首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microorganisms have been reported to induce settlement and metamorphosis in a wide range of marine invertebrate species. However, the primary cue reported for metamorphosis of coral larvae is calcareous coralline algae (CCA). Herein we report the community structure of developing coral reef biofilms and the potential role they play in triggering the metamorphosis of a scleractinian coral. Two-week-old biofilms induced metamorphosis in less than 10% of larvae, whereas metamorphosis increased significantly on older biofilms, with a maximum of 41% occurring on 8-week-old microbial films. There was a significant influence of depth in 4- and 8-week biofilms, with greater levels of metamorphosis occurring in response to shallow-water communities. Importantly, larvae were found to settle and metamorphose in response to microbial biofilms lacking CCA from both shallow and deep treatments, indicating that microorganisms not associated with CCA may play a significant role in coral metamorphosis. A polyphasic approach consisting of scanning electron microscopy, fluorescence in situ hybridization (FISH), and denaturing gradient gel electrophoresis (DGGE) revealed that coral reef biofilms were comprised of complex bacterial and microalgal communities which were distinct at each depth and time. Principal-component analysis of FISH data showed that the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Cytophaga-Flavobacterium of Bacteroidetes had the largest influence on overall community composition. A low abundance of Archaea was detected in almost all biofilms, providing the first report of Archaea associated with coral reef biofilms. No differences in the relative densities of each subdivision of Proteobacteria were observed between slides that induced larval metamorphosis and those that did not. Comparative cluster analysis of bacterial DGGE patterns also revealed that there were clear age and depth distinctions in biofilm community structure; however, no difference was detected in banding profiles between biofilms which induced larval metamorphosis and those where no metamorphosis occurred. This investigation demonstrates that complex microbial communities can induce coral metamorphosis in the absence of CCA.  相似文献   

2.
The bacterial community associated with skin lesions of the sea urchin Tripneustes gratilla was investigated using 16S ribosomal RNA gene cloning and fluorescent in situ hybridization (FISH). All clones were classified in the Alphaproteobacteria, Gammaproteobacteria and Cytophaga-Flexibacter-Bacteroides (CFB) bacteria. Most of the Alphaproteobacteria were related to the Roseobacter lineage and to bacteria implicated in marine diseases. The majority of the Gammaproteobacteria were identified as Vibrio while CFB represented only 9% of the total clones. FISH analyses showed that Alphaproteobacteria, CFB bacteria and Gammaproteobacteria accounted respectively for 43%, 38% and 19% of the DAPI counts. The importance of the methods used is emphasized.  相似文献   

3.
This study examined bacterial community structure of biofilms on stainless steel and polycarbonate in seawater from the Delaware Bay. Free-living bacteria in the surrounding seawater were compared to the attached bacteria during the first few weeks of biofilm growth. Surfaces exposed to seawater were analyzed by using 16S rDNA libraries, fluorescence in situ hybridization (FISH), and denaturing gradient gel electrophoresis (DGGE). Community structure of the free-living bacterial community was different from that of the attached bacteria according to FISH and DGGE. In particular, alpha-proteobacteria dominated the attached communities. Libraries of 16S rRNA genes revealed that representatives of the Rhodobacterales clade were the most abundant members of biofilm communities. Changes in community structure during biofilm growth were also examined by DGGE analysis. We hypothesized that bacterial communities on dissimilar surfaces would initially differ and become more similar over time. In contrast, the compositions of stainless steel and polycarbonate biofilms were initially the same, but differed after about 1 week of biofilm growth. These data suggest that the relationship between surface properties and biofilm community structure changes as biofilms grow on surfaces such as stainless steel and polycarbonate in estuarine water.  相似文献   

4.
Summary Formation and activity of bacterial nitrifying biofilms play an important role in the closed seawater systems for shrimp cultivation. The structure of microbial biofilm on empty oyster shells, used as a biofilm carrier in biofiltration of aquacultural water, was studied using fluorescence in situ hybridization (FISH) and confocal laser scanning microscopy. FISH was performed with specific oligonucleotide probes for Bacteria and ammonia-oxidizing Nitrosomonas spp. The bacterial cells were arranged within the biofilm as a layer of vertically elongated aggregates. Aggregates of ammonia-oxidizing bacteria were embedded within the matrix formed by other bacteria. Vertically elongated cell aggregates may be ecologically important in bacterial biofilms because they have a higher surface-to-volume ratio than that of laminated biofilms.  相似文献   

5.
The microbial communities involved in the bald sea urchin disease of the echinoid Paracentrotus lividus are investigated using culture-independent techniques. Lesions of diseased specimens from two locations in France, La Ciotat (Mediterranean Sea) and Morgat (Atlantic Ocean), are examined by Scanning Electron Microscopy (SEM) and the diversity of their microbiota is analysed by Denaturing Gradient Gel Electrophoresis (DGGE) and 16S rRNA gene clones libraries construction. Microscopic observations demonstrated that only the central area of the lesions is invaded by bacteria but not the peripheral zone and the surrounding healthy tissues. Molecular analysis identified at least 24 bacterial genomospecies in bald sea urchin lesions: 5 are Alphaproteobacteria, 10 are Gammaproteobacteria, 8 are CFB bacteria and 1 is a Fusobacteria. Out of them, 4 are observed in both locations while 10 occur only in the Atlantic Ocean and 10 only in the Mediterranean Sea. Gammaproteobacteria are the most represented in clones libraries from both locations, with respectively 65% and 43% of the total clones. CFB and Alphaproteobacteria accounted for the majority of the remaining clones and were detected by DGGE in virtually all samples from both stations. Our results demonstrate that bacterial communities observed on diseased individuals of the same echinoid species but originating from distinct locations are not similar and thus support the hypothesis that bacteria involved in the worldwide echinoid disease commonly called the bald sea urchin disease are opportunistic and not specific.  相似文献   

6.
Biopolymers are important substrates for heterotrophic bacteria in (ultra)oligotrophic freshwater environments, but information about their utilization at microgram-per-liter levels by attached freshwater bacteria is lacking. This study aimed at characterizing biopolymer utilization in drinking-water-related biofilms by exposing such biofilms to added carbohydrates or proteins at 10 μg C liter−1 in flowing tap water for up to 3 months. Individually added amylopectin was not utilized by the biofilms, whereas laminarin, gelatin, and caseinate were. Amylopectin was utilized during steady-state biofilm growth with simultaneously added maltose but not with simultaneously added acetate. Biofilm formation rates (BFR) at 10 μg C liter−1 per substrate were ranked as follows, from lowest to highest: blank or amylopectin (≤6 pg ATP cm−2 day−1), gelatin or caseinate, laminarin, maltose, acetate alone or acetate plus amylopectin, and maltose plus amylopectin (980 pg ATP cm−2 day−1). Terminal restriction fragment length polymorphism (T-RFLP) and 16S rRNA gene sequence analyses revealed that the predominant maltose-utilizing bacteria also dominated subsequent amylopectin utilization, indicating catabolic repression and (extracellular) enzyme induction. The accelerated BFR with amylopectin in the presence of maltose probably resulted from efficient amylopectin binding to and hydrolysis by inductive enzymes attached to the bacterial cells. Cytophagia, Flavobacteriia, Gammaproteobacteria, and Sphingobacteriia grew during polysaccharide addition, and Alpha-, Beta-, and Gammaproteobacteria, Cytophagia, Flavobacteriia, and Sphingobacteriia grew during protein addition. The succession of bacterial populations in the biofilms coincided with the decrease in the specific growth rate during biofilm formation. Biopolymers can clearly promote biofilm formation at microgram-per-liter levels in drinking water distribution systems and, depending on their concentrations, might impair the biological stability of distributed drinking water.  相似文献   

7.
Microbial communities are potential indicators for water quality as they respond rapidly to environmental changes. In the Whitsunday Islands, Australia, microbial biofilm communities from two offshore islands were compared to those from two inshore islands subjected to poor water quality. Biofilm community composition was characterized using three culture-independent molecular techniques. The clone libraries indicated high genetic diversity, with somewhat higher scores in the offshore sites (57%) compared to the inshore sites (41%). The majority of microbes in the biofilms were related to Alphaproteobacteria (39.8%), Gammaproteobacteria (14.1%), Bacteroidetes (13.2%), diatoms (8.3%) and Cyanobacteria (3.9%). Redundancy analysis (RDA) for the CARD-FISH data showed distinct microbial assemblages between offshore and inshore communities. Additionally, 5 out of 13 water quality parameters (DIN, Chla, POP, TSS and POC) explained a significant amount of variation in the microbial communities and high values of these were associated with inshore communities. Analysis of variance (ANOVA) indicated that Cyanobacteria (p = 0.01), Bacteroidetes (p = 0.04) and to some extent Alphaproteobacteria (p = 0.07), were significantly more abundant in the offshore biofilm communities. Principal Component Analysis (PCA) of DGGE data showed clear grouping of cyanobacterial communities into inshore and offshore communities. Reasons for community shifts in the bacterial lineages are currently not resolved. One possible causative factor may be that autotrophic primary producers are more dominant in offshore sites due to the higher light availability as well as the limitation by DIN. The trends found in this study are the bases for more detailed research on microbial indicator species for changes in water quality.  相似文献   

8.
Thiothrix spp., sulfide-oxidizing filamentous bacteria, were found to be a principal bacterial component of aquatic biofilms causing biofouling in selected municipal water storage tanks, private wells, and drip irrigation systems in Florida. Treatments of up to 200 ppm chlorine in the affected systems could not prevent return of the biofouling problem. The water originated from the upper Floridan aquifer and associated surficial aquifers in central and north Florida. Samples were examined where visible biofilms had a white, filamentous appearance, indicative of Thiothrix spp. The detection of Thiothrix spp. was confirmed by enzyme-liked immunosorbent assay (ELISA), indirect immunofluorescence (IIF), and microbiological procedures. It was estimated through immunocytochemical procedures that Thiothrix spp. comprised 18% of the biofilm in the municipal water storage tanks. These observations confirm that specific biological and chemical interactions may induce physical changes leading to significant biofouling. Received: 6 November 1996 / Accepted: 14 March 1997  相似文献   

9.
Amyloid proteins (fimbriae or other microbial surface-associated structures) are expressed by many types of bacteria, not yet identified, in biofilms from various habitats, where they likely are of key importance to biofilm formation and biofilm properties. As these amyloids are potentially of great importance to the floc properties in activated sludge wastewater treatment plants (WWTP), the abundance of amyloid adhesins in activated sludge flocs from different WWTP and the identity of bacteria producing these were investigated. Amyloid adhesins were quantified using a combination of conformationally specific antibodies targeting amyloid fibrils, propidium iodide to target all fixed bacterial cells, confocal laser scanning microscopy, and digital image analysis. The biovolume fraction containing amyloid adhesins ranged from 10 to 40% in activated sludge from 10 different WWTP. The identity of bacteria producing amyloid adhesins was determined using fluorescence in situ hybridization with oligonucleotide probes in combination with antibodies or thioflavin T staining. Among the microcolony-forming bacteria, amyloids were primarily detected among Alpha- and Betaproteobacteria and Actinobacteria. A more detailed analysis revealed that many denitrifiers (from Thauera, Azoarcus, Zoogloea, and Aquaspirillum-related organisms) and Actinobacteria-related polyphosphate-accumulating organisms most likely produced amyloid adhesins, whereas nitrifiers did not. Many filamentous bacteria also expressed amyloid adhesins, including several Alphaproteobacteria (e.g., Meganema perideroedes), some Betaproteobacteria (e.g., Aquaspirillum-related filaments), Gammaproteobacteria (Thiothrix), Bacteroidetes, Chloroflexi (e.g., Eikelboom type 1851), and some foam-forming Actinobacteria (e.g., Gordonia amarae). The results show that amyloid adhesins were an abundant component of activated sludge extracellular polymeric substances and seem to have unexpected, divers functions.  相似文献   

10.
We investigated the in situ spatial organization of ammonia-oxidizing and nitrite-oxidizing bacteria in domestic wastewater biofilms and autotrophic nitrifying biofilms by using microsensors and fluorescent in situ hybridization (FISH) performed with 16S rRNA-targeted oligonucleotide probes. The combination of these techniques made it possible to relate in situ microbial activity directly to the occurrence of nitrifying bacterial populations. In situ hybridization revealed that bacteria belonging to the genus Nitrosomonas were the numerically dominant ammonia-oxidizing bacteria in both types of biofilms. Bacteria belonging to the genus Nitrobacter were not detected; instead, Nitrospira-like bacteria were the main nitrite-oxidizing bacteria in both types of biofilms. Nitrospira-like cells formed irregularly shaped aggregates consisting of small microcolonies, which clustered around the clusters of ammonia oxidizers. Whereas most of the ammonia-oxidizing bacteria were present throughout the biofilms, the nitrite-oxidizing bacteria were restricted to the active nitrite-oxidizing zones, which were in the inner parts of the biofilms. Microelectrode measurements showed that the active ammonia-oxidizing zone was located in the outer part of a biofilm, whereas the active nitrite-oxidizing zone was located just below the ammonia-oxidizing zone and overlapped the location of nitrite-oxidizing bacteria, as determined by FISH.  相似文献   

11.
Bacterial communities are known to play important roles during the developmental stages of insects, but current knowledge of bacteria associated with the midgut of Apis dorsata, the giant Asian honeybee, is limited. Using polymerase chain reaction‐denaturing gradient gel electrophoresis analysis (PCR‐DGGE) and 16S rRNA sequencing, the aim of this study was to determine the dynamics of bacterial community structure across four A. dorsata life stages in different geographical locations. The results reveal that bacterial diversity increased as the bee progressed through larval stage to newly emerged worker and old worker. However, in the pupal stage, no bands identified as bacteria could be observed. Overall, 2 bacterial phyla (Proteobacteria and Firmicutes) and 4 classes (Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Bacilli) were identified, but the frequency varied among the different stages and locations. The classes of Gammaproteobacteria and Bacilli dominated among larval, newly emerged worker and old worker developmental stages.  相似文献   

12.
13.
The gut bacterial community from four species of feral locusts and grasshoppers was determined by denaturing gradient gel electrophoresis (DGGE) analysis of bacterial 16S rRNA gene fragments. The study revealed an effect of phase polymorphism on gut bacterial diversity in brown locusts from South Africa. A single bacterial phylotype, consistent with Citrobacter sp. dominated the gut microbiota of two sympatric populations of Moroccan and Italian locusts in Spain. There was evidence for Wollbachia sp. in the meadow grasshopper caught locally in the UK. Sequence analysis of DGGE products did not reveal evidence for unculturable bacteria and homologies suggested that bacterial species were principally Gammaproteobacteria from the family Enterobacteriaceae similar to those recorded previously in laboratory reared locusts.  相似文献   

14.
Although there are several studies describing bacteria associated with marine fish, the bacterial composition associated with seahorses has not been extensively investigated since these studies have been restricted to the identification of bacterial pathogens. In this study, the phylogenetic affiliation of seahorse-associated bacteria was assessed by 16S rRNA gene sequencing of cloned DNA fragments. Fluorescence in situ hybridization (FISH) was used to confirm the presence of the predominant groups indicated by 16S rRNA analysis. Both methods revealed that Vibrionaceae was the dominant population in Artemia sp. (live prey) and intestinal content of the seahorses, while Rhodobacteraceae was dominant in water samples from the aquaculture system and cutaneous mucus of the seahorses. To our knowledge, this is the first time that bacterial communities associated with healthy seahorses in captivity have been described.  相似文献   

15.
The use of juvenile Artemia as feed in aquaculture and in the pet shop industry has been getting more attention during the last decade. In this study, the use of selected bacterial strains to improve the nutritional value of dry food for Artemia juveniles and to obtain control of the associated microbial community was examined. Nine bacterial strains were selected based on their positive effects on survival and/or growth of Artemia juveniles under monoxenic culture conditions, while other strains caused no significant effect, significantly lower rates of survival and/or growth, or even total mortality of the Artemia. The nine selected strains were used to preemptively colonize the culture water of Artemia juveniles. Xenic culture of Artemia under suboptimal conditions yielded better survival and/or growth rates when they were grown in the preemptively colonized culture medium than when grown in autoclaved seawater. The preemptive colonization of the culture water had a drastic influence on the microbial communities that developed in the culture water or that were associated with the Artemia, as determined with Biolog GN community-level physiological profiles. Chemotaxonomical characterization based on fatty acid methyl ester analysis of bacterial isolates recovered from the culture tanks was performed, and a comparison with the initially introduced strains was made. Finally, several modes of action for the beneficial effect of the bacterial strains are proposed.  相似文献   

16.
Here, we present for the first time a high-affinity peptide nucleic acid (PNA) oligonucleotide sequence for detecting Mycobacterium avium bacteria, including the opportunistically pathogenic subspecies M. avium subsp. avium, M. avium subsp. paratuberculosis, and M. avium subsp. silvaticum, by the fluorescence in situ hybridization (FISH) method. There is evidence that M. avium subsp. avium especially is able to survive and grow in drinking-water biofilms and possibly transmit via drinking water. The designed PNA probe (MAV148) specificity was tested with several bacterial species, including other mycobacteria and mycolic acid-containing bacteria. From the range of bacterial strains tested, only M. avium subsp. avium and M. avium subsp. paratuberculosis strains were hybridized. The PNA FISH method was applied successfully to detect M. avium subsp. avium spiked in water samples and biofilm established within a Propella biofilm reactor fed with potable water from a distribution supply.  相似文献   

17.
A thorough understanding of the microorganisms and pathogens associated with the larval stage of the tropical ornate rock lobster, Panulirus ornatus, is required to overcome disease outbreaks that currently block aquaculture attempts. This study used microscopy in addition to culture and molecularly based microbiological techniques to characterize the bacterial community associated with cultured, developmental stage PI to PII P. ornatus phyllosomas. Scanning electron microscopy demonstrated colonization of phyllosomas by filamentous, rod-shaped, and coccus-shaped bacteria. A clone library constructed from dead phyllosomas sampled from the larval rearing tank on day 10 was dominated by Thiothrix-affiliated sequences (56% of clones). A comparable library from live phyllosomas also contained Thiothrix-affiliated sequences, though these only represented 19% of clones within the library. Fluorescent in situ hybridization (FISH) confirmed identification of the filamentous bacteria as Thiothrix sp., being present on dead phyllosomas. FISH also identified Leucothrix sp. and Vibrio sp., as well as a range of other rod- and coccus-shaped bacteria, colonizing both live and dead phyllosomas. The development of the microbial community associated with phyllosomas was monitored through a standard larval rearing run using denaturing gradient gel electrophoresis (DGGE). Vibrio sp.-affiliated bands dominated the profiles of live animals through the rearing period and dead phyllosomas sampled on selected days. The population of Vibrio sp. associated with phyllosomas was monitored with culture-based analysis on selective media and demonstrated to increase significantly on day 7, coinciding with the beginning of the larval molt. An isolated Vibrio harveyi strain demonstrated an identical 16S rRNA sequence with retrieved DGGE and clone library sequences. Colonization of phyllosomas with filamentous bacterial species potentially hinders the ability of the animals to molt and, combined with the added stress of the molt process, likely results in reduced immune function, allowing opportunistic pathogenic Vibrio sp. to cause larval mortalities.  相似文献   

18.

Background

Ventilator-associated pneumonia is the most prevalent acquired infection of patients on intensive care units and is associated with considerable morbidity and mortality. Evidence suggests that an improved understanding of the composition of the biofilm communities that form on endotracheal tubes may result in the development of improved preventative strategies for ventilator-associated pneumonia.

Methodology/Principal Findings

The aim of this study was to characterise microbial biofilms on the inner luminal surface of extubated endotracheal tubes from ICU patients using PCR and molecular profiling. Twenty-four endotracheal tubes were obtained from twenty mechanically ventilated patients. Denaturing gradient gel electrophoresis (DGGE) profiling of 16S rRNA gene amplicons was used to assess the diversity of the bacterial population, together with species specific PCR of key marker oral microorganisms and a quantitative assessment of culturable aerobic bacteria. Analysis of culturable aerobic bacteria revealed a range of colonisation from no growth to 2.1×108 colony forming units (cfu)/cm2 of endotracheal tube (mean 1.4×107 cfu/cm2). PCR targeting of specific bacterial species detected the oral bacteria Streptococcus mutans (n = 5) and Porphyromonas gingivalis (n = 5). DGGE profiling of the endotracheal biofilms revealed complex banding patterns containing between 3 and 22 (mean 6) bands per tube, thus demonstrating the marked complexity of the constituent biofilms. Significant inter-patient diversity was evident. The number of DGGE bands detected was not related to total viable microbial counts or the duration of intubation.

Conclusions/Significance

Molecular profiling using DGGE demonstrated considerable biofilm compositional complexity and inter-patient diversity and provides a rapid method for the further study of biofilm composition in longitudinal and interventional studies. The presence of oral microorganisms in endotracheal tube biofilms suggests that these may be important in biofilm development and may provide a therapeutic target for the prevention of ventilator-associated pneumonia.  相似文献   

19.
A continuous-flow moving bed biofilm reactor (MBBR) under aerobic conditions was established for simultaneous nitrification and denitrification (SND), and microbial communities were investigated by a combination of denaturing gel gradient electrophoresis (DGGE) and fluorescence in situ hybridization (FISH). DGGE analysis has revealed more similar microbial community structures formed in the biofilms with more similar carbon nitrogen (C/N) ratios. FISH analysis shows that the dominance of both Betaproteobacteria ammonia-oxidizing bacteria and Nitrospira-like nitrite-oxidizing bacteria were negatively correlated to C/N ratios. Sequence analysis of DGGE bands has indicated the presence of anoxic denitrifying bacteria Agrobacterium tumefaciens and Rhizobium sp., suggesting that the oxygen gradient inside the biofilm may be responsible for the mechanism of SND in aerobic MBBRs. The study confirms that appropriate control of microbial community structure resulting from optimal C/N ratio is beneficial in improving SND, thus optimizing nitrogen removal in aerobic MBBR. The established SND-based MBBR can save operation space and time in comparison to the traditional nitrogen removal process, and might be very attractive for future practical applications.  相似文献   

20.
The bacterial diversity in a Brazilian non-disturbed mangrove sediment   总被引:1,自引:0,他引:1  
The bacterial diversity present in sediments of a well-preserved mangrove in Ilha do Cardoso, located in the extreme south of São Paulo State coastline, Brazil, was assessed using culture-independent molecular approaches (denaturing gradient gel electrophoresis (DGGE) and analysis of 166 sequences from a clone library). The data revealed a bacterial community dominated by Alphaproteobacteria (40.36% of clones), Gammaproteobacteria (19.28% of clones) and Acidobacteria (27.71% of clones), while minor components of the assemblage were affiliated to Betaproteobacteria, Deltaproteobacteria, Firmicutes, Actinobacteria and Bacteroidetes. The clustering and redundancy analysis (RDA) based on DGGE were used to determine factors that modulate the diversity of bacterial communities in mangroves, such as depth, seasonal fluctuations, and locations over a transect area from the sea to the land. Profiles of specific DGGE gels showed that both dominant (‘universal’ Bacteria and Alphaproteobacteria) and low-density bacterial communities (Betaproteobacteria and Actinobacteria) are responsive to shifts in environmental factors. The location within the mangrove was determinant for all fractions of the community studied, whereas season was significant for Bacteria, Alphaproteobacteria, and Betaproteobacteria and sample depth determined the diversity of Alphaproteobacteria and Actinobacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号