首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The ammonium-oxidizing microbial community was investigated in a granular sludge anaerobic ammonium-oxidizing (anammox) reactor that was operated for about 1 year with high anaerobic ammonium oxidation activity (up to 0.8 kg NH(4)(+)-N m(-3) day(-1)). A Planctomycetales-specific 16S rRNA gene library was constructed to analyse the diversity of the anaerobic ammonium-oxidizing bacteria (AnAOB). Most of the specifically amplified sequences (15/16) were similar to each other (> 99%) but were distantly related to all of the previously recognized sequences (< 94%), with the exception of an unclassified anammox-related clone, KSU-1 (98%). An ammonia monooxygenase (amoA) gene library was also analysed to investigate the diversity of 'aerobic' ammonium-oxidizing bacteria (AAOB) from the beta-Proteobacteria. Most of the amoA gene fragments (53/55) clustered in the Nitrosomonas europaea-Nitrosococcus mobilis group which has been reported to prevail under oxygen-limiting conditions. The quantitative results from real-time polymerase chain reaction (PCR) amplification showed that the dominant AnAOB comprised approximately 50% of the total bacterial 16S rRNA genes in the reactor, whereas the AAOB of beta-Proteobacteria represented only about 3%. A large fragment (4008 bp) of the rRNA gene cluster of the dominant AnAOB (AS-1) in this reactor sludge was sequenced and compared with sequences of other Planctomycetales including four anammox-related candidate genera. The partial sequence of hydrazine-oxidizing enzyme (hzo) of dominant AnAOB was also identified using new designed primers. Based on this analysis, we propose to tentatively name this new AnAOB Candidatus'Jettenia asiatica'.  相似文献   

2.
In this study, a lab-scale rotating biological contactor (RBC) treating a synthetic NH4+ wastewater devoid of organic carbon and showing high N losses was examined for several important physiological and microbial characteristics. The RBC biofilm removed 89% ± 5% of the influent N at the highest surface load of approximately 8.3 g of N m−2 day−1, with N2 as the main end product. In batch tests, the RBC biomass showed good aerobic and anoxic ammonium oxidation (147.8 ± 7.6 and 76.5 ± 6.4 mg of NH4+-N g of volatile suspended solids [VSS]−1 day−1, respectively) and almost no nitrite oxidation (< 1 mg of N g of VSS−1 day−1). The diversity of aerobic ammonia-oxidizing bacteria (AAOB) and planctomycetes in the biofilm was characterized by cloning and sequencing of PCR-amplified partial 16S rRNA genes. Phylogenetic analysis of the clones revealed that the AAOB community was fairly homogeneous and was dominated by Nitrosomonas-like species. Close relatives of the known anaerobic ammonia-oxidizing bacterium (AnAOB) Kuenenia stuttgartiensis dominated the planctomycete community and were most probably responsible for anoxic ammonium oxidation in the RBC. Use of a less specific planctomycete primer set, not amplifying the AnAOB, showed a high diversity among other planctomycetes, with representatives of all known groups present in the biofilm. The spatial organization of the biofilm was characterized using fluorescence in situ hybridization (FISH) with confocal scanning laser microscopy (CSLM). The latter showed that AAOB occurred side by side with putative AnAOB (cells hybridizing with probe PLA46 and AMX820/KST1275) throughout the biofilm, while other planctomycetes hybridizing with probe PLA886 (not detecting the known AnAOB) were present as very conspicuous spherical structures. This study reveals that long-term operation of a lab-scale RBC on a synthetic NH4+ wastewater devoid of organic carbon yields a stable biofilm in which two bacterial groups, thought to be jointly responsible for the high autotrophic N removal, occur side by side throughout the biofilm.  相似文献   

3.
Single-stage nitritation–anammox combines the growth of aerobic ammonium-oxidizing bacteria (AOB) and anaerobic ammonium oxidizing bacteria (AnAOB) in one reactor. The necessary compromise of their milieu conditions often leads to the growth of nitrite-oxidizing bacteria (NOB). For this study, a sequencing batch reactor (SBR) for nitritation–anammox was operated for 180 days with sewage sludge reject water (removal capacity, 0.4 kg?N?m?3?day?1). The growth of NOB was favored by enhanced oxygen supply rather than extended aerobic phases. Suspended-type biomass from this SBR was taken regularly and sieved into three size fractions (all of them <1,000 μm). Batch experiments as well as fluorescence in situ hybridization were performed to study the distribution and activity of AnAOB, AOB, and NOB within those size fractions. Both the measured conversion rates and detected abundances decreased with increasing size fraction. The highest anammox conversion rates (15 g NH4 +–N per kilogram VSS per hour) and the highest abundances of Brocadia fulgida were found in the medium size fraction (100–315 μm). The batch experiments proved to be accurate tools for the monitoring of multiple processes in the reactor. The results were representative for reactor performance during the 6 months of reactor operation.  相似文献   

4.

PCR primers targeting genes encoding the two proteins of anammox bacteria, hydrazine synthase and cytochrome c biogenesis protein, were designed and tested in this study. Three different ecotypes of samples, namely ocean sediments, coastal wetland sediments, and wastewater treatment plant (WWTP) samples, were used to assess the primer efficiency and the community structures of anammox bacteria retrieved by 16S ribosomal RNA (rRNA) and the functional genes. Abundances of hzsB gene of anammox bacteria in South China Sea (SCS) samples were significantly correlated with 16S rRNA gene by qPCR method. And hzsB and hzsC gene primer pair hzsB364f-hzsB640r and hzsC745f-hzsC862r in combination with anammox bacterial 16S rRNA gene primers were recommended for quantifying anammox bacteria. Congruent with 16S rRNA gene-based community study, functional gene hzsB could also delineate the coastal-ocean distributing pattern, and seawater depth was positively associated with the diversity and abundance of anammox bacteria from shallow- to deep-sea. Both hzsC and ccsA genes could differentiate marine samples between deep and shallow groups of the Scalindua sp. clades. As for WWTP samples, non-Scalindua anammox bacteria reflected by hzsB, hzsC, ccsA, and ccsB gene-based libraries showed a similar distribution pattern with that by 16S rRNA gene. NH4 + and NH4 +/Σ(NO3 + NO2 ) positively correlated with anammox bacteria gene diversity, but organic matter contents correlated negatively with anammox bacteria gene diversity in SCS. Salinity was positively associated with diversity indices of hzsC and ccsB gene-harboring anammox bacteria communities and could potentially differentiate the distribution patterns between shallow- and deep-sea sediment samples. SCS surface sediments harbored considerably diverse community of Scalindua. A new Mai Po clade representing coastal estuary wetland anammox bacteria group based on 16S rRNA gene phylogeny is proposed. Existence of anammox bacteria within wider coverage of genera in Mai Po wetland indicates this unique niche is very complex, and species of anammox bacteria are niche-specific with different physiological properties towards substrates competing and chemical tolerance capability.

  相似文献   

5.
Published polymerase chain reaction primer sets for detecting the genes encoding 16S rRNA gene and hydrazine oxidoreductase (hzo) in anammox bacteria were compared by using the same coastal marine sediment samples. While four previously reported primer sets developed to detect the 16S rRNA gene showed varying specificities between 12% and 77%, an optimized primer combination resulted in up to 98% specificity, and the recovered anammox 16S rRNA gene sequences were >95% sequence identical to published sequences from anammox bacteria in the Candidatus “Scalindua” group. Furthermore, four primer sets used in detecting the hzo gene of anammox bacteria were highly specific (up to 92%) and efficient, and the newly designed primer set in this study amplified longer hzo gene segments suitable for phylogenetic analysis. The optimized primer set for the 16S rRNA gene and the newly designed primer set for the hzo gene were successfully applied to identify anammox bacteria from marine sediments of aquaculture zone, coastal wetland, and deep ocean where the three ecosystems form a gradient of anthropogenic impact. Results indicated a broad distribution of anammox bacteria with high niche-specific community structure within each marine ecosystem.  相似文献   

6.
A newly reported 16S rRNA gene-based PCR primer set was successfully applied to detect anammox bacteria from four ecosystem samples, including sediments from marine, reservoir, mangrove wetland, and wastewater treatment plant sludge. This primer set showed ability to amplify a much wider coverage of all reported anammox bacterial genera. Based on the phylogenetic analyses of 16S rRNA gene of anammox bacteria, two new clusters were obtained, one closely related to Candidatus Scalindua, and the other in a previously reported novel genus related to Candidatus Brocadia. In the Scalindua cluster, four new subclusters were also found in this study, mainly by sequences of the South China Sea sediments, presenting a higher diversity of Candidatus Scalindua in marine environment. Community structure analyses indicated that samples were grouped together based on ecosystems, showing a niche-specific distribution. Phylogenetic analyses of anammox bacteria in samples from the South China Sea also indicated distinguished community structure along the depth. Pearson correlation analysis showed that the amount of anammox bacteria in the detected samples was positively correlated with the nitrate concentration. According to Canonical Correspondence Analysis, pH, temperature, nitrite, and nitrate concentration strongly affected the diversity and distribution of anammox bacteria in South China Sea sediments. Results collectively indicated a promising application of this new primer set and higher anammox bacteria diversity in the marine environment.  相似文献   

7.
厌氧氨氧化(anaerobic ammonium oxidation, anammox)是微生物学、地质学和环境学领域的重要反应,厌氧氨氧化菌(anaerobic ammonium-oxidizing bacteria, AnAOB)是厌氧氨氧化的驱动器,探明AnAOB的生物学性状对厌氧氨氧化的应用具有重要意义。火山口结构是AnAOB的标志性微观结构,也是AnAOB的重要识别特征。由于迄今没有获得AnAOB纯培养物,相关研究进展缓慢。本文对AnAOB及其所归属的浮霉状菌的火山口结构研究进展作了综述,探讨了火山口结构的形态特征、生理功能和生态意义,得出以下结论:(1) AnAOB的火山口结构均匀分布在细胞表面,其直径约5 nm;(2) AnAOB的火山口结构推测向外可连通细胞外膜和内膜,向内可与厌氧氨氧化体膜相连,对于物质转运及转化具有重要意义;(3)火山口结构具有遗传稳定性,其形成可能与鞭毛脱落相关;(4) AnAOB的火山口结构可能通过促进细胞物质交流、信息通讯等在维持其生态位稳定方面起作用。  相似文献   

8.
Anaerobic ammonium-oxidizing (anammox) process plays an important role in the nitrogen cycle of the worldwide anoxic and mesophilic habitats. Recently, the existence and activity of anammox bacteria have been detected in some thermophilic environments, but their existence in the geothermal subterranean oil reservoirs is still not reported. This study investigated the abundance, distribution and functional diversity of anammox bacteria in nine out of 17 high-temperature oil reservoirs by molecular ecology analysis. High concentration (5.31–39.2 mg l?1) of ammonium was detected in the production water from these oilfields with temperatures between 55°C and 75°C. Both 16S rRNA and hzo molecular biomarkers indicated the occurrence of anammox bacteria in nine out of 17 samples. Most of 16S rRNA gene phylotypes are closely related to the known anammox bacterial genera Candidatus Brocadia, Candidatus Kuenenia, Candidatus Scalindua, and Candidatus Jettenia, while hzo gene phylotypes are closely related to the genera Candidatus Anammoxoglobus, Candidatus Kuenenia, Candidatus Scalindua, and Candidatus Jettenia. The total bacterial and anammox bacterial densities were 6.4?±?0.5?×?103 to 2.0?±?0.18?×?106 cells ml?1 and 6.6?±?0.51?×?102 to 4.9?±?0.36?×?104 cell ml?1, respectively. The cluster I of 16S rRNA gene sequences showed distant identity (<92%) to the known Candidatus Scalindua species, inferring this cluster of anammox bacteria to be a new species, and a tentative name Candidatus “Scalindua sinooilfield” was proposed. The results extended the existence of anammox bacteria to the high-temperature oil reservoirs.  相似文献   

9.
The discovery of bacteria capable of anaerobic ammonia oxidation (anammox) has generated interest in understanding the activity, diversity, and distribution of these bacteria in the environment. In this study anammox activity in sediment samples obtained from the Inner Harbor of Baltimore, Md., was detected by 15N tracer assays. Anammox-specific oligonucleotide primer sets were used to screen a Planctomycetales-specific 16S rRNA gene library generated from sediment DNA preparations, and four new anammox bacterial sequences were identified. Three of these sequences form a cohesive new branch of the anammox group, and the fourth sequence branches separately from this group. Denaturing gradient gel electrophoresis analysis of sediment incubated with anammox-specific media confirmed the presence of the four anammox-related 16S rRNA gene sequences. Evidence for the presence of anammox bacteria in Inner Harbor sediment was also obtained by using an anammox-specific probe in fluorescence in situ hybridization studies. To our knowledge, this is the first report of anammox activity and related bacterial 16S rRNA gene sequences from the Chesapeake Bay basin area, and the results suggest that this pathway plays an important role in the nitrogen cycle of this estuarine environment. Furthermore, the presence of these bacteria and their activity in sediment strengthen the contention that anammox-related Plactomycetales are globally distributed.  相似文献   

10.
A swim-bed reactor for partial nitritation with polymeric coagulant treatment and an UASB reactor for anammox were applied to the treatment of livestock manure digester liquor. The partial nitritation was maintained for 32 days under a 1.6 kg N/m3/d nitrogen loading rate (NLR) with an average conversion efficiency of 51%, and achieved 1.65 kg N/m3/d of the maximum nitrite production rate under 2.58 kg N/m3/d of NLR. Although 200 mg/L of TOC remained in the effluent of the partial nitritation reactor, the anammox nitrogen removal rate was not significantly decreased and a relatively high rate of 2.0 kg N/m3/d was obtained under a NLR of 2.2 kg N/m3/d. 16S rRNA gene analysis showed that Nitrosomonas and KSU-1 were dominant in the partial nitritation and anammox reactor, respectively. The results of this study demonstrated that the partial nitritation-anammox process has possibility of applying to the nitrogen removal of livestock manure digester liquor.  相似文献   

11.
Anammox bacteria belonging to the phylum Planctomycetes are responsible for N removal through NH4+ oxidation coupled with NO2 reduction. Microbial diversity and ecology of anammox bacteria have not yet been fully revealed due to limitations of 16S rRNA analysis. The hydrazine oxidase gene in cluster 1 (hereafter hzoA/hzoB) was suggested as a proper genetic marker due to its high expression and ubiquitous presence in anammox bacteria. We conducted a comparative analysis of 16S rRNA and hzoA/hzoB genes to reveal anammox bacterial diversity and distribution in various aquatic environments. Phylogenetic analyses of 16S rRNA and hzoA/hzoB genes showed the dominance of Scalindua organisms in marine ecosystems, but there was no congruence of 16S rRNA and hzoA/hzoB gene phylogenies among the freshwater anammox bacteria associated with Brocadia sp., Jettenia sp., and Anammoxoglobus sp. Higher diversity of anammox bacteria was revealed based on hzoA/hzoB genes than 16S rRNA genes in the examined environments. Multiple regression analysis showed that salinity had significant influence on differential distribution and diversity of anammox bacteria in different ecosystems. Thus, molecular detection and resulting phylogeny of the hzoA/hzoB gene generated a better understanding of anammox bacterial diversity and their ecological distribution in various aquatic ecosystems.  相似文献   

12.
Anammox bacteria are chemoautotrophic bacteria that oxidize ammonium with nitrite as the electron acceptor and with CO2 as the main carbon source. The effects of inorganic carbon (IC) limitation on anammox bacteria were investigated using continuous feeding tests. In this study, a gel carrier with entrapped anammox sludge was used. It was clearly shown that the anammox activity deteriorated with a decrease in the influent IC concentration. The relationship between the influent IC concentration and the anammox activity was analyzed using Michaelis-Menten kinetics, and the apparent Km was determined to be 1.2 mg-C/L. The activity could be recovered by adding IC to the influent. The consumption ratio of IC to ammonium was not constant and mainly depended on the influent ratio of the IC to ammonium concentrations (inf.IC/inf.NH4-N). The results indicated that an inf.IC/inf.NH4-N ratio of 0.2 in the anammox reactor was ideal for the anammox process using gel cubes.  相似文献   

13.
We investigated autotrophic anaerobic ammonium-oxidizing (anammox) biofilms for their spatial organization, community composition, and in situ activities by using molecular biological techniques combined with microelectrodes. Results of phylogenetic analysis and fluorescence in situ hybridization (FISH) revealed that “Brocadia”-like anammox bacteria that hybridized with the Amx820 probe dominated, with 60 to 92% of total bacteria in the upper part (<1,000 μm) of the biofilm, where high anammox activity was mainly detected with microelectrodes. The relative abundance of anammox bacteria decreased along the flow direction of the reactor. FISH results also indicated that Nitrosomonas-, Nitrosospira-, and Nitrosococcus-like aerobic ammonia-oxidizing bacteria (AOB) and Nitrospira-like nitrite-oxidizing bacteria (NOB) coexisted with anammox bacteria and accounted for 13 to 21% of total bacteria in the biofilms. Microelectrode measurements at three points along the anammox reactor revealed that the NH4+ and NO2 consumption rates decreased from 0.68 and 0.64 μmol cm−2 h−1 at P2 (the second port, 170 mm from the inlet port) to 0.30 and 0.35 μmol cm−2 h−1 at P3 (the third port, 205 mm from the inlet port), respectively. No anammox activity was detected at P4 (the fourth port, 240 mm from the inlet port), even though sufficient amounts of NH4+ and NO2 and a high abundance of anammox bacteria were still present. This result could be explained by the inhibitory effect of organic compounds derived from biomass decay and/or produced by anammox and coexisting bacteria in the upper parts of the biofilm and in the upstream part of the reactor. The anammox activities in the biofilm determined by microelectrodes reflected the overall reactor performance. The several groups of aerobic AOB lineages, Nitrospira-like NOB, and Betaproteobacteria coexisting in the anammox biofilm might consume a trace amount of O2 or organic compounds, which consequently established suitable microenvironments for anammox bacteria.  相似文献   

14.
Previously available primer sets for detecting anaerobic ammonium-oxidizing (anammox) bacteria are inefficient, resulting in a very limited database of such sequences, which limits knowledge of their ecology. To overcome this limitation, we designed a new primer set that was 100% specific in the recovery of ~700-bp 16S rRNA gene sequences with >96% homology to the “Candidatus Scalindua” group of anammox bacteria, and we detected this group at all sites studied, including a variety of freshwater and marine sediments and permafrost soil. A second primer set was designed that exhibited greater efficiency than previous primers in recovering full-length (1,380-bp) sequences related to “Ca. Scalindua,” “Candidatus Brocadia,” and “Candidatus Kuenenia.” This study provides evidence for the widespread distribution of anammox bacteria in that it detected closely related anammox 16S rRNA gene sequences in 11 geographically and biogeochemically diverse freshwater and marine sediments.  相似文献   

15.
We studied microbial N2 production via anammox and denitrification in the anoxic water column of a restored mining pit lake in Germany over an annual cycle. We obtained high-resolution hydrochemical profiles using a continuous pumping sampler. Lake Rassnitzer is permanently stratified at ca. 29 m depth, entraining anoxic water below a saline density gradient. Mixed-layer nitrate concentrations averaged ca. 200 μmol L−1, but decreased to zero in the anoxic bottom waters. In contrast, ammonium was <5 μmol L−1 in the mixed layer but increased in the anoxic waters to ca. 600 μmol L−1 near the sediments. In January and October, 15N tracer measurements detected anammox activity (maximum 504 nmol N2 L−1 d−1 in 15NH4+-amended incubations), but no denitrification. In contrast, in May, N2 production was dominated by denitrification (maximum 74 nmol N2 L−1 d−1). Anammox activity in May was significantly lower than in October, as characterized by anammox rates (maximum 6 vs. 16 nmol N2 L−1 d−1 in incubations with 15NO3), as well as relative and absolute anammox bacterial cell abundances (0.56% vs. 0.98% of all bacteria, and 2.7×104 vs. 5.2×104 anammox cells mL−1, respectively) (quantified by catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) with anammox bacteria-specific probes). Anammox bacterial diversity was investigated with anammox bacteria-specific 16S rRNA gene clone libraries. The majority of anammox bacterial sequences were related to the widespread Candidatus Scalindua sorokinii/brodae cluster. However, we also found sequences related to Candidatus S. wagneri and Candidatus Brocadia fulgida, which suggests a high anammox bacterial diversity in this lake comparable with estuarine sediments.  相似文献   

16.
Previously available primer sets for detecting anaerobic ammonium-oxidizing (anammox) bacteria are inefficient, resulting in a very limited database of such sequences, which limits knowledge of their ecology. To overcome this limitation, we designed a new primer set that was 100% specific in the recovery of approximately 700-bp 16S rRNA gene sequences with >96% homology to the "Candidatus Scalindua" group of anammox bacteria, and we detected this group at all sites studied, including a variety of freshwater and marine sediments and permafrost soil. A second primer set was designed that exhibited greater efficiency than previous primers in recovering full-length (1,380-bp) sequences related to "Ca. Scalindua," "Candidatus Brocadia," and "Candidatus Kuenenia." This study provides evidence for the widespread distribution of anammox bacteria in that it detected closely related anammox 16S rRNA gene sequences in 11 geographically and biogeochemically diverse freshwater and marine sediments.  相似文献   

17.
《Process Biochemistry》2010,45(3):323-334
Enrichment of anaerobic ammonium oxidation (anammox) bacteria using five activated sludges in three domestic wastewater treatment plants (WWTPs) were processed in a short term of 70 days and evaluated by real-time quantitative PCR (RTQ-PCR). Before the enrichment, building phylogenetic trees of Planctomycetes phylum in four reactors of sequencing batch reactor (SBR), anoxic and oxic reactors of anaerobic–anoxic–oxic (A2O) process, and rotating biological contactor (RBC) revealed six groups of distantly relative genera of Planctomyces, Pirellula, Gemmata, Isophaera, Candidatus and putative anammox bacteria. All clones of Candidatus sp. were affiliated with anammox bacteria and the majority of anammox clones were related to Planctomycete KSU-1 (AB057453). The discovery of anammox bacteria in raw activated sludges provided a partial rationale for the utilization of activated sludge as a seeding source of the anammox process. To verify the activity of anammox bacteria in the activated sludges, enrichment cultivations were conducted using SBRs. The enrichment of anammox bacteria resulted in the significant anammox activity of three samples. Quantification of 16S rRNA gene of anammox bacteria using RTQ-PCR showed the highest concentration of anammox bacteria of 2.48 ± 0.22 × 109 copies of 16S rRNA gene/mg-volatile suspended solids (VSS), which was the same order of magnitude as that of the referential granular anammox sludge, 6.23 ± 0.59 × 109 copies of 16S rRNA gene/mg-VSS, taken from an anammox upflow anaerobic sludge blanket (UASB) reactor. The doubling time of anammox bacteria enriched in this study was 1.18 days. The growth yield of anammox bacteria enriched in this study was 4.75 ± 0.57 × 106 copies of 16S rRNA gene/mg of ammonium- and nitrite-nitrogen, which was similar to 4.50 ± 0.61 × 106 copies of 16S rRNA gene/mg of ammonium- and nitrite-nitrogen for the referential anammox sludge. Substrate uptake rates of three successful enrichments at the end of the enrichment were comparable to those of granular and suspended anammox sludges. Rapid enrichment of anammox bacteria using activated sludge could offer an alternative method for obtaining a large volume of seeding anammox sludge.  相似文献   

18.
Anaerobic ammonium oxidation (anammox) and denitrification are two important processes responsible for nitrogen loss; monitoring of microbial communities carrying out these two processes offers a unique opportunity to understand the microbial nitrogen cycle. The aim of the current study was to characterize community structures and distribution of anammox and nirS-encoding nitrite-reducing bacteria in surface sediments of the northern South China Sea (SCS). The consistent phylogenetic results of three biomarkers of anammox bacteria, including 16S rRNA, hzo, and Scalindua-nirS genes, showed that Scalindua-like bacteria were the only anammox group presenting in surface sediments of the SCS. However, a relatively high micro-diversity was found within this group, including several SCS habitat-specific phylotypes, Candidatus “Scalindua zhenghei”. Comparing to 16S rRNA gene, hzo and Scalindua-nirS genes provided a relatively higher resolution to elucidate anammox bacteria. For the nirS-encoding nitrite-reducing bacteria, the detected nirS gene sequences were closely related to various marine nirS denitrifiers, especially those which originated from coastal and estuarine sediments with a much higher diversity than anammox bacteria. Anammox bacterial communities shifted along with the seawater depth, while nirS-encoding nitrite-reducing bacteria did not. Although nirS-encoding nitrite-reducing bacteria have a much higher abundance and diversity than anammox bacteria, they showed similar abundance variation patterns in research sites, suggesting the two microbial groups might be affected by the similar environmental factors. The significant correlations among the abundance of the two microbial groups with the molar ratio of NH4 + to (NO2 ??+?NO3 ?), pH, and organic matters of sediments strongly supported this hypothesis.  相似文献   

19.
To extend the knowledge of anaerobic ammonium oxidation (anammox) habitats, bacterial communities were examined in two hypersaline sulphidic basins in Eastern Mediterranean Sea. The 2 m thick seawater–brine haloclines of the deep anoxic hypersaline basins Bannock and L’Atalante were sampled in intervals of 10 cm with increasing salinity. 15N isotope pairing incubation experiments showed the production of 29N2 and 30N2 gases in the chemoclines, ranging from 6.0 to 9.2 % salinity of the L’Atalante basin. Potential anammox rates ranged from 2.52 to 49.65 nmol N2 L?1 day?1 while denitrification was a major N2 production pathway, accounting for more than 85.5 % of total N2 production. Anammox-related 16S rRNA genes were detected along the L’Atalante and Bannock haloclines up to 24 % salinity, and the amplification of the hydrazine synthase genes (hzsA) further confirmed the presence of anammox bacteria in Bannock. Fluorescence in situ hybridisation and sequence analysis of 16S rRNA genes identified representatives of the marine anammox genus ‘Candidatus Scalindua’ and putatively new operational taxonomic units closely affiliated to sequences retrieved in marine environments that have documented anammox activity. ‘Scalindua brodae’ like sequences constituted up to 84.4 % of the sequences retrieved from Bannock. The anammox community in L’Atalante was different than in Bannock and was stratified according to salinity increase. This study putatively extends anammox bacterial habitats to extremely saline sulphidic ecosystems.  相似文献   

20.
Sequencing batch reactors were used to study anaerobic ammonium oxidation (anammox) process under temperature shock. Both long-term (15–35 °C) and short-term (10–50 °C) temperature effects on nitrogen removal performance were performed. In reactor operation test, the results indicated that ammonium removal rate decreased from 0.35 kg/(m3 day) gradually to 0.059 kg/(m3 day) when temperature dropped from 35 to 15 °C. Although bacteria morphology was not modified, sludge settling velocity decreased with decreasing temperature. In batch test, apparent activation energy (Ea) increased with decreasing temperature, which suggested the activity decrease of anaerobic ammonium oxidizing bacteria (AAOB). Low temperature inhibited AAOB and weakened nitrogen removal performance. The cardinal temperature model with inflection was first used to describe temperature effect on anammox process. Simulated results revealed that anammox reaction could occur at 10.52–50.15 °C with maximum specific anammox activity of 0.50 kg/(kg day) at 36.72 °C. The cold acclimatization of AAOB could be achieved and glycine betaine could slightly improve nitrogen removal performance at low temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号