首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The Sahara, one of the most extreme environments on Earth, constitutes an unexplored source of alkalitolerant actinobacteria. In this work, we studied the diversity of alkalitolerant actinobacteria in various soils collected from different regions of the Algerian Sahara. A total of 29 alkalitolerant actinobacterial strains were isolated by using a complex agar medium. The diversity of these actinobacteria was evaluated using a polyphasic approach, which included morphological, chemotaxonomic, physiological (numerical taxonomy) and 16S rRNA gene analyses. The isolates which were assigned to the genus Nocardiopsis, shared relatively low 16S rRNA gene sequences similarities compared to closely related species suggesting that they belonged to putatively new species. All of the strains were tested for antibiotic activity against a broad range of microorganisms and screened for genes encoding polyketide synthases and non-ribosomal peptide synthetases and found to have the potential to produce secondary metabolites. Consequently, the study supports the view that extreme environments contain many novel actinobacteria, which represent an unexplored source for the discovery of biologically active compounds.  相似文献   

2.
Bacillus lehensis G1 is a Gram-positive, moderately alkalitolerant bacterium isolated from soil samples. B. lehensis produces cyclodextrin glucanotransferase (CGTase), an enzyme that has enabled the extensive use of cyclodextrin in foodstuffs, chemicals, and pharmaceuticals. The genome sequence of B. lehensis G1 consists of a single circular 3.99 Mb chromosome containing 4017 protein-coding sequences (CDSs), of which 2818 (70.15%) have assigned biological roles, 936 (23.30%) have conserved domains with unknown functions, and 263 (6.55%) have no match with any protein database. Bacillus clausii KSM-K16 was established as the closest relative to B. lehensis G1 based on gene content similarity and 16S rRNA phylogenetic analysis. A total of 2820 proteins from B. lehensis G1 were found to have orthologues in B. clausii, including sodium–proton antiporters, transport proteins, and proteins involved in ATP synthesis. A comparative analysis of these proteins and those in B. clausii and other alkaliphilic Bacillus species was carried out to investigate their contributions towards the alkalitolerance of the microorganism. The similarities and differences in alkalitolerance-related genes among alkalitolerant/alkaliphilic Bacillus species highlight the complex mechanism of pH homeostasis. The B. lehensis G1 genome was also mined for proteins and enzymes with potential viability for industrial and commercial purposes.  相似文献   

3.
Microbially induced calcium carbonate precipitation (MICP) is a phenomenon based on urease activity of halotolerant and alkaliphilic microorganisms that can be used for the soil bioclogging and biocementation in geotechnical engineering. However, enrichment cultures produced from indigenous soil bacteria cannot be used for large-scale MICP because their urease activity decreased with the rate about 5 % per one generation. To ensure stability of urease activity in biocement, halotolerant and alkaliphilic strains of urease-producing bacteria for soil biocementation were isolated from either sandy soil or high salinity water in different climate zones. The strain Bacillus sp. VUK5, isolated from soil in Ukraine (continental climate), was phylogenetically close in identity (99 % of 16S rRNA gene sequence) to the strain of Bacillus sp. VS1 isolated from beach sand in Singapore (tropical rainforest climate), as well as to the strains of Bacillus sp. isolated by other researchers in Ghent, Belgium (maritime temperate climate) and Yogyakarta, Indonesia (tropical rainforest climate). Both strains Bacillus sp. VS1 and VUK5 had maximum specific growth rate of 0.09/h and maximum urease activities of 6.2 and 8.8 mM of hydrolysed urea/min, respectively. The halotolerant and alkaliphilic strain of urease-producing bacteria isolated from water of the saline lake Dead Sea in Jordan was presented by Gram-positive cocci close to the species Staphylococcus succinus. However, the strains of this species could be hemolytic and toxigenic, therefore only representatives of alkaliphilic Bacillus sp. were used for the biocementation studies. Unconfined compressive strengths for dry biocemented sand samples after six batch treatments with strains VS1and VUK5 were 765 and 845 kPa, respectively. The content of precipitated calcium and the strength of dry biocemented sand at permeability equals to 1 % of initial value were 12.4 g Ca/kg of dry sand and 454 kPa, respectively, in case of biocementation by the strain VS1. So, halotolerant, alkaliphilic, urease-producing bacteria isolated from different climate zones have similar properties and can be used for biocementation of soil.  相似文献   

4.
Fungi able to survive under the extreme environment of soda lakes remain poorly studied. This paper presents data on the diversity and ecophysiology of filamentous fungi inhabiting one of the most alkaline habitats of the Earth: Lake Magadi, where pH values may exceed 11–12. The lake is home to a large number of prokaryotes, which form complex communities with algae and some other eukaryotes. In this study, 22 species of filamentous fungi isolated from soil samples collected on the coastline of Lake Magadi have been characterized using a systematic approach, which includes selective isolation, an analysis of morphological traits, molecular–genetic analysis, growth experiments to determine pH and temperature preferences, and an analysis of the dependence on NaCl concentrations. According to the results, alkaline soil from the Lake Magadi coastline is colonized by fungi with differing types of adaptation to high pH values. Alkaliphilic and alkalitolerant fungi belong to different families of Ascomycetes, mainly to Plectosphaerellaceae, as well as to Onygenaceae, Trihocomaceae, and Pleosporaceae. Sodiomyces tronii and S. magadii are new obligate alkaliphilic species within the earlier monotypic genus Sodiomyces (Plectosphaerellaceae). According to the growth experiments, obligate alkaliphilic isolates demonstrate thermo- and halotolerant properties. The problems of adaptation to the external pH, possible substrate preferences, and association of alkaliphilic fungi with other organisms are discussed.  相似文献   

5.
Permafrost wetlands are important methane emission sources and fragile ecosystems sensitive to climate change. Presently, there remains a lack of knowledge regarding bacterial communities, especially methanotrophs in vast areas of permafrost on the Tibetan Plateau in Northwest China and the Sanjiang Plain (SJ) in Northeast China. In this study, 16S rRNA-based quantitative PCR (qPCR) and 454 pyrosequencing were used to identify bacterial communities in soils sampled from a littoral wetland of Lake Namco on the Tibetan Plateau (NMC) and an alluvial wetland on the SJ. Additionally, methanotroph-specific primers targeting particulate methane monooxygenase subunit A gene (pmoA) were used for qPCR and pyrosequencing analysis of methanotrophic community structure in NMC soils. qPCR analysis revealed the presence of 1010 16S rRNA gene copies per gram of wet soil in both wetlands, with 108 pmoA copies per gram of wet soil in NMC. The two permafrost wetlands showed similar bacterial community compositions, which differed from those reported in other cold environments. Proteobacteria, Actinobacteria , and Chloroflexi were the most abundant phyla in both wetlands, whereas Acidobacteria was prevalent in the acidic wetland SJ only. These four phyla constituted more than 80 % of total bacterial community diversity in permafrost wetland soils, and Methylobacter of type I methanotrophs was overwhelmingly dominant in NMC soils. This study is the first major bacterial sequencing effort of permafrost in the NMC and SJ wetlands, which provides fundamental data for further studies of microbial function in extreme ecosystems under climate change scenarios.  相似文献   

6.
The bacterial community composition in the A horizon of a natural saline–alkaline soil located in Ararat Plain (Armenia) was studied using molecular and culture-based methods The sequence analysis of a 16S rRNA gene clone library and denaturing gradient gel electrophoresis (DGGE) profiles indicated dominance of Firmicutes populations. The majority of the sequences of the bacterial 16S rRNA gene library were close relatives of representatives belonging to the genera Halobacillus (41.2%), Piscibacillus (23.5%), Bacillus (23.5%) and Virgibacillus (11.8%). Eight novel moderately halophilic bacilli isolates were successfully obtained from the enriched cultures of the saline–alkaline soil samples. 16S rRNA gene sequence analyses of isolates revealed their affiliation (97.7–99.7% similarity) to representatives of the genera Bacillus, Piscibacillus and Halobacillus. All isolates were able to tolerate high concentrations of NaCl and highly alkaline conditions. This is the first study combining cultivation-independent and -dependent approaches to reveal the bacterial diversity of the saline–alkaline soils of Ararat Plain and it suggested an important role of bacilli as key microbes in biogeochemical cycles of these environments.  相似文献   

7.
《Aquatic Botany》2007,86(3):243-252
Reeds may play important role in the self-purification of aquatic habitats due to the filtration capacity and their periphyton communities developing on the underwater plant surfaces. The efficiency of this process and the transformation of organic substances can be influenced by the species composition and activity of microbial communities, including Bacillus and related species. For cultivation based bacteriological examinations reed periphyton samples were collected from 30 cm beneath the water surface of Lake Velencei and the Soroksár Danube branch (Hungary). After a primary selection 40 Bacillus and related strains were investigated by traditional morphological, biochemical tests, API 20E, API 50CHB and BIOLOG GP2 systems, and identified by 16S rDNA sequence comparison. The isolated strains were characterized by wide biochemical activity spectrum (i.e., the metabolism of carbohydrates and biopolymers) as well as widespread ecological tolerance based on their NaCl and pH range investigations. Species with facultative alkaliphilic features (Marinibacillus marinus, Bacillus firmus) were detected only from the reed biofilm of Lake Velencei, while alkalitolerant Bacillus and related species from both sampling sites. 22 endospore-forming strains were identified as members of species B. cereus, B. firmus, B. flexus, B. licheniformis, B. megaterium, B. muralis, B. pumilus, B. subtilis and Marinibacillus marinus. Only one species, with 95–96% sequence similarities to B. pumilus was found to be common among the strains from Lake Velencei and the Soroksár Danube branch. Altogether, 18 strains could not be identified as known species of Bacillus, Brevibacillus and Paenibacillus, hence they may represent new bacterial taxa.  相似文献   

8.
Uncultured predominant Bacillus ribotype DA001 in Dutch Drentse A grassland soils, as revealed by its 16S rRNA sequence, was detected in soil by fluorescent whole-cell in situ hybridization. A prominent rod-shaped cell type was identified in bacterial suspensions prepared from soil by a multiple 16S rRNA probing approach.  相似文献   

9.
Anthropogenic extreme environments are among the most interesting sites for the bioprospection of extremophiles since the selection pressures may favor the presence of microorganisms of great interest for taxonomical and astrobiological research as well as for bioremediation technologies and industrial applications. In this work, T-RFLP and 16S rRNA gene library analyses were carried out to describe the autochthonous bacterial populations from an industrial waste characterized as hyper-alkaline (pH between 9 and 14), hyper-saline (around 100 PSU) and highly contaminated with metals, mainly chromium (from 5 to 18 g kg?1) and iron (from 2 to 108 g kg?1). Due to matrix interference with DNA extraction, a protocol optimization step was required in order to carry out molecular analyses. The most abundant populations, as evaluated by both T-RFLP and 16S rRNA gene library analyses, were affiliated to Bacillus and Lysobacter genera. Lysobacter related sequences were present in the three samples: solid residue and lixiviate sediments from both dry and wet seasons. Sequences related to Thiobacillus were also found; although strains affiliated to this genus are known to have tolerance to metals, they have not previously been detected in alkaline environments. Together with Bacillus (already described as a metal reducer), such organisms could be of use in bioremediation technologies for reducing chromium, as well as for the prospection of enzymes of biotechnological interest.  相似文献   

10.
Bacterial Community Diversity in the Brazilian Atlantic Forest Soils   总被引:1,自引:0,他引:1  
The aim of this study was to characterize the bacterial community diversity of the Brazilian Atlantic forest soil by means of both cultivation and 16S rRNA clone libraries. A collection of 86 representative isolates, obtained from six samples of Atlantic forest soils from the National Park of Serra dos Órgãos (PARNASO), belonged to the genera Arthrobacter, Bacillus, Burkholderia, Leifsonia, Paenibacillus, Pseudomonas, Ralstonia, Serratia, and Streptomyces according to the 16S rRNA sequences. Representative isolates from the different genera degraded cellulose and lignin. The culture-independent analysis based on 894 partial 16S rRNA gene sequences revealed that the most frequently retrieved groups belonged to the phyla Acidobacteria (29–54%), Proteobacteria (16–38%), and Verrucomicrobia (0.6–14%). The majority of the sequences (82.6%) were unidentified singletons and doubletons, indicating a high diversity of rare unique sequences. Chao1 estimator disclosed a high number of phyla (41–152) and species (263–446). This is the first survey on the Atlantic Forest soils using a combination of cultivation and culture-independent approaches. We conclude that the Brazilian Atlantic Forest soil represents a vast source of novel bacteria.  相似文献   

11.
As part of an ongoing effort to catalog spore-forming bacterial populations in environments conducive to interplanetary transfer by natural impacts or by human spaceflight activities, spores of Bacillus spp. were isolated and characterized from the interior of near-subsurface granite rock collected from the Santa Catalina Mountains, AZ. Granite was found to contain ~500 cultivable Bacillus spores and ~104 total cultivable bacteria per gram. Many of the Bacillus isolates produced a previously unreported diffusible blue fluorescent compound. Two strains of eight tested exhibited increased spore UV resistance relative to a standard Bacillus subtilis UV biodosimetry strain. Fifty-six isolates were identified by repetitive extragenic palindromic PCR (rep-PCR) and 16S rRNA gene analysis as most closely related to B. megaterium (15 isolates), B. simplex (23 isolates), B. drentensis (6 isolates), B. niacini (7 isolates), and, likely, a new species related to B. barbaricus (5 isolates). Granite isolates were very closely related to a limited number of Bacillus spp. previously found to inhabit (i) globally distributed endolithic sites such as biodeteriorated murals, stone tombs, underground caverns, and rock concretions and (ii) extreme environments such as Antarctic soils, deep sea floor sediments, and spacecraft assembly facilities. Thus, it appears that the occurrence of Bacillus spp. in endolithic or extreme environments is not accidental but that these environments create unique niches excluding most Bacillus spp. but to which a limited number of Bacillus spp. are specifically adapted.  相似文献   

12.
A slightly halophilic, extremely halotolerant, alkaliphilic, and facultatively anaerobic rod bacterium was isolated from a decomposing marine alga collected in Okinawa, Japan. The isolate, designated O15-7(T), was Gram-positive, endospore-forming, catalase-positive, menaquinone-7-possessing bacterium that is motile by peritrichous flagella. The isolate was an inhabitant of marine environments; the optimum NaCl concentration for growth was 0.75-3.0% (w/v) with a range of 0-22.0%, and the optimum pH was 7.0-8.5 with a range of 5.5-9.5. Catalase was produced in aerobic cultivation but not in anaerobic cultivation. Carbohydrate, sugar alcohol or a related carbon compound was required for growth. In aerobic cultivation, the isolate produced pyruvate, acetate and CO(2) from glucose, and in anaerobic cultivation, it produced lactate, formate, acetate and ethanol with a molar ratio of approximately 2 : 1 : 1 for the last three products. No gas was produced anaerobically. Lactate yield per consumed glucose was markedly affected by the pH of the fermentation medium: 51% at pH 6.5 and 8% at pH 9.0. The cell-wall peptidoglycan contained meso-diaminopimelic acid. Phylogenetically, the isolate occupied an independent lineage within the group composed of the halophilic/halotolerant/alkaliphilic and/or alkalitolerant species in Bacillus rRNA group 1 with the highest 16S rRNA gene sequence similarity of 95.2% to the genus Gracilibacillus. For this isolate, Paraliobacillus ryukyuensis gen. nov., sp. nov. was proposed. The type strain, O15-7(T) (G+C535.6 mol%), has been deposited in the DSMZ, IAM, NBRC, and NRIC (DSM 15140(T)=IAM 15001(T)=NBRC 10001(T)=NRIC 0520(T)).  相似文献   

13.
The present study was conducted to identify and characterize the thermophilic bacteria isolated from various hot springs in Turkey by using phenotypic and genotypic methods including fatty acid methyl ester and rep-PCR profilings, and 16S rRNA sequencing. The data of fatty acid analysis showed the presence of 17 different fatty acids in 15 bacterial strains examined in this study. Six fatty acids, 15:0 iso, 15:0 anteiso, 16:0, 16:0 iso, 17:0 iso, and 17:0 anteiso, were present in all strains. The bacterial strains were classified into three phenotypic groups based on fatty acid profiles which were confirmed by genotypic methods such as 16S rRNA sequence analysis and rep-PCR genomic fingerprint profiles. After evaluating several primer sets targeting the repetitive DNA elements of REP, ERIC, BOX and (GTG)5, the (GTG)5 and BOXA1R primers were found to be the most reliable technique for identification and taxonomic characterization of thermophilic bacteria in the genera of Geobacillus, Anoxybacillus and Bacillus spp. Therefore, rep-PCR fingerprinting using the (GTG)5 and BOXA1R primers can be considered as a promising genotypic tool for the identification and characterization of thermophilic bacteria from species to strain level.  相似文献   

14.
Within the last several years, molecular techniques have uncovered numerous 16S rRNA gene (rDNA) sequences which represent a unique and globally distributed lineage of the kingdom Crenarchaeota that is phylogenetically distinct from currently characterized crenarchaeotal species. rDNA sequences of members of this novel crenarchaeotal group have been recovered from low- to moderate-temperature environments (−1.5 to 32°C), in contrast to the high-temperature environments (temperature, >80°C) required for growth of the currently recognized crenarchaeotal species. We determined the diversity and abundance of the nonthermophilic members of the Crenarchaeota in soil samples taken from cultivated and uncultivated fields located at the Kellogg Biological Station’s Long-Term Ecological Research site (Hickory Corners, Mich.). Clones were generated from 16S rDNA that was amplified by using broad-specificity archaeal PCR primers. Twelve crenarchaeotal sequences were identified, and the phylogenetic relationships between these sequences and previously described crenarchaeotal 16S rDNA sequences were determined. Phylogenetic analyses included nonthermophilic crenarchaeotal sequences found in public databases and revealed that the nonthermophilic Crenarchaeota group is composed of at least four distinct phylogenetic clusters. A 16S rRNA-targeted oligonucleotide probe specific for all known nonthermophilic crenarchaeotal sequences was designed and used to determine their abundance in soil samples. The nonthermophilic Crenarchaeota accounted for as much as 1.42% ± 0.42% of the 16S rRNA in the soils analyzed.  相似文献   

15.
Microflora is an integral part of soil ecosystem, in which bacteria are the largest group of soil microbes. This is a pioneer study for establishing baseline data on the diversity of soil bacteria among different regions in Kuwait. The aim is to understand biodiversity in different settings, how bacteria adapt to different niches in the environment as well as in different hosts. The identification of bacterial 16S rRNA molecules from environmental soil samples was investigated. Genomic Deoxyribonucleic acid DNA was extracted from 25 soil samples derived from five different test regions in the Umm Al-Namil Island, Kuwait. After amplification of bacterial 16S rRNA molecules by the Polymerase chain reaction PCR, the products were characterized and complex band patterns were obtained, indicating high bacterial diversity. A sample of the 16 s rRNA amplicons were sequenced in order to identify the species. The spatial distribution of bacterial taxa in the different soil samples was homogeneous, suggesting a stable and widespread community. Forty-nine isolates from Umm Al-Namil island were identified by comparative analysis of partial 16S rRNA gene sequences. Phylogenetic analysis was carried out in order to study the connection between the isolates to identify species. A large proportion of these isolates represent correspond to known or novel species within the Pseudomonus and Bacillus genera, which are common soil bacteria. Our results provided a reference for future studies to facilitate bacterial identification and ecological research in Kuwait.  相似文献   

16.
The impact of soil management practices on ammonia oxidizer diversity and spatial heterogeneity was determined in improved (addition of N fertilizer), unimproved (no additions), and semi-improved (intermediate management) grassland pastures at the Sourhope Research Station in Scotland. Ammonia oxidizer diversity within each grassland soil was assessed by PCR amplification of microbial community DNA with both ammonia oxidizer-specific, 16S rRNA gene (rDNA) and functional, amoA, gene primers. PCR products were analysed by denaturing gradient gel electrophoresis, phylogenetic analysis of partial 16S rDNA and amoA sequences, and hybridization with ammonia oxidizer-specific oligonucleotide probes. Ammonia oxidizer populations in unimproved soils were more diverse than those in improved soils and were dominated by organisms representing Nitrosospira clusters 1 and 3 and Nitrosomonas cluster 7 (closely related phylogenetically to Nitrosomonas europaea). Improved soils were only dominated by Nitrosospira cluster 3 and Nitrosomonas cluster 7. These differences were also reflected in functional gene (amoA) diversity, with amoA gene sequences of both Nitrosomonas and Nitrosospira species detected. Replicate 0.5-g samples of unimproved soil demonstrated significant spatial heterogeneity in 16S rDNA-defined ammonia oxidizer clusters, which was reflected in heterogeneity in ammonium concentration and pH. Heterogeneity in soil characteristics and ammonia oxidizer diversity were lower in improved soils. The results therefore demonstrate significant effects of soil management on diversity and heterogeneity of ammonia oxidizer populations that are related to similar changes in relevant soil characteristics.  相似文献   

17.
Approximately 100 million tons of anhydrosugars, such as levoglucosan and cellobiosan, are produced through biomass burning every year. These sugars are also produced through fast pyrolysis, the controlled thermal depolymerization of biomass. While the microbial pathways associated with levoglucosan utilization have been characterized, there is little known about cellobiosan utilization. Here we describe the isolation and characterization of six cellobiosan-utilizing microbes from soil samples. Each of these organisms is capable of using both cellobiosan and levoglucosan as sole carbon source, though both minimal and rich media cellobiosan supported significantly higher biomass production than levoglucosan. Ribosomal sequencing was used to identify the closest reported match for these organisms: Sphingobacterium multivorum, Acinetobacter oleivorans JC3-1, Enterobacter sp SJZ-6, and Microbacterium sps FXJ8.207 and 203 and a fungal species Cryptococcus sp. The commercially-acquired Enterobacter cloacae DSM 16657 showed growth on levoglucosan and cellobiosan, supporting our isolate identification. Analysis of an existing database of 16S rRNA amplicons from Iowa soil samples confirmed the representation of our five bacterial isolates and four previously-reported levoglucosan-utilizing bacterial isolates in other soil samples and provided insight into their population distributions. Phylogenetic analysis of the 16S rRNA and 18S rRNA of strains previously reported to utilize levoglucosan and our newfound isolates showed that the organisms isolated in this study are distinct from previously described anhydrosugar-utilizing microbial species.  相似文献   

18.
The abundance of genes related to the nitrogen biogeochemical cycle and the microbial community in forest soils (bacteria, archaea, fungi) were quantitatively analyzed via real-time PCR using 11 sets of specific primers amplifying nifH, bacterial amoA, archaeal amoA, narG, nirS, nirK, norB, nosZ, bacterial 16S rRNA gene, archaeal 16S rRNA gene, and the ITS sequence of fungi. Soils were sampled from Bukhan Mountain from September of 2010 to July of 2011 (7 times). Bacteria were the predominant microbial community in all samples. However, the abundance of archaeal amoA was greater than bacterial amoA throughout the year. The abundances of nifH, nirS, nirK, and norB genes changed in a similar pattern, while narG and nosZ appeared in sensitive to the environmental changes. Clone libraries of bacterial 16S rRNA genes were constructed from summer and winter soil samples and these revealed that Acidobacteria was the most predominant phylum in acidic forest soil environments in both samples. Although a specific correlation of environmental factor and gene abundance was not verified by principle component analysis, our data suggested that the combination of biological, physical, and chemical characteristics of forest soils created distinct conditions favoring the nitrogen biogeochemical cycle and that bacterial communities in undisturbed acidic forest soils were quite stable during seasonal change.  相似文献   

19.
Comparative 16S rRNA sequence analysis has demonstrated that the genusBacillus consists of at least five phyletic lines. rRNA group 3 bacilli of Ash, Farrow, Wallbanks and Collins (1991) comprisingBacillus polymyxa and close relatives is phylogenetically so removed fromBacillus subtilis, the type species of the genus and other aerobic, endospore-forming bacilli that they warrant reclassification in a new genusPaenibacillus. The genusPaenibacillus can be readily distinguished from otherBacillus groups using a battery of phenotypic characters and a highly specific gene probe based on 16S rRNA.  相似文献   

20.
Degradative strains of fast-growing Mycobacterium spp. are commonly isolated from polycyclic aromatic hydrocarbon (PAH)-contaminated soils. Little is known, however, about the ecology and diversity of indigenous populations of these fast-growing mycobacteria in contaminated environments. In the present study 16S rRNA genes were PCR amplified using Mycobacterium-specific primers and separated by temperature gradient gel electrophoresis (TGGE), and prominent bands were sequenced to compare the indigenous Mycobacterium community structures in four pairs of soil samples taken from heavily contaminated and less contaminated areas at four different sites. Overall, TGGE profiles obtained from heavily contaminated soils were less diverse than those from less contaminated soils. This decrease in diversity may be due to toxicity, since significantly fewer Mycobacterium phylotypes were detected in soils determined to be toxic by the Microtox assay than in nontoxic soils. Sequencing and phylogenetic analysis of prominent TGGE bands indicated that novel strains dominated the soil Mycobacterium community. Mineralization studies using [14C]pyrene added to four petroleum-contaminated soils, with and without the addition of the known pyrene degrader Mycobacterium sp. strain RJGII-135, indicated that inoculation increased the level of degradation in three of the four soils. Mineralization results obtained from a sterilized soil inoculated with strain RJGII-135 suggested that competition with indigenous microorganisms may be a significant factor affecting biodegradation of PAHs. Pyrene-amended soils, with and without inoculation with strain RJGII-135, experienced both increases and decreases in the population sizes of the inoculated strain and indigenous Mycobacterium populations during incubation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号