enkephalin appears less affected. Using fura-2-loaded chromaffin cells and a dual-excitation wavelength spectrofluorometer, we have examined whether the actions of KCl and TPA on methionine enkephalin synthesis and release can be explained by changes in intracellular free calcium ([Ca2+]i). KCl produced a rapid 600 nM increase in [Ca2+]i from resting levels of approximately 170 nM. Subsequently, [Ca2+]i declined to a new steady-state plateau which was approximately 275 nM higher than the original resting levels. The postdepolarization plateau of [Ca2+]i was reduced by TPA, (-)-(R)-202,791 (a dihydropyridine calcium channel antagonist), and LaCl3 (a nonselective calcium channel blocker). TPA also inhibited potentiation of the KCl-stimulated plateau of [Ca2+]i due to (+)-(S)-202,791, a calcium channel agonist. In contrast, TPA had no effect on resting [Ca2+]i and only slightly inhibited the initial rapid KCl-stimulated increase in [Ca2+]i. The inhibitory effects were maintained for 24 h in the continuous presence of TPA. We conclude 1) that TPA inhibits enkephalin synthesis by inactivating dihydropyridine-sensitive voltage-dependent calcium channels, 2) that these channels alone maintain elevated [Ca2+]i following KCl depolarization, and 3) that sustained elevation in [Ca2+]i is necessary in order to increase enkephalin synthesis in KCl-treated chromaffin cells.  相似文献   

9.
Glucocorticoids stimulate the prostaglandin E2 production of confluent amnion cell cultures, but have no stimulatory effect on the PGE2 output of freshly isolated human amnion cells. Since protein phosphorylation may modify the responsiveness of target cells to steroids, and activators of protein kinase C (PKC), as well as corticosteroids, promote amnion cell PGE2 output by stimulating the synthesis of prostaglandin endoperoxide H synthase (PGHS), we investigated the possibility that PKC is involved in the glucocorticoid-induction of PGE2 synthesis in cultured amnion cells. The dexamethasone-induced PGE2 output of arachidonate-stimulated cells was blocked by the protein kinase inhibitors staurosporine, K-252a, H7, HA1004, and sphinganine, in a manner consistent with their effect on PKC. However, dexamethasone increased the PGE2 production of cultures treated with maximally effective concentrations of the PKC-activator compound TPA. Moreover, dexamethasone stimulated PGE2 synthesis in cultures which were desensitized to TPA-stimulation by prolonged phorbol ester treatment. Concentration-dependence studies showed that staurosporine completely (greater than 95%) blocked glucocorticoid-provoked PGE2 synthesis at concentrations which did not inhibit TPA-stimulated prostaglandin output, and that K-252a inhibited the effect of TPA by more than 95% at concentrations which decreased the effect of dexamethasone only moderately (approximately 40%). Dibutyryl cyclic AMP had no influence on the basal- or dexamethasone-stimulated PGE2 production, and on the staurosporine inhibition of the steroid effect. These results show that glucocorticoids and phorbol esters control amnion PGE2 production by separate regulatory mechanisms. It is suggested that the response of human amnion cells to glucocorticoids is modulated by protein kinase(s) other than phorbol ester-sensitive PKC and cyclic AMP-dependent protein kinase.  相似文献   

10.
The phosphorylation of an Mr 82,000 protein (p82) in the Triton X-100 extract of the particulate fraction of mouse epidermis is dependent on the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) or diacylglycerol and phospholipid and, contrary to protein kinase C (PKC)-catalyzed phosphorylation, cannot be activated by calcium plus phospholipid. The novel p82 kinase differs also from PKC in many other respects, such as substrate specificity, turnover rate, and sensitivity to inhibitors. The p82 kinase can be separated from PKC by chromatography on phenyl sepharose and does not react with a polyclonal PKC antiserum. Like PKC, the novel kinase phosphorylates its substrate on threonine and serine, but not on tyrosine. Similar to PKC, the epidermal p82-kinase system is down-modulated after TPA treatment of mouse skin, with a half-life of around 5 h. Down-modulation is also accomplished by the phorbol ester RPA, but not by the Ca2+ ionophore A23187, and it is inhibited by the immunosuppressive agent cyclosporin A. In addition to down-modulation, TPA treatment of the animals activates a phosphatase that dephosphorylates phosphorylated p82 in the extract of the particulate fraction.  相似文献   

11.
M Issandou  J M Darbon 《FEBS letters》1991,281(1-2):196-200
The tumor-promoting phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) is shown to be mitogenic for quiescent glomerular mesangial cells cultured in serum-free conditions. TPA induces DNA synthesis measured by [3H]thymidine incorporation in a dose-dependent manner with an ED50 of 7 ng/ml and an optimal response for 50 ng/ml. The phorbol ester action is potentiated by insulin with an increase of the maximal effect from 232 +/- 15% for TPA alone to 393 +/- 96% for TPA plus insulin. Down-regulation of protein kinase C by prolonged exposure to TPA completely abolishes the mitogenic effect of the phorbol ester. Using a highly resolutive 2D electrophoresis, we have shown that TPA is able to stimulate the phosphorylation of 2 major proteins of Mr 80,000, pl 4.5 (termed 80K) and Mr 28,000, pI 5.7-5.9 (termed 28K). The 80K protein phosphorylation is time- and dose-dependent with an ED50 of 8 ng/ml TPA. Exposure of mesangial cells to heat-shock induces synthesis of a 28K protein among a set of other proteins suggesting that the 28K protein kinase C substrate belongs to the family of low molecular mass stress proteins. Mitogenic concentrations of TPA and phorbol 12,13-dibutyrate inhibit [125 I]epidermal growth factor binding and stimulate the 80K protein phosphorylation with the same order of potency. The inactive tumor-promoter 4 alpha-phorbol was found to be ineffective both on these 2 parameters and on DNA synthesis. These results suggest a positive role for protein kinase C on mesangial cell proliferation and indicate the existence in this cell line of 2 major protein kinase C substrates.  相似文献   

12.
Rubidium (Rb) influxes via Na/K pump and ouabain-resistant pathways, and protein, RNA and DNA syntheses have been studied in human blood lymphocytes during the cell transit from quiescence to proliferation. In lymphocytes, stimulated either by phytohemagglutinin (PHA), phorbol 12,13-dibutyrate (PDBu) calcium ionophore, ionomycin, or by PDBu and interleukin-2 (IL-2), the late stages of the G0/G1-->S transit are accompanied by sustained 3-fold increased ouabain-sensitive Rb influxes. Using a two-pulse activation by a brief (1 h) PDBu/ionomycin treatment, followed by incubation with PDBu or IL-2 for 48 h, it has been found that both IL-2 and IL-2 receptor (IL-2R) are necessary for a long-term enhancement of Na/K pump. When present at the early stage of PDBu and ionomycin induction, cyclosporin A (CsA, 1 microgram/ml) inhibits the late increase in pump-mediated Rb influxes. However, when applied after the competence induction, CsA produced no effect on the flux increase at the progression stage. It is concluded that in activated human lymphocytes the functional expression of Na/K pump may by associated with IL-2-dependent progression of competent cells in the cell cycle.  相似文献   

13.
The relationship between the inhibition of neutrophil responsiveness to chemoattractants caused by preincubation with phorbol esters and the activation of protein kinase C was investigated using the protein kinase antagonist H7. The latter compound was found to inhibit the phosphorylation of the 50 kDa protein kinase C substrate stimulated by phorbol 12-myristate 13-acetate (PMA). On the other hand, H7 was found not to affect the quin2 and secretory responses of the neutrophils to fMet-Leu-Phe and leukotriene B4. In addition, pretreatment of the cells with H7 blocked the ability of PMA to inhibit the latter two responses to the addition of the chemoattractants. Taken together, these results provide strong evidence for the involvement of protein kinase C in the inhibition of neutrophil--and probably also other cells--responsiveness brought about by preincubation with phorbol esters. Additionally, they invite a reevaluation of the role of protein kinase C in the excitation-response coupling sequence of these cells directed more towards a negative, modulatory, role than that of a critical element in its initiation.  相似文献   

14.
15.
Rat pancreatic islet homogenates display protein kinase C activity. This phospholipid-dependent and calcium-sensitive enzyme is activated by diacylglycerol or the tumor-promoting phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA). In the presence of TPA, the Ka for Ca2+ is close to 5 microM. TPA does not affect phosphoinositide turnover but stimulates [32P]- and [3H]choline-labelling of phosphatidylcholine in intact islets. Exogenous phospholipase C stimulates insulin release, in a sustained and glucose-independent fashion. The secretory response to phospholipase C persists in media deprived of CaCl2. It is proposed that protein kinase C participates in the coupling of stimulus recognition to insulin release evoked by TPA, phospholipase C and, possibly, those secretatogues causing phosphoinositide breakdown in pancreatic islets.  相似文献   

16.
Other laboratories have reported biphasic effects of heavy metals on protein kinase C activity: stimulation followed by inhibition at higher concentrations. We demonstrate that these earlier findings most likely resulted from a combination of the effect of the heavy metals to liberate Ca2+ from Ca2+-EGTA buffer systems and the direct inhibitory effects of the metals on protein kinase C. Simulations of such interactions substantiate this conclusion. When soluble protein kinase C is prepared without the addition of Ca2+ or chelator, heavy metals (Cd2+, Cu2+, Hg2+, Zn2+, in the 10 microM range) inhibit the activity of, and the binding of regulatory ligands to, protein kinase C. Heavy metals inhibit the extent of [3H]phorbol dibutyrate binding without affecting the affinity of the interaction, an inhibition that is not surmounted by excess phospholipid. Heavy metals also inhibit the phospholipid-dependent catalytic activity of protein kinase C in a manner that excess phosphatidylserine can overcome. The inhibition of enzyme activity by heavy metals cannot be surmounted by excess Ca2+ or Mg2+. The inhibitory effects of heavy metals are not confined to protein kinase C. Heavy metals also inhibit cyclic AMP binding to cyclic AMP-dependent protein kinase and the catalytic activity of that kinase, but in a distinctly different pattern.  相似文献   

17.
Previous studies indicated that Ca++ ionophores and phorbol esters in synergy could substitute for the initial activation step of normal T lymphocytes or T cell clones leading to increased expression of receptors for the growth factor interleukin 2 (IL 2) and secretion of interleukins, with the mitogenic signal for T cell proliferation being dependent on the presence of IL 2. In this study, the question was addressed as to whether T lymphocytes activated through the Ca++ ionophore ionomycin and the phorbol ester 12-o-tetradecanoyl phorbol 3-acetate (TPA) also acquired the competence to kill relevant target cells. The results indicate that T lymphocytes from primed mice proliferate and lyse the relevant allogeneic target cells after in vitro stimulation with ionomycin plus TPA, and that T lymphocyte preparations enriched for a subpopulation bearing the Lyt-2 marker are dependent on exogeneous sources of IL 2 to proliferate and become competent killer cells, whereas preparations enriched for subpopulations bearing the L3T4 marker grow independently of exogenous IL 2.  相似文献   

18.
To clarify the mechanism of 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced macrophage-like differentiation of HL-60 cells, we investigated the correlation between the effects of protein kinase C (PKC) inhibitors on the induction of markers of TPA-induced differentiation and those on suggested critical steps of the differentiation. H-7, sphingosine, and trifluoroperazine significantly suppressed TPA-induced cell adhesion but their effects on the induction of acid phosphatase and nonspecific esterase differed among the inhibitors. The three inhibitors failed to affect on TPA-induced annexin I expression. In contrast, staurosporine markedly suppressed the induction of all these markers. The effects of the inhibitors on some suggested critical steps of the differentiation, a rapid phosphorylation of specific proteins, a rapid membrane association of PKC, and down-regulation of PKC at 18 h after addition of TPA, were not correlated with those on the differentiation marker induction. Only the effect of the inhibitors on up-regulation of PKC-alpha was closely correlated with TPA-induced annexin I expression; staurosporine inhibited up-regulation of PKC-alpha but other inhibitors did not similarly affect the induction of annexin I expression. These results suggest that PKC-alpha is intimately related to macrophage-like differentiation of HL-60 cells by TPA.  相似文献   

19.
20.
X-irradiation and the phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA) act in a synergistic manner to increase the yield of transformed C3H10T1/2 cells in vitro. TPA modulated both translocation from the cytosol to the plasma membrane, and down regulation of protein kinase C (PKC) after prolonged (48 h) TPA exposure. N-tosyl-L-phenylalanine chloromethyl ketone (TPCK), antipain, and soybean-derived Bowman-Birk inhibitor, protease inhibitors that suppress transformation of C3H10T1/2 cells, had no effect on these TPA-mediated alterations of PKC activity, suggesting that protease inhibitors suppress TPA-stimulated promotion in vitro via a PKC-independent pathway. Several experiments were performed to determine whether non-toxic concentrations of the PKC inhibitors, N-p-tosyl-L-lysine chloromethyl ketone (TLCK), TPCK, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), or 1-(5-isoquinoline-sulfonyl)-2-methyl-piperazine (H-7), modulated the movement of cells from a quiescent state into the cell cycle. TPCK and the combination of H-7 and W-7 lowered DNA synthesis when cells were stimulated to divide by TPA. Because other protease inhibitors that slow transformation in vitro did not have the same suppressive effect on DNA synthesis, the inhibitory pathway that suppresses carcinogenic activity is likely to be different from the suppression of DNA synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号