首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Campylobacter jejuni is a significant cause of bacterial enteritis in humans. Three of seven C. jejuni isolates examined were found to contain fragmented 23S rRNA. The occurrence of fragmented 23S rRNA correlated with the presence of an intervening sequence (IVS) within the 23S rRNA genes. The IVS is 157 nucleotides in length and replaces an eight nucleotide sequence in the 23S rRNA genes of C. jejuni isolates that contain intact 23S rRNA. The two ends of the IVS share 31 bases of complementarity that could form a stem-loop structure. Fragmentation of the 23S ribosomal RNA results from the excision of the IVS from the transcribed RNA; the 3’ cleavage site maps within the putative stem-loop formed by the IVS. Southern hybridization analysis revealed that the IVS is not present in the genomes of isolates that contain intact 23S rRNA, suggesting that the IVS is not derived from Campylobacter chromosomal sequences. The C. jejuni IVS is located at a position analogous to that of the IVSs found in both Salmonella and Yersinia spp.  相似文献   

2.
Aims: The intergenic sequence regions (ISR) between the 16S and 23S genes of Campylobacter jejuni and Campylobacter coli are markedly different for each species. However, in the genomic sequence for Camp. coli RM2228 , two rRNA operons have an ISR that is characteristic of Camp. coli, and the third operon is characteristic of Camp. jejuni. The aim of this study was to determine the prevalence of ISR heterogeneity in these organisms. Methods and Results: PCR primers were designed to yield a 327‐base pair (bp) product for Camp. coli and 166‐bp product for Camp. jejuni. A strain like Camp. coli RM2228 should yield products of both sizes. DNA from a panel of Camp. coli (n = 133) and Camp. jejuni (n = 134) isolates were tested. All of the isolates yielded products of the predicted size for the species. To verify the data for Camp. coli RM2228 , each ribosomal operon from the isolate was individually amplified by PCR and tested with the ISR primer pair. Products of both sizes were produced as predicted. Conclusions: The cross‐species heterogeneity of the ISR seen in Camp. coli RM2228 is uncommon. Significance and Impact of the Study: The heterogeneity must have been caused by horizontal gene transfer at a frequency lower than predicted from housekeeping gene data. Thus, it can be expected that species identification based on the ISR can be confused in rare isolates.  相似文献   

3.
Published bacterial 23S ribosomal RNA sequences were aligned, and universally conserved regions flanking highly variable regions were looked for. In strategically positioned conserved regions, six oligonucleotides suitable for polymerase chain reaction (PCR) and sequencing were designed, allowing fast sequencing of four of the most variable 23S rRNA regions. Two other primers were designed for PCR amplification of nearly complete 23S rRNA genes. All these primers successfully amplified fragments of 23S rRNA genes from seven unrelated bacteria. Four primers were used to determine 938 bp of sequence forCampylobacter jejuni subsp.jejuni. These results indicate that the oligonucleotide sequences presented here are useful for PCR amplification and sequence determination of variable 23S rRNA regions for a broad variety of eubacterial species.  相似文献   

4.
This study was designed to determine whether isolates from chicken carcasses, the primary source of Campylobacter jejuni and Campylobacter coli in human infections, commonly carry the cdt genes and also whether active cytolethal distending toxin (CDT) is produced by these isolates. Campylobacter spp. were isolated from all 91 fresh chicken carcasses purchased from local supermarkets. Campylobacter spp. were identified on the basis of both biochemical and PCR tests. Of the 105 isolates, 70 (67%) were identified as C. jejuni, and 35 (33%) were identified as C. coli. PCR tests amplified portions of the cdt genes from all 105 isolates. Restriction analysis of PCR products indicated that there appeared to be species-specific differences between the C. jejuni and C. coli cdt genes, but that the restriction patterns of the cdt genes within strains of the same species were almost invariant. Quantitation of active CDT levels produced by the isolates indicated that all C. jejuni strains except four (94%) had mean CDT titers greater than 100. Only one C. jejuni strain appeared to produce no active CDT. C. coli isolates produced little or no toxin. These results confirm the high rate of Campylobacter sp. contamination of fresh chicken carcasses and indicate that cdt genes may be universally present in C. jejuni and C. coli isolates from chicken carcasses.  相似文献   

5.
Campylobacter jejuni and C. coli isolates from poultry, cattle, and humans were studied using pulsed-field gel electrophoresis (PFGE) and PCR of candidate livestock-associated marker genes. Human isolates showed 5.7 and 61% overlap with cattle and poultry isolates, respectively, by use of PFGE. No unambiguous association was found between marker genes (the Cj1321 and Cj1324 genes) and livestock-associated isolates.  相似文献   

6.

Background

Campylobacter jejuni is an important food-borne and zoonotic pathogen with a worldwide distribution. Humans and chickens are hosts of this pathogen. At present, there is no ideal vaccine for controlling human campylobacteriosis or the carriage of C. jejuni by chickens. Bacterial in vivo-induced antigens are useful as potential vaccine candidates and biomarkers of virulence.

Methods

In this study, we developed a novel systematic immunoproteomics approach to identify in vivo-induced antigens among the total cell proteins of C. jejuni using pre-adsorbed sera from patients infected with C. jejuni.

Results

Overall, 14 immunoreactive spots were probed on a PVDF membrane using pre-adsorbed human sera against C. jejuni. Then, we excised these protein spots from a duplicate gel and identified using MALDI–TOF MS. In total, 14 in vivo-induced antigens were identified using PMF and BLAST analysis. The identified proteins include CadF (CadF-1 and CadF-2), CheW, TufB, DnaK, MetK, LpxB, HslU, DmsA, PorA, ProS, CJBH_0976, CSU_0396 and hypothetical protein cje135_05017. Real-time RT-PCR was performed on 9 genes to compare their expression levels in vivo and in vitro. The data showed that 8 of the 9 analyzed genes were significantly upregulated in vivo relative to in vitro.

Conclusion

We successfully developed a novel immunoproteomics method for identifying in vivo-induced Campylobacter jejuni antigens by using pre-adsorbed sera from infected patients.

General significance

This new analysis method may prove to be useful for identifying in vivo-induced antigens within any host infected by bacteria and will contribute to the development of new subunit vaccines.  相似文献   

7.
8.
Campylobacter jejuni and Salmonella typhimurium are the leading causes of bacterial food contamination in chicken carcasses. Contamination is particularly associated with the slaughtering process. The present study isolated C. jejuni and S. typhimurim from fifty chicken carcass samples, all of which were acquired from different companies in Riyadh, Saudi Arabia. The identification of C. jejuni was performed phenotypically by using a hippurate test and genetically using a polymerase chain reaction with primers for 16S rRNA and hippurate hydrolase (hipO gene). For the dentification of S. typhimurim, a serological Widal test was carried out using serum anti-S. typhimurium antibodies. Strains were genetically detected using invA gene primers. The positive isolates for C. jejuni showed a specific molecular size of 1448 bp for 16S rRNA and 1148 bp for hipO genes. However, the positive isolates of the invA gene exhibited a specific molecular size at 244 bp using polymerase chain reaction (PCR). Comparing sequencing was performed with respect to the invA gene and the BLAST nucleotide isolates that were identified as Salmonella enterica subsp. enterica serovar typhimurium strain ST45, thereby producing a similarity of 100%. The testing identified C. jejuni for hippuricase, GenBank: Z36940.1. While many isolates of Salmonella spp. that contained the invA gene were not necessarily identified as S. typhimurim, the limiting factor for the Widal test used antiS. typhimurum antibodies. The multidrug resistance (MDR) of C. jejuni isolates in chickens was compared with the standard C. jejuni strain ATCC 22931. Similarly, S. typhimurium isolates were compared with the standard S. typhimurium strain ATCC 14028.  相似文献   

9.
The prevalence of thermophilic Campylobacter spp. was investigated in cattle on Washington State farms. A total of 350 thermophilic Campylobacter isolates were isolated from 686 cattle sampled on 15 farms (eight dairies, two calf rearer farms, two feedlots, and three beef cow-calf ranches). Isolate species were identified with a combination of phenotypic tests, hipO colony blot hybridization, and multiplex lpxA PCR. Breakpoint resistance to four antimicrobials (ciprofloxacin, nalidixic acid, erythromycin, and doxycycline) was determined by agar dilution. Campylobacter jejuni was the most frequent species isolated (34.1%), followed by Campylobacter coli (7.7%) and other thermophilic campylobacters (1.5%). The most frequently detected resistance was to doxycycline (42.3% of 350 isolates). Isolates from calf rearer facilities were more frequently doxycycline resistant than isolates from other farm types. C. jejuni was most frequently susceptible to all four of the antimicrobial drugs studied (58.8% of 272 isolates). C. coli isolates were more frequently resistant than C. jejuni, including resistance to quinolone antimicrobials (89.3% of isolates obtained from calves on calf rearer farms) and to erythromycin (72.2% of isolates obtained from feedlot cattle). Multiple drug resistance was more frequent in C. coli (51.5%) than in C. jejuni (5.1%). The results of this study demonstrate that C. jejuni is widely distributed among Washington cattle farms, while C. coli is more narrowly distributed but significantly more resistant.  相似文献   

10.
Recent studies have suggested a potential role for wild birds in zoonotic transmission of Campylobacter jejuni, the leading cause of gastroenteritis in humans worldwide. In this study, we detected Campylobacter spp. in 66.9% (85/127) of free-ranging American crows (Corvus brachyrhyncos) sampled in the Sacramento Valley of California in 2012 and 2013. Biochemical testing and sequence analysis of 16S rRNA revealed that 93% of isolates (n = 70) were C. jejuni, with cytolethal distending toxin (CDT) and flagellin A genes detected by PCR in 20% and 46% of the C. jejuni isolates (n = 59), respectively. The high prevalence of C. jejuni, coupled with the occurrence of known virulence markers CDT and flagellin A, demonstrates that crows shed Campylobacter spp. in their feces that are potentially pathogenic to humans. Crows are abundant in urban, suburban, and agricultural settings, and thus further study to determine their role in zoonotic transmission of Campylobacter will inform public health.  相似文献   

11.
Bovine venereal campylobacter infection, caused by Campylobacter fetus venerealis, is of significant economic importance to the livestock industry. Unfortunately, the successful detection and discrimination of C. fetus venerealis from C. fetus fetus continue to be a limitation throughout the world. There are several publications warning of the problem with biotyping methods as well as with recent molecular based assays. In this study, assessed on 1071 isolates, we report on the successful development of two Real Time SYBR® Green PCR assays that will allow for the detection and discrimination of C. fetus fetus and C. fetus venerealis. The sensitivity reported here for the C. fetus (CampF4/R4) and the C. fetus venerealis (CampF7/R7) specific PCR assays are 100% and 98.7% respectively. The specificity for these same PCR assays are 99.6% and 99.8% respectively.  相似文献   

12.
13.
The DNA fragments coding for ribosomal RNA inCampylobacter jejuni have been cloned from a genomic library ofC. jejuni constructed inEscherichia coli. Clones carrying DNA Sequences for rRNA were identified by hybridization of 5-end-labeled rRNA fromC. jejuni to colony blots of transformants from this gene library. Cloned DNA sequences homologous to each of 5S, 16S, and 23S rRNA were idenfified by hybridization of labeled plasmid DNA to Northern blots of rRNA. The gene coding for 23S rRNA was found to be located on a 5.5kb HindIII fragment, while the 5S and 16S rRNA genes were on HindIII fragments of 1.65 and 1.7 kb, respecitively. The DNA fragment containing the 16S rRNA gene was characterized by restriction endonuclease mapping, and the location of the 16S rRNA gene on this fragment was determined by hybridization of 5-end-labeled rRNA to restriction fragments and also by DNA sequence determination. It appears that the major portion of the coding region for 16S rRNA is located on the 1.7-kb HindIII fragment, while a small portion is carried on an adjacent HindIII fragment of 7.5 kb. Cloned rRNA genes fromC. jejuni were used to study the organization of the rDNA inC. jejuni and other members of the genùsCampylobacter.  相似文献   

14.
Poultry has long been cited as a reservoir for Campylobacter spp., and litter has been implicated as a vehicle in their transmission. Chicks were raised on litter removed from a broiler house positive for Campylobacter jejuni. Litter was removed from the house on days 0, 3, and 9 after birds were removed for slaughter. Chicks were raised on these three litters under controlled conditions in flocks of 25. None of these birds yielded C. jejuni in their cecal droppings through 7 weeks. Two successive flocks from the same Campylobacter-positive broiler house were monitored for Campylobacter colonization. Campylobacter jejuni prevalence rates were determined for each flock. Randomly amplified polymorphic DNA (RAPD)-PCR and 23S rRNA-PCR typing methods were used to group isolates. A high prevalence (60%) of C. jejuni in flock 1 coincided with the presence of an RAPD profile not appearing in flock 2, which had a lower rate of prevalence (28%). A 23S rRNA-PCR typing method was used to determine if strains with different RAPD profiles and different prevalence rates contained different 23S sequences. RAPD profiles detected with higher prevalence rates contained a spacer in the 23S rRNA region 100% of the time, while RAPD profiles found with lower prevalence rates contained an intervening sequence less than 2% of the time. Data suggest varying colonizing potentials of different RAPD profiles and a source other than previously used litter as a means of transmission of C. jejuni. These molecular typing methods demonstrate their usefulness, when used together, in this epidemiologic investigation.  相似文献   

15.
Campylobacteriosis is the most frequent zoonosis in developed countries and various domestic animals can function as reservoir for the main pathogens Campylobacter jejuni and Campylobacter coli. In the present study we compared population structures of 730 C. jejuni and C. coli from human cases, 610 chicken, 159 dog, 360 pig and 23 cattle isolates collected between 2001 and 2012 in Switzerland. All isolates had been typed with multi locus sequence typing (MLST) and flaB-typing and their genotypic resistance to quinolones was determined. We used complementary approaches by testing for differences between isolates from different hosts with the proportion similarity as well as the fixation index and by attributing the source of the human isolates with Bayesian assignment using the software STRUCTURE. Analyses were done with MLST and flaB data in parallel and both typing methods were tested for associations of genotypes with quinolone resistance. Results obtained with MLST and flaB data corresponded remarkably well, both indicating chickens as the main source for human infection for both Campylobacter species. Based on MLST, 70.9% of the human cases were attributed to chickens, 19.3% to cattle, 8.6% to dogs and 1.2% to pigs. Furthermore we found a host independent association between sequence type (ST) and quinolone resistance. The most notable were ST-45, all isolates of which were susceptible, while for ST-464 all were resistant.  相似文献   

16.

Background  

Campylobacter is the most commonly reported bacterial cause of enteritis in humans in the EU Member States and other industrialized countries. One significant source of infection is broilers and consumption of undercooked broiler meat. Campylobacter jejuni is the Campylobacter sp. predominantly found in infected humans and colonized broilers. Sequence analysis of the 16S rRNA gene is very useful for identification of bacteria to genus and species level. The objectives in this study were to determine the degree of intraspecific variation in the 16S rRNA genes of C. jejuni and C. coli and to determine whether the 16S rRNA sequence types correlated with genotypes generated by PFGE analysis of Sma I restricted genomic DNA of the strains.  相似文献   

17.
The aim of this investigation was to exploit the vast comparative data generated by comparative genome hybridization (CGH) studies of Campylobacter jejuni in developing a genotyping method. We examined genes in C. jejuni that exhibit binary status (present or absent between strains) within known plasticity regions, in order to identify a minimal subset of gene targets that provide high-resolution genetic fingerprints. Using CGH data from three studies as input, binary gene sets were identified with “Minimum SNPs” software. “Minimum SNPs” selects for the minimum number of targets required to obtain a predefined resolution, based on Simpson's index of diversity (D). After implementation of stringent criteria for gene presence/absence, eight binary genes were found that provided 100% resolution (D = 1) of 20 C. jejuni strains. A real-time PCR assay was developed and tested on 181 C. jejuni and Campylobacter coli isolates, a subset of which have previously been characterized by multilocus sequence typing, flaA short variable region sequencing, and pulsed-field gel electrophoresis. In addition to the binary gene real-time PCR assay, we refined the seven-member single nucleotide polymorphism (SNP) real-time PCR assay previously described for C. jejuni and C. coli. By normalizing the SNP assay with the respective C. jejuni and C. coli ubiquitous genes, mapA and ceuE, the polymorphisms at each SNP could be determined without separate reactions for every polymorphism. We have developed and refined a rapid, highly discriminatory genotyping method for C. jejuni and C. coli that uses generic technology and is amenable to high-throughput analyses.  相似文献   

18.
Although the absence of intervening sequences (IVSs) within the 23S rRNA genes in Campylobacter lari isolates has been described, there are apparently no reports regarding correlations between the nucleotide sequences of 23S rRNA genes and erythromycin (Ery) susceptibility in C. lari isolates. Here, we determined the minimum inhibitory concentrations of 35 C. lari isolates [n?=?19 for urease-positive thermophilic Campylobacter (UPTC); n?=?16 urease-negative (UN) C. lari] obtained from Asia, Europe, and North America. We found that the 18 isolates were resistant to the Ery (defined as ≧8 μg/mL), and three isolates, UPTC A1, UPTC 92251, and UPTC 504, showed increased resistance (16 μg/mL). No correlations between the IVSs in the helix 45 region within the 23S rRNA gene sequences and Ery resistance were identified in the C. lari isolates examined. In addition, no point mutations occurred at any expected or putative position within the V domain in the isolates. In conclusion, antibiotic resistance against the macrolide erythromycin is mediated through an alternative pathway to that described above.  相似文献   

19.
Biodiversity estimates based on ribosomal operon sequence diversity rely on the premise that a sequence is characteristic of a single specific taxon or operational taxonomic unit (OTU). Here, we have studied the sequence diversity of 14 ribosomal RNA operons (rrn) contained in the genomes of two isolates (five operons in each genome) and four metagenomic fosmids, all from the same seawater sample. Complete sequencing of the isolate genomes and the fosmids establish that they represent strains of the same species, Alteromonas macleodii, with average nucleotide identity (ANI) values >97 %. Nonetheless, we observed high levels of intragenomic heterogeneity (i.e., variability between operons of a single genome) affecting multiple regions of the 16S and 23S rRNA genes as well as the internally transcribed spacer 1 (ITS-1) region. Furthermore, the ribosomal operons exhibited intergenomic heterogeneity (i.e., variability between operons located in separate genomes) in each of these regions, compounding the variability. Our data reveal the extensive heterogeneity observed in natural populations of A. macleodii at a single point in time and support the idea that distinct lineages of A. macleodii exist in the deep Mediterranean. These findings highlight the potential of rRNA fingerprinting methods to misrepresent species diversity while simultaneously failing to recognize the ecological significance of individual strains.  相似文献   

20.
This large-scale study compared incubation temperatures (37°C versus 42°C) to study the detection of thermophilic Campylobacter species, including Campylobacter jejuni, C. coli, and C. lari, in various surface water samples and bird fecal droppings around Hamilton Harbor, Lake Ontario. The putative culture isolates obtained from incubation temperatures of 37 and 42°C were confirmed by Campylobacter genus- and species-specific triplex PCR assays targeting the 16S rRNA gene and the 16S-23S rRNA gene internal transcribed spacer (ITS) region. A total of 759 water, wastewater, and bird fecal dropping samples were tested. Positive amplification reactions for the genus Campylobacter were found for 454 (60%) samples incubated at 37°C, compared to 258 (34%) samples incubated at 42°C. C. jejuni (16%) and C. lari (12%) were detected significantly more frequently at the 42°C incubation temperature than at 37°C (8% and 5%, respectively). In contrast, significantly higher rates of C. coli (14%) and other Campylobacter spp. (36%) were detected at the 37°C incubation temperature than at 42°C (8% and 7%, respectively). These results were consistent across surface water, wastewater, and bird fecal dropping samples. At times, Campylobacter spp. were recovered and detected at 37°C (3% for C. jejuni, 10% for C. coli, and 3% for C. lari) when the same samples incubated at 42°C were negative. A significantly higher rate of other Campylobacter spp. was detected only at 37°C (32%) than only at 42°C (3%). These results indicate that incubation temperature can significantly influence the culturability and detection of thermophilic and other fastidious Campylobacter spp. and that a comprehensive characterization of the Campylobacter spp. in surface water, wastewaters, or bird fecal droppings will require incubation at both 37 and 42°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号