首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Seven strains of moderately halophilic and halotolerant aerobic methylobacteria from the technogenic Solikamsk biotopes (Perm krai, Russia) were isolated in pure cultures and characterized. The isolates were represented by gram-negative and gram-positive (strain 2395B) cells. All the cells were shown to multiply by binary fission without formation of spores or prosthecae. All isolates except strain 2395B were able to oxidize methanol by a classical methanol dehydrogenase. The ribulose monophosphate (RMP) (strain LS), serine (strains S12, S3, 2395A), or ribulose bisphosphate (strains SK15 and S3270) pathways of C1-assimilation were used. In strain 2395B, the key enzymes of the RMP and serine metabolic pathways were determined. Using polyphasic taxonomy, three strains were identified as representatives of the known species: Arthrobacter protophormiae 2395B, Methylophaga thalassica LS, and Ancylobacter rudongensis S3270. Three more strains were identified as members of new species: Methylopila oligotropha sp. nov. (strain 2395AT; VKM B-2788T = CCUG 63805T), Ancylobacter defluvii sp. nov. (strain SK15T; VKM B-2789T = CCUG 63806T), and Paracoccus communis sp. nov. (strain S3T; VKM B-2787T = CCUG 63804T). According to the results of 16S rRNA gene sequencing, the obligately methylotrophic strain S12 had less than 94% similarity with the known genera of the Proteobacteria and was probably a representative of a novel genus.  相似文献   

2.
Two newly isolated halotolerant obligately methylotrophic bacteria (strains C2T and SK12T) with the serine pathway of C1 assimilation are described. The isolates are strictly aerobic, Gram negative, asporogenous, non-motile rods, forming rosettes, multiplying by binary fission. Mesophilic and neutrophilic, accumulate intracellularly compatible solute ectoine and poly-β-hydroxybutyrate. The novel strains are able to grow at 0 up to 16% NaCl (w/v), optimally at 3–5% NaCl. The major cellular fatty acids are C18:1ω7c and C19:0cyc and the prevailing quinone is Q-10. The predominant phospholipids are phosphatidylcholine, phosphatidylglycerol, phosphatidyldimethylethanolamine and phosphatidylethanolamine. Assimilate NH4+ by glutamate dehydrogenase and via the glutamate cycle (glutamine synthetase and glutamate synthase). The DNA G + C contents of strains C2T and SK12T are 60.9 and 60.5 mol% (Tm), respectively. 16S rRNA gene sequence similarity between the two new isolates are 99% but below 94% with other members of the Alphaproteobacteria thus indicating that they can be assigned to a novel genus Methyloligella. Rather low level of DNA–DNA relatedness (53%) between the strains C2T and SK12T indicates that they represent two separate species of the new genus, for which the names Methyloligella halotolerans gen. nov., sp. nov. and Methyloligella solikamskensis sp. nov. are proposed. The type strain of Methyloligella halotolerans is C2T (=VKM B-2706T = CCUG 61687T = DSM 25045T) and the type strain of Methyloligella solikamskensis is SK12T (=VKM B-2707T = CCUG 61697T = DSM 25212T).  相似文献   

3.
The phenotypic and genotypic characteristics of seventeen Achromobacter strains representing MLST genogroups 2, 5, 7 and 14 were examined. Although genogroup 2 and 14 strains shared a DNA–DNA hybridization level of about 70%, the type strains of both genogroups differed in numerous biochemical characteristics and all genogroup 2 and 14 strains could by distinguished by nitrite reduction, denitrification and growth on acetamide. Given the MLST sequence divergence which identified genogroups 2 and 14 as clearly distinct populations, the availability of nrdA sequence analysis as a single locus identification tool for all Achromobacter species and genogroups, and the differential phenotypic characteristics, we propose to formally classify Achromobacter genogroups 2, 5, 7 and 14 as four novel Achromobacter species for which we propose the names Achromobacter insuavis sp. nov. (with strain LMG 26845T [= CCUG 62426T] as the type strain), Achromobacter aegrifaciens sp. nov. (with strain LMG 26852T [= CCUG 62438T] as the type strain), Achromobacter anxifer sp. nov. (with strain LMG 26857T [= CCUG 62444T] as the type strain), and Achromobacter dolens sp. nov. (with strain LMG 26840T [= CCUG 62421T] as the type strain).  相似文献   

4.
Four bacterial strains were isolated from a crude oil contaminated saline soil in Shengli Oilfield, China. Strains SL014B-28A2T and SL014B-80A1 were most closely related to Rubrimonas cliftonensis OCh 317T, while strains SL003B-26A1T and SL003B-26A2 were most closely related to but readily different from the species in the Pannonibacter-Labrenzia-Roseibium-Stappia cluster. The major fatty acids were C18:1ω7c, C16:0, C18:0 and 11-Methyl C18:1ω7c, and C18:1ω7c, 11-Methyl C18:1ω7c and C18:0, respectively, for these two groups of isolates. Q-10 was the predominant ubiquinone. The G + C contents of genomic DNA of the four isolates were 67.9, 69.7, 65.6 and 65.6 mol%. Based on the polyphasic taxonomic characteristics, strains SL014B-28A2T and SL014B-80A1 represented a novel species of the genus Rubrimonas, for which the name Rubrimonas shengliensis sp. nov. is proposed, with strain SL014B-28A2T (=LMG 26072T = CGMCC 1.9170T) as the type strain. Isolates SL003B-26A1T and SL003B-26A2 represented a novel genus and species of the family Rhodobacteraceae, for which the name Polymorphum gilvum gen. nov., sp. nov. is proposed, with strain SL003B-26A1T (=LMG 25793T = CGMCC 1.9160T) as the type strain.  相似文献   

5.
The phenotypic and genotypic characteristics of fourteen human clinical Achromobacter strains representing four genogroups which were delineated by sequence analysis of nusA, eno, rpoB, gltB, lepA, nuoL and nrdA loci, demonstrated that they represent four novel Achromobacter species. The present study also characterized and provided two additional reference strains for Achromobacter ruhlandii and Achromobacter marplatensis, species for which, thus far, only single strains are publicly available, and further validated the use of 2.1% concatenated nusA, eno, rpoB, gltB, lepA, nuoL and nrdA sequence divergence as a threshold value for species delineation in this genus. Finally, although most Achromobacter species can be distinguished by biochemical characteristics, the present study also highlighted considerable phenotypic intraspecies variability and demonstrated that the type strains may be phenotypically poor representatives of the species. We propose to classify the fourteen human clinical strains as Achromobacter mucicolens sp. nov. (with strain LMG 26685T [=CCUG 61961T] as the type strain), Achromobacter animicus sp. nov. (with strain LMG 26690T [=CCUG 61966T] as the type strain), Achromobacter spiritinus sp. nov. (with strain LMG 26692T [=CCUG 61968T] as the type strain), and Achromobacter pulmonis sp. nov. (with strain LMG 26696T [=CCUG 61972T] as the type strain).  相似文献   

6.
A polyphasic taxonomic study using morphological, biochemical, chemotaxonomic and molecular genetic methods was performed on six strains of an unknown Gram-positive, nonspore-forming, facultative anaerobic coccus-shaped bacterium isolated from a swine-manure storage pit. On the basis of 16S rRNA, RNA polymerase-subunit (rpoA), and the 60-kilodalton chaperonin (cpn60) gene sequence analyses, it was shown that all the isolates were enterococci but formed two separate lines of descent. Pairwise 16S rRNA sequence comparisons demonstrated that the two novel organisms were most closely related to each other (97.9 %) and to Enterococcus aquimarinus (97.8 %). Both organisms contained major amounts of C16:0, C16:1 ω7c, and C18:1 ω7c/12t/9t as the major cellular fatty acids. Based on biochemical, chemotaxonomic, and phylogenetic evidence, the names Enterococcus lemanii sp. nov. (type strain PC32T = CCUG 61260T = NRRL B-59661T) and Enterococcus eurekensis sp. nov. (type strain PC4BT = CCUG 61259T = NRRL B-59662T) are proposed for the hitherto undescribed species.  相似文献   

7.
Two newly isolated obligate methanol-utilizing bacteria (strains IvaT and LapT) with the ribulose monophosphate pathway of C1 assimilation are described. The isolates are strictly aerobic, Gram negative, asporogenous, motile rods multiplying by binary fission, mesophilic and neutrophilic, synthesize indole-3-acetate. The prevailing cellular fatty acids are straight-chain saturated C16:0 and unsaturated C16:1 acids. The major ubiquinone is Q-8. The predominant phospholipids are phosphatidylethanolamine, phosphatidylglycerol and cardiolipin. Ammonia is assimilated by glutamate dehydrogenase. The DNA G+C contents of strains IvaT and LapT are 54.0 and 50.5 mol% (Tm), respectively.Based on 16S rRNA gene sequence analysis and DNA–DNA relatedness (38–45%) with type strains of the genus Methylobacillus, the novel isolates are classified as the new species of this genus and named Methylobacillus arboreus IvaT (VKM B-2590T, CCUG 59684T, DSM 23628T) and Methylobacillus gramineus LapT (VKM B-2591T, CCUG 59687T, DSM 23629T).The GenBank accession numbers for the 16S rRNA gene and mxaF gene sequences of the strains IvaT and LapT are GU937479, GU937478 and HM030736, HM030735, respectively.  相似文献   

8.
A polyphasic taxonomic study using morphological, biochemical, chemotaxonomic and molecular genetic methods was performed on six strains of unknown Gram-positive, nonspore-forming, facultative anaerobic coccus-shaped bacteria isolated from a swine-manure storage pit. On the basis of the 16S rRNA, RNA polymerase α-subunit (rpoA) and 60 kDa chaperonin (cpn60) gene sequence analyses, it was shown that all the isolates were enterococci but formed two separate lines of descent. Pairwise 16S rRNA gene sequence comparisons demonstrated that the two novel organisms were most closely related to each other (97.9 %) and to Enterococcus aquimarinus (97.8 %). Both organisms contained major amounts of C16:0, C16:1 ω7c, C16:1 ω7c, and C18:1 ω7c/12t/9t as the major cellular fatty acids. Based on biochemical, chemotaxonomic and phylogenetic evidence, the names Enterococcus lemanii sp. nov. (type strain PC32T = CCUG 61260T = NRRL B-59661T) and Enterococcus eurekensis sp. nov. (type strain PC4BT = CCUG 61259T = NRRL B-59662T) are proposed for these hitherto undescribed species.  相似文献   

9.
A bacterial strain (MM) utilizing methanol as the only carbon and energy source was isolated from corn mint rhizoplane. The cells of the strain were gram-negative colorless motile rods. Spores and prosthecae were not formed, reproduced by binary fission, and did not require vitamins and growth factors. The organism was strictly aerobic, urease-, oxidase-, and catalase-positive. Used the KDPG variant of the ribulose monophosphate pathway. Possessed NAD+ dependent 6-phosphogluconate dehydrogenase activity and enzymes of the glutamate cycle. The activities of α-ketoglutarate dehydrogenase and of the glyoxylate bypass enzymes (isocitrate lyase and malate synthase) were absent. Palmitic (C16:0) and palmitoleic (C16:1) acids were predominant in the cell fatty-acid composition. The dominant phospholipids were phosphatidylethanolamine, phosphatidylglycerol, and phosphatidylcholine. The dominant ubiquinone was Q8. The strain formed indole from tryptophan. The DNA G + C content was 54.5 mol % (T m). According to the data of the 16S rRNA gene sequencing, strain MM showed high similarity (98–99%) to Methylovorus glucosotrophus VKM B-1745T and Methylovorus mays VKM B-2221T, but the level of DNA-DNA homology with these cultures was only 40 and 58%, respectively. The strain was classified as a new species, Methylovorus menthalis sp. nov. (VKM B-2663T).  相似文献   

10.
A taxonomic study was carried out on strain 22II-S10sT, which was isolated from the surface seawater of the Atlantic Ocean. The bacterium was found to be Gram-negative, oxidase and catalase positive, rod shaped and motile by subpolar flagella. The isolate was capable of gelatine hydrolysis but unable to reduce nitrate to nitrite or degrade Tween 80 or aesculin. Growth was observed at salinities of 0.5–18 % (optimum, 2–12 %), at pH of 3–10 (optimum, 7) and at temperatures of 10–41 °C (optimum 28 °C). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 22II-S10sT belongs to the genus Roseivivax, with highest sequence similarity to Roseivivax halodurans JCM 10272T (97.2 %), followed by Roseivivax isoporae LMG 25204T (97.0 %); other species of genus Roseivivax shared 95.2–96.7 % sequence similarity. The DNA–DNA hybridization estimate values between strain 22II-S10sT and the two type strains (R. halodurans JCM 10272T and R. isoporae LMG 25204T) were 22.00 and 21.40 %. The principal fatty acids were identified as Summed Feature 8 (C18:1 ω7c/ω6c) (67.4 %), C18:0 (7.2 %), C19:0 cyclo ω8c (7.1 %), C18:1 ω7c 11-methyl (6.8 %) and C16:0 (5.9 %). The respiratory quinone was determined to be Q-10 (100 %). Phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, an aminolipid, a glycolipid and three phospholipids were present. The G+C content of the chromosomal DNA was determined to be 67.5 mol%. The combined genotypic and phenotypic data show that strain 22II-S10sT represents a novel species within the genus Roseivivax, for which the name Roseivivax atlanticus sp. nov. is proposed, with the type strain 22II-S10sT (= MCCC 1A09150T = LMG 27156T).  相似文献   

11.
Strain DCT-19T, representing a Gram-stain-positive, rodshaped, aerobic bacterium, was isolated from a native plant belonging to the genus Campanula on Dokdo, the Republic of Korea. Comparative analysis of the 16S rRNA gene sequence showed that this strain was closely related to Paenibacillus amylolyticus NRRL NRS-290T (98.6%, 16S rRNA gene sequence similarity), Paenibacillus tundrae A10bT (98.1%), and Paenibacillus xylanexedens NRRL B-51090T (97.6%). DNADNA hybridization indicated that this strain had relatively low levels of DNA-DNA relatedness with P. amylolyticus NRRL NRS-290T (30.0%), P. xylanexedens NRRL B-51090T (29.0%), and P. tundrae A10bT (24.5%). Additionally, the genomic DNA G + C content of DCT-19T was 44.8%. The isolated strain grew at pH 6.0–8.0 (optimum, pH 7.0), 0–4% (w/v) NaCl (optimum, 0%), and a temperature of 15–45°C (optimum 25–30°C). The sole respiratory quinone in the strain was menaquinone-7, and the predominant fatty acids were C15:0 anteiso, C16:0 iso, and C16:0. In addition, the major polar lipids were diphosphatidylglycerol and phosphatidylethanolamine. Based on its phenotypic properties, genotypic distinctiveness, and chemotaxonomic features, strain DCT-19T is proposed as a novel species in the genus Paenibacillus, for which the name Paenibacillus seodonensis sp. nov. is proposed (=KCTC 43009T =LMG 30888T). The type strain of Paenibacillus seodonensis is DCT-19T.  相似文献   

12.
A novel aerobic facultative methylotroph was isolated from contaminated soil. The organism (strain DM16) is a Gram-negative asporogenous non-motile curved rod multiplying by binary fission. Cells are neutrophilic and mesophilic. This strain utilized dichloromethane, methanol, formate and formaldehyde along with a variety of polycarbon compounds. Strain DM16 employs the ribulosebisphosphate pathway for C1 assimilation. The DNA G+C content is 64.5 mol%. The major ubiquinone is Q-10. The dominant cellular fatty acids are 18:1ω7c (58.6%), cyclo-19:0ω8c (34.8%) and 16:0 (3.2%). Sequencing of the 16S rRNA gene and DNA–DNA hybridization experiments clearly indicated that this methylotroph should be classified as a new species within genus AncylobacterAncylobacter dichloromethanicus sp. nov. with the type strain DM16T (DSM 21507T=VKM B-2484T).  相似文献   

13.
A novel facultatively anaerobic moderately thermophilic bacterium, strain B-254T, was isolated from a terrestrial hot spring near the town of Goryachinsk in the Baikal lake region (Russian Federation). Motile spherical cells of the strain were present as single cocci, in pairs, or aggregates. The cells had a Gram negative cell wall and reproduced by binary fission. The isolate grew at 30–57 °C (opt. 50–54 °C) and at pH 5.1–8.4 (opt. 6.6–7.1). Strain B-254T was a chemoorganoheterotroph, growing on mono-, di- and polysaccharides (xylan, starch, galactan, galactomannan, xyloglucan, arabinan, curdlan, beta-glucan, locust bean gum, xanthan gum). Sodium chloride or yeast extract were not required for growth. Major cellular fatty acids were iso-C16:0, anteiso-C17:0, and C20:0; major polar lipid was phosphatidylethanolamine. The complete genome of strain B-254T was 5.54 Mb; its GC content was 64 %. According to the results of 16S rRNA gene sequence-based phylogenetic analysis and the conserved proteins sequences-based phylogenomic analysis strain B-254T was on a separate lineage within the order Tepidisphaerales (Phycisphaerae, Planctomycetes). Based on phylogenetic and phylogenomic analyses of Phycisphaerae, whole genome comparisons of Tepidisphaerales as well as distinctive phenotypic features of the strain, it was assigned to a novel genus and species for which the name Fontivita pretiosa gen. nov. sp. nov. is proposed. Strain B-254T = KCTC 82380T = VKM B-3507T.  相似文献   

14.
Comparison of HaeIII- and HpaII-restriction profiles of PCR-amplified 16S-23S rDNA ITS regions of Gluconacetobacter sp. LMG 1529T and SKU 1109 with restriction profiles of reference strains of acetic acid bacteria described by Tr?ek and Teuber [34] revealed the same but unique restriction profiles for LMG 1529T and SKU 1109. Further analyses of nearly complete 16S rRNA gene sequences, nearly complete 16S-23S rDNA ITS sequences, as well as concatenated partial sequences of the housekeeping genes dnaK, groEL and rpoB, allocated both strains to a single phylogenetic cluster well separated from the other species of the genus Gluconacetobacter. DNA–DNA hybridizations confirmed their novel species identity by 73% DNA–DNA relatedness between both strains, and values below the species level (<70%) between SKU 1109 and the type strains of the closest phylogenetic neighbors. The classification of strains LMG 1529T and SKU 1109 into a single novel species was confirmed also by AFLP and (GTG)5-PCR DNA fingerprinting data, as well as by phenotypic data. Strains LMG 1529T and SKU 1109 can be differentiated from their closely related Gluconacetobacter species, Gluconacetobacter entanii and Gluconacetobacter hansenii, by their ability to form 2-keto-d-gluconic acid from d-glucose, their ability to use d-mannitol, d-gluconate and glycerol as carbon source and form acid from d-fructose, and their ability to grow without acetic acid. The major fatty acid of LMG 1529T and SKU 1109 is C18:1ω7c (60.2–64.8%). The DNA G + C content of LMG 1529T and SKU 1109 is 62.5 and 63.3 mol% respectively. The name Gluconacetobacter maltaceti sp. nov. is proposed. The type strain is LMG 1529T (= NBRC 14815T = NCIMB 8752T).  相似文献   

15.
The teichoic acids (TAs) of type strains, viz. Bacillus licheniformis VKM B-511T and Bacillus pumilus VKM B-508T, as well as phylogenetically close bacteria VKM B-424, VKM B-1554, and VKM B-711 previously assigned to Bacillus pumilus on the basis of morphological, physiological, and biochemical properties, were investigated. Three polymers were found in the cell wall of each of the 5 strains under study. Strains VKM B-508T, VKM B-424, and VKM B-1554 contained polymers of the same core: unsubstituted 1,3-poly(glycerol phosphate) (TA I) and 1,3-poly(glycerol phosphate) with O-D-Ala and N-acetyl-??-D-glucosamine substituents (TA II and TA III??, respectively). The cell walls of two remaining strains contained TA I, TA II, and a poly(glycosylpolyol phosphate) with the following structure of repeating units: -6)-??-D-GlcpNAc(1??1)-snGro-(3-P-(TA III?) in ??Bacillus pumilus?? VKM B-711 (100% 16S rRNA gene similarity with the type strain of Bacillus safensis) and -6)-??-D-Galp-(1??2)-snGro-(3-P-(TA III?) in Bacillus licheniformis VKM B-511T. The simultaneous presence of three different TAs in the cell walls was confirmed by the NMR spectroscopic DOSY methods. The structure of the polymers and localization of O-D-Ala residues were investigated by the chemical and NMR spectroscopic methods.  相似文献   

16.
A new obligately methylotrophic bacterium, strain OVT, was isolated from roots of sedge (Carex sp.). The isolate was represented by aerobic gram-negative motile, non-spore-forming rods, which divided by binary fission. Optimal growth occurred at 22?29°C and pH 7.5?8.5 in the presence of 0.5?2% NaCl; growth was inhibited by 3.5% NaCl. Strain OVT utilized methanol as the only carbon and energy source. The organism used the KDPG variant of the ribulose monophosphate pathway (RuMP) of С1 metabolism. Ammonium was assimilated by reductive amination of α-ketoglutarate. The major cellular fatty acids were C16:0 (45.5%), C16:1ω7c (40.7%), and C17cyc (8.0%). The major ubiquinone was Q8. The dominant phospholipids were phosphatidylethanolamine, phosphatidylglycerol, and diphosphatidylglycerol. The DNA G + C content of strain OVT was 51.4 mol % (Tm). While the 16S rRNA gene sequence of strain OVT exhibited high similarity to those of Methylobacillus species: M. gramineus LapT (99.6%) and M. glycogenes TK 0113T (98.7%), the DNA-DNA hybridization level between strain OVT and M. gramineus LapT was only 52%. Based on the data obtained, strain OVT was assigned to the new species Methylobacillus caricis sp. nov. (=VKM B-3158T = JCM 32031T).  相似文献   

17.
A search for the organisms responsible for anaerobic betaine degradation in soda lakes resulted in isolation of a novel bacterial strain, designated Z-7014T. The cells were Gram-stain-negative, non-endospore-forming rods. Growth occurred at 8–52 °C (optimum 40–45 °C), pH 7.1–10.1 (optimum pH 8.1–8.8) and 1.0–3.5 M Na+ (optimum 1.8 M), i.e. it can be regarded as a haloalkaliphile. The strain utilized a limited range of substrates, mostly peptonaceous but not amino acids, and was able to degrade betaine. Growth on betaine occurred only in the presence of peptonaceous substances which could not be replaced by vitamins. The G + C content of the genomic DNA of strain Z-7014T was 36.1 mol%. The major cellular fatty acids (>5% of the total) were C16:0 DMA, C18: 0 DMA, C16:1ω8, C16:0, C18:1 DMA, C16:1 DMA, C18:1ω9, and C18:0. Phylogenetic analysis of the 16S rRNA gene sequence revealed that strain Z-7014T formed a distinct evolutionary lineage in the order Halanaerobiales with the highest similarity to Halarsenitibacter silvermanii SLAS-1T (83.6%), Halothermothrix orenii H168T (85.6%), and Halocella cellulosilytica DSM 7362T (85.6%). AAI and POCP values between strain Z-7014T and type strains of the order Halanaerobiales were 51.7–57.8%, and 33.8–58.3%, respectively. Based on polyphasic results including phylogenomic data, the novel strain could be distinguished from other genera, which suggests that strain Z-7014T represents a novel species of a new genus, for which the name Halonatronomonas betaini gen. nov., sp. nov. is proposed. The type strain is Z-7014T (=KCTC 25237T = VKM B-3506T). On the basis of phylogenomic data, it is also proposed to evolve two novel families Halarsenitibacteraceae fam. nov. and Halothermotrichaceae fam. nov. within the current order Halanaerobiales.  相似文献   

18.
Eleven Burkholderia cepacia-like isolates of human clinical and environmental origin were examined by a polyphasic approach including recA and 16S rRNA sequence analysis, multilocus sequence analysis (MLSA), DNA base content determination, fatty acid methyl ester analysis, and biochemical characterization. The results of this study demonstrate that these isolates represent a novel species within the B. cepacia complex (Bcc) for which we propose the name Burkholderia pseudomultivorans. The type strain is strain LMG 26883T (=CCUG 62895T). B. pseudomultivorans can be differentiated from other Bcc species by recA gene sequence analysis, MLSA, and several biochemical tests including growth at 42 °C, acidification of sucrose and adonitol, lysine decarboxylase and β-galactosidase activity, and esculin hydrolysis.  相似文献   

19.
A novel Gram-negative, spiral shaped, motile bacterium, designated strain NIO-S6T, was isolated from a sediment sample collected from Off-shore Rameswaram, Tamilnadu, India. Strain NIO-S6T was found to be positive for oxidase, DNase and lysine decarboxylase activities and negative for catalase, gelatinase, lipase, ornithine decarboxylase, nitrate reductase, aesculinase, amylase and urease activities. The fatty acids were determined to be dominated by C10:0 3OH, C16:0, C16:1 and C18:1. Strain NIO-S6T contains Q-8 as the major respiratory quinone. The DNA G+C content of the strain NIO-S6T was determined to be 49.5 ± 0.6 mol %. Phylogenetic analysis based on 16S rRNA gene sequence of strain NIO-S6T indicated Oceanospirillum linum and Oceanospirillum maris of the family Oceanospirillaceae (phylum Proteobacteria) are the closest related species with sequence similarities of 98.4 and 97.8 % respectively. Other members of the family showed sequence similarities <96.4 %. However, DNA–DNA hybridization with Oceanospirillum linum LMG 5214T and Oceanospirillum maris LMG 5213T showed a relatedness of 31.5 and 46.9 % with respect to strain NIO-S6T. Based on the phenotypic characteristics and on phylogenetic inference, strain NIO-S6T is proposed as a novel species of the genus Oceanospirillum as Oceanospirillum nioense sp. nov. and the type strain is NIO-S6T (=MTCC 11154T = KCTC 32008T).  相似文献   

20.
A Gram-negative bacterium designated UBF-P1T was isolated from an enrichment culture established in nutrient supplemented artificial sea water with pyrene as a carbon source, and inoculated with a marine fuel oil-degrading consortium obtained from a sand sample collected from the beach of Corrubedo (A Coruña, Galicia, Spain) after the Prestige accidental oil spill. Phylogenetic analysis based on the almost complete 16S rRNA gene sequence affiliated strain UBF-P1T with the family Cohaesibacteraceae, Cohaesibacter gelatinilyticus (DSM 18289T) being the closest relative species with 92% sequence similarity. Cells were irregular rods, motile, strictly aerobic, catalase and oxidase positive. Ubiquinone 10 was the major respiratory lipoquinone. The major polar lipids comprised diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), phosphatidylethanolamine (PE), phosphatidylmonomethylethanolamine (PME), and phosphatidylcholine (PC). The major fatty acids detected were C18:1ω7c, C19:0 cycloω8c, and C16:0. The G + C content of strain UBF-P1T was 63.9 mol%. The taxonomic comparison with the closest relative based on genotypic, phenotypic and chemotaxonomic characteristics supported that strain UBF-P1T could be classified as a novel genus and species, for which the name Breoghania corrubedonensis gen. nov., sp. nov. is proposed. The type strain of this new taxon is UBF-P1T (CECT 7622, LMG 25482, DSM 23382).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号