首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A group of four motile facultative anaerobic marine isolates (Rd 8.15T [=CECT 7224T, =LMG 23850T], Rd 16.13, Rd 6.8 [=LMG 25696] and Rd2L5) were obtained from cultured clams (Ruditapes philippinarum and Venerupis pullastra) in Galicia, north-western Spain. They formed a tight phylogenetic group based on sequences of the 16S rRNA gene and the four housekeeping genes rpoA (encoding the α-chain of RNA polymerase), rpoD (encoding the sigma factor of RNA polymerase), recA (encoding RecA protein), and atpA (encoding the α-subunit of bacterial ATP synthase). The phylogenies based on these sequences indicated that the four isolates represented a novel species in the genus Vibrio, and more precisely in the Splendidus clade. DNA–DNA hybridizations with the type strains of species showing more than 98.6% 16S rRNA gene sequence similarity, revealed a DNA–DNA relatedness below 70%. The isolates could be differentiated from the phylogenetically related Vibrio species on the basis of several phenotypic features. In addition, strain Rd 8.15T showed potential pathogenic activity for adult clams in virulence assays. The name Vibrio celticus sp. nov. is proposed for this new taxon, with the type strain being Rd 8.15T (=CECT 7224T, =LMG 23850T).  相似文献   

2.
Nineteen bacteria isolates recovered from shellfish samples (mussels and oysters) showed a new and specific 16S rDNA-RFLP pattern with an Arcobacter identification method designed to recognize all species described up to 2008. These results suggested that they could belong to a new species. ERIC-PCR revealed that the 19 isolates belonged to 3 different strains. The sequence of the 16S rRNA gene of a representative strain (F98-3T) showed 97.6% similarity with the closest species Arcobacter marinus followed by Arcobacter halophilus (95.6%) and Arcobacter mytili (94.7%). The phylogenetic analysis with the16S rRNA, rpoB, gyrB and hsp60 genes placed the shellfish strains within the same cluster as the three species mentioned (also isolated from saline habitats) but they formed an independent phylogenetic line. The DDH results between strain F98-3T and A. marinus (54.8% ± 1.05), confirmed that it represents a new species. Several biochemical tests differentiated the shellfish isolates from all other Arcobacter species. Although the new species was different from A. mytili, they shared not only the same habitat (mussels) but also the characteristic of being so far the only Arcobacter species that are simultaneously negative for urea and indoxyl acetate hydrolysis. All results supported the classification of the shellfish strains as a new species, for which the name Arcobacter molluscorum sp. nov. with the type strain F98-3T is proposed (=CECT 7696T = LMG 25693T).  相似文献   

3.
The Streptomyces phylogroup pratensis (Doroghazi and Buckley, 2010) contains isolates obtained from grassy fields, as well as Streptomyces flavogriseus ATCC 33331 and strain CGMCC 4.1868. This latter strain was received as Streptomyces griseoplanus but was subsequently found to be mislabeled, and S. flavogriseus ATCC 33331 (=IAF-45-CD) was shown to be clearly distinct from the type strain S. flavogriseus ATCC 25452T (=CGMCC 4.1884T). In order to evaluate the taxonomic position of phylogroup pratensis further, sequences of the 16S rRNA gene and five protein-coding housekeeping genes (atpD, gyrB, recA, rpoB and trpB) were determined for six strains of the phylogroup and type strains of 19 related species, which were selected by a BLAST search based on the sequences of the phylogroup. The 16S rRNA gene sequences for the phylogroup were identical to those of eight species belonging to cluster I of the S. griseus clade. However, in all the individual protein-coding gene and MLSA phylogenies, the phylogroup strains without exception formed an obviously distinct cluster that could be equated with a new species status. The phylogenetic evidence for the new species assignment was also supported by corresponding DNA–DNA hybridization values and by phenotypic characteristics. It is therefore proposed that the phylogroup should be classified as Streptomyces pratensis sp. nov., and the type strain is ch24T (=CGMCC 4.6829T = NRRL B-24916T).  相似文献   

4.
A group of four strains isolated from clams (Venerupis decussata and Venerupis philippinarum) in Galicia (NW Spain) were subjected to a polyphasic characterization, based on the phenotypic characteristics, the analysis of chemotaxonomic features, the sequencing of the 16S rRNA and five housekeeping (atpA, pyrH, recA, rpoA and rpoD) genes, as well as DNA–DNA hybridization (DDH). The analysis of the phenotypic and chemotaxonomic characteristics and the results of a phylogenetic study, based on the 16S rRNA gene sequence analysis and multilocus sequence analysis, clearly indicated that these strains belong to the genus Vibrio and were allocated between the Splendidus and Anguillarum clades showing a close relationship with the type strains of Vibrio tapetis (98.8 %), Vibrio pomeroyi (98.0 %) and Vibrio crassostreae (97.9 %). DNA–DNA hybridization results confirmed that these isolates constitute a new species. The name Vibrio cortegadensis sp. nov. is proposed with C 16.17T (=CECT 7227T=LMG 27474T) as the type strain.  相似文献   

5.
In this paper we analyze through a polyphasic approach several Bradyrhizobium strains isolated in Spain and Morocco from root nodules of Retama sphaerocarpa and Retama monosperma. All the strains have identical 16S rRNA genes and their closest relative species is Bradyrhizobium lablabi CCBAU 23086T, with 99.41% identity with respect to the strain Ro19T. Despite the closeness of the 16S rRNA genes, the housekeeping genes recA, atpD and glnII were divergent in Ro19T and B. lablabi CCBAU 23086T, with identity values of 95.71%, 93.75% and 93.11%, respectively. These differences were congruent with DNA–DNA hybridization analysis that revealed an average of 35% relatedness between the novel species and B. lablabi CCBAU 23086T. Also, differential phenotypic characteristics of the new species were found with respect to the already described species of Bradyrhizobium. Based on the genotypic and phenotypic data obtained in this study, we propose to classify the group of strains isolated from R. sphaerocarpa and R. monosperma as a novel species named Bradyrhizobium retamae sp. nov. (type strain Ro19T = LMG 27393T = CECT 8261T). The analysis of symbiotic genes revealed that some of these strains constitute a new symbiovar within genus Bradyrhizobium for which we propose the name “retamae”, that mainly contains nodulating strains isolated from Retama species in different continents.  相似文献   

6.
As part of a study carried out for detecting Arcobacter spp. in shellfish, three mussel isolates that were Gram-negative slightly curved rods, non-spore forming, showed a new 16S rDNA-RFLP pattern with a specific identification method for the species of this genus. Sequences of the 16S rRNA gene and those of the housekeeping genes rpoB, gyrB and hsp60 provided evidence that these mussel strains belonged to an unknown genetic lineage within the genus Arcobacter. The similarity between the 16S rRNA gene sequence of the representative strain (F79-6T) and type strains of the other Arcobacter species ranged between 94.1% with A. halophilus and 99.1% with the recently proposed species A. defluvii (CECT 7697T). DDH results between strain F79-6T and the type strain of the latter species were below 70% (53 ± 3.0%). Phenotypic characteristics together with MALDITOF mass spectra differentiated the new mussel strains from all other Arcobacter species. All the results indicate that these strains represent a new species, for which the name Arcobacter ellisii sp. nov. with the type strain F79-6T (=CECT 7837T = LMG 26155T) is proposed.  相似文献   

7.
Three novel Gram-positive, aerobic, actinobacterial strains, CF5/2T, CF5/1 and CF7/1, were isolated in 2007 during environmental screening of arid desert soil in the Sahara desert, Chad. Results from riboprinting, MALDI-TOF protein spectra and 16S rRNA sequence analysis confirmed that all three strains belonged to the same species. Phylogenetic analysis of 16S rRNA sequences with the strains’ closest relatives indicated that they represented a distinct species. The three novel strains also shared a number of physiological and biochemical characteristics distinct from previously named Geodermatophilus species. The novel strains’ peptidoglycan contained meso-diaminopimelic acid; their main phospholipids were phosphatidylcholine, phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylinositol and a small amount of phosphatidylglycerol; MK-9(H4) was the dominant menaquinone. The major cellular fatty acids were the branched-chain saturated acids iso-C16:0 and iso-C15:0. Galactose was detected as diagnostic sugar. Based on these chemotaxonomic results, 16S rRNA gene sequence analysis and DNA–DNA hybridization between strain CF5/2T and the type strains of Geodermatophilus saharensis, Geodermatophilus arenarius, Geodermatophilus nigrescens, Geodermatophilus telluris and Geodermatophilus siccatus, the isolates CF5/2T, CF5/1 and CF7/1 are proposed to represent a novel species, Geodermatophilus tzadiensis, with type strain CF5/2T = DSM 45416 = MTCC 11411 and two reference strains, CF5/1 (DSM 45415) and CF7/1 (DSM 45420).  相似文献   

8.
Gram-negative, facultatively anaerobic bacteria were isolated from symptomatic oak tissue in the UK and USA. Partial gyrB sequencing placed ten strains in the genus Brenneria, with B. goodwinii as the closest phylogenetic relative. The strains were investigated further using a polyphasic approach including MLSA (based on partial gyrB, rpoB, infB and atpD gene sequences), 16S rRNA gene sequencing, DNA–DNA relatedness studies and both phenotypic and chemotaxonomic assays. The MLSA and 16S rRNA gene analyses separated the strains into two groups based on origin, suggesting that they belong to Brenneria as two novel species. However, the DNA–DNA relatedness values revealed a closer relationship between the groups and indicated that they should belong to the same species. As the two groups of strains from the UK and USA can be differentiated from each other phenotypically and by ERIC PCR fingerprints, it is proposed to classify them as novel subspecies of a novel Brenneria species. The name Brenneria roseae sp. nov. (FRB 222T = LMG 27714T = NCPPB 4581T) is proposed, with Brenneria roseae subsp. roseae ssp. nov. (FRB 222T = LMG 27714T = NCPPB 4581T) for the strains from the UK and Brenneria roseae subsp. americana ssp. nov. (FRB 223T = LMG 27715T = NCPPB 4582T) for the strains from the USA.  相似文献   

9.
Three strains (JA349T, JA553T, JA439) of phototrophic sulphur bacteria were isolated from marine habitats of India. 16S rRNA gene sequence of the three strains clustered phylogenetically with members of the genus Marichromatium of the family Chromatiaceae belonging to the class Gammaproteobacteria. All the strains shared highest sequence similarity with the type strains of Marichromatium spp. (96-99% sequence similarity) and the new strains were characterized based on polyphasic taxonomy. Strains JA349T and JA553T can be distinguished from closest relative species of the genus Marichromatium with respect to distinct differences in cellular polar lipids, fatty acids and carbon/nitrogen sources utilization. Both strains were distinctly related (<50% based on DNA-DNA hybridization) with the type strains of the genus Marichromatium. Multilocus Sequence Analysis (MLSA) of the concatenated five protein coding genes (fusA, pufM, dnaK, recA, soxB) along with internal transcribed spacer (ITS; 16S-23S rRNA) had sequence similarity of less than 92% with the type strains of Marichromatium spp. Distinct phenotypic, chemotaxonomic and molecular differences allow the separation of strains JA349T and JA553T into new species of the genus Marichromatium for which, we propose the names Marichromatium litoris sp. nov. and Marichromatium chrysaorae sp. nov., respectively.  相似文献   

10.
Thirteen coagulase-negative, oxidase-negative, and novobiocin-susceptible staphylococci were isolated from human clinical specimens. The isolates were differentiated from known staphylococcal species on the basis of 16S rRNA, hsp60, rpoB, dnaJ, tuf, and gap gene sequencing, automated ribotyping, (GTG)5-PCR fingerprinting, and MALDI-TOF MS analysis. Phylogenetic analysis based on the 16S rRNA gene sequence indicated phylogenetic relatedness of the analyzed strains to Staphylococcus haemolyticus, Staphylococcus hominis, Staphylococcus devriesei, and Staphylococcus lugdunensis. DNA–DNA hybridization experiments between representative strains CCM 8418T, CCM 8421T, and the closest phylogenetic neighbors confirmed that the isolates represent novel Staphylococcus species, for which the name Staphylococcus petrasii sp. nov. is proposed. Genotypic and phenotypic analyses unambiguously split the strains into two closely related subclusters. Based on the results, two novel subspecies S. petrasii subsp. petrasii subsp. nov. and S. petrasii subsp. croceilyticus subsp. nov. are proposed, with type strains CCM 8418T (=CCUG 62727T) and CCM 8421T (=CCUG 62728T), respectively.  相似文献   

11.
Seventeen fructose-6-phosphate phosphoketolase-positive bacterial strains were isolated from the digestive tract of wild pigs (Sus scrofa). Most of them were identified as Bifidobacterium boum according to sequences of 16S rRNA gene. Two strains isolated from the small intestine content had unusual morphology of cells in comparison with bifidobacteria. Cells growing in liquid anaerobic media were regular shaped rods arranged mostly in pairs. These isolates showed relatively low 16S rRNA gene sequence similarities (maximum identity of 94%) to members of the family Bifidobacteriaceae. Nevertheless, phylogenetic analyses of 16S rRNA, hsp60 and xfp gene sequences revealed that these strains are more related to recently described Neoscardovia, Aeriscardovia and other scardovial genera, than to Bifidobacterium species. Partial gene sequences of other phylogenetic markers showed low (65.8–89.5%) similarities to genome sequences of bifidobacteria and Gardnerella vaginalis. The major fatty acids detected in cells of the representative strain DPTE4T were C16:0, C18:1, C14:0. The peptidoglycan type of the DPTE4T strain was A3β l-Orn(l-Lys)-l-Ser(l-Ala)-l-Ala2. Polar lipid analysis revealed two phosphoglycolipids and phospholipids, a glycolipid and diphosphatidylglycerol. The results of phylogenetic, genotypic and phenotypic analyses support the proposal of a novel taxa, Pseudoscardovia suis gen. nov., sp. nov. (type strain = DPTE4T = DSM 24744T = CCM 7942T).  相似文献   

12.
Bacterial strains from inoculated soybean field soil in Thailand were directly isolated using Bradyrhizobium japonicum selective medium (BJSM), on the basis of Zn2+ and Co2+ resistance of B. japonicum and B. elkanii. The isolates were classified into symbiotic and non-symbiotic groups by inoculation assays and Southern hybridization of nod and nif genes. In this study, a nearly full-length 16S rRNA gene sequence showed that the non-symbiotic isolates were more closely related to members of Rhodopseudomonas and to a number of uncultured bacterial clones than to members of Bradyrhizobium. Therefore, a polyphasic study was performed to determine the taxonomic positions of four representatives of the non-symbiotic isolates. Multilocus phylogenetic analysis of individual genes and a combination of the 16S rRNA and three housekeeping genes (atpD, recA and glnII) supported the placement of the non-symbiotic isolates in a different genus. The ability of heavy metal resistance in conjunction with phenotypic analyses, including cellular fatty acid content and biochemical characteristics, showed that the non-symbiotic isolates were differentiated from the other related genera in the family Bradyrhizobiaceae. Therefore, the non-symbiotic isolates represented a novel genus and species, for which the name Metalliresistens boonkerdii gen. nov., sp. nov. is proposed. The type strain is NS23 (= NBRC 106595T = BCC 40155T).  相似文献   

13.
Two isolates, with an optimum growth temperature of about 35-37 °C and an optimum pH for growth between 6.5 and 7.5, were recovered from a deep mineral water aquifer in Portugal. Strains form rod-shaped cells and were non-motile. These strains were non-pigmented, strictly aerobic, catalase and oxidase positive. Strains F2-233T and F2-223 assimilated carbohydrates, organic acids and amino acids. Major fatty acids were novel iso internally branched such as 17:0 iso 10-methyl, 17:0 iso and 15:0 iso 8-methyl. The peptidoglycan contained meso-diaminopimelic acid and menaquinone MK-7 was the major respiratory quinone. Analysis of the 16S rRNA gene shows the strains to cluster with species of the genera Thermoleophilum, Patulibacter, Conexibacter and Solirubrobacter to which they have pairwise sequence similarity in the range 87-88%. Based on 16S rRNA gene sequence analysis, physiological and biochemical characteristics we describe a new species of a novel genus represented by strain F2-233T (=CECT 7815T = LMG 26412T) for which we propose the name Gaiella occulta gen. nov., sp. nov. We also propose that this organism represents a novel family named Gaiellaceae fam. nov. of a novel order named Gaiellales ord. nov.  相似文献   

14.
Three halophilic archaea, strains B-1T, B-3 and B-4, were isolated from evaporitic salt crystals from Namhae, Korea. Cells of the strains were Gram-stain-negative, motile and pleomorphic, and colonies were red-pigmented. The three isolates had identical 16S rRNA gene sequences and formed a tight phylogenetic clade with Halogranum rubrum RO2-11T in the genus Halogranum, showing 99.5% sequence similarity. The next most closely related species were Halogranum amylolyticum and Halogranum gelatinilyticum (97.4 and 96.3% similarity to the respective type strains). The phylogeny based on the full-length RNA polymerase subunit B′ gene (rpoB′) was in agreement with the 16S rRNA gene sequence analysis, but allowed better discrimination. DNA-DNA hybridization between a representative strain (B-1T) and the type strains of Hgn. rubrum, Hgn. amylolyticum and Hgn. gelatinilyticum revealed less than 40% relatedness. Polar lipid analysis showed that the three isolates contained phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester and three glycolipids. Combined genotypic and phenotypic data supported the conclusion that strains B-1T, B-3 and B-4 represent a novel species of the genus Halogranum, for which the name Halogranum salarium sp. nov. is proposed. The type strain is B-1T (=KCTC 4066T = DSM 23171T).  相似文献   

15.
The taxonomic positions of five Gram-negative, non-spore-forming and non-motile bacterial strains isolated from the rhizosphere of sand dune plants were examined using a polyphasic approach. The analysis of the 16S rRNA gene sequence indicated that all of the isolates fell into four distinct phylogenetic clusters belonging to the genus Chryseobacterium of the family Flavobacteriaceae. The 16S rRNA gene sequence similarities of isolates to mostly related type strains of Chryseobacterium ranged from 97.5% to 98.5%. All strains contained MK-6 as the predominant menaquinone, and iso-C15:0, iso-C17:0 3-OH and a summed feature of iso-C15:0 2-OH and/or C16:1 ω7c as the dominant fatty acids. Combined phenotypic, genotypic and chemotaxonomic data supported that they represented four novel species in the genus Chryseobacterium, for which the names Chryseobacterium hagamense sp. nov. (type strain RHA2-9T=KCTC 22545T=NBRC 105253T), Chryseobacterium elymi sp. nov. (type strain RHA3-1T=KCTC 22547T=NBRC 105251T), Chryseobacterium lathyri sp. nov. (type strain RBA2-6T=KCTC 22544T=NBRC 105250T), and Chryseobacterium rhizosphaerae sp. nov. (type strain RSB3-1T=KCTC 22548T=NBRC 105248T) are proposed.  相似文献   

16.
A halophilic, aerobic Gram-negative bacterium, designated strain CVS-6T, was isolated from a sea salt evaporation pond on the Island of Sal in the Cape Verde Archipelago. Phylogenetic analysis of the 16S rRNA gene sequence revealed a clear affiliation of the organism with members of the family Idiomarinaceae. Sequence similarities between CVS-6T and the type strains of the species of the genera Pseudidiomarina and Idiomarina ranged from 93.7% to 96.9%. The major isoprenoid quinone was ubiquinone 8 (Q-8). The major cellular fatty acids were 15:0 iso (21.8%), 17:0 iso (12.5%), 17:1 iso ω9c (10.7%), and 16:1 ω7c (10.6%). The DNA G+C content was 51.6 mol%. The species represented by strain CVS-6T could be distinguished from the species of the genera Pseudidiomarina and Idiomarina; however, it was not possible to distinguish both genera from each other using the phenotypic or chemotaxonomic characteristics examined. Consequently, we propose that the species classified in the genus Pseudidiomarina should be transferred to the genus Idiomarina. We also propose that, on the basis of physiological and biochemical characteristics, strain CVS-6T (=LMG 23123=CIP 108836) represents a new species which we name Idiomarina insulisalsae.  相似文献   

17.
Two Gram-staining-negative, moderately halophilic bacteria, strains M1-18T and L1-16, were isolated from a saltern located in Huelva (Spain). They were motile, strictly aerobic rods, growing in the presence of 3–25% (w/v) NaCl (optimal growth at 7.5–10% [w/v] NaCl), between pH 4.0 and 9.0 (optimal at pH 6.0–7.0) and at temperatures between 15 and 40 °C (optimal at 37 °C). Phylogenetic analysis based on 16S rRNA gene sequence comparison showed that both strains showed the higher similarity values with Chromohalobacter israelensis ATCC 43985T (95.2–94.8%) and Chromohalobacter salexigens DSM 3043T (95.0–94.9%), and similarity values lower than 94.6% with other species of the genera Chromohalobacter, Kushneria, Cobetia or Halomonas. Multilocus sequence analysis (MLSA) based on the partial sequences of atpA, rpoD and secA housekeeping genes indicated that the new isolates formed an independent and monophyletic branch that was related to the peripheral genera of the family Halomonadaceae, Halotalea, Carnimonas and Zymobacter, supporting their placement as a new genus of the Halomonadaceae. The DNA–DNA hybridization between both strains was 82%, whereas the values between strain M1-18T and the most closely related species of Chromohalobacter and Kushneria were equal or lower to 48%. The major cellular fatty acids were C18:1ω7c/C18:1ω6c, C16:0, and C16:1ω7c/C16:1ω6c, a profile that differentiate this new taxon from species of the related genera. We propose the placement of both strains as a novel genus and species, within the family Halomonadaceae, with the name Larsenia salina gen. nov., sp. nov. The type strain is M1-18T (= CCM 8464 = CECT 8192T = IBRC-M 10767T = LMG 27461T).  相似文献   

18.
Comparison of HaeIII- and HpaII-restriction profiles of PCR-amplified 16S-23S rDNA ITS regions of Gluconacetobacter sp. LMG 1529T and SKU 1109 with restriction profiles of reference strains of acetic acid bacteria described by Tr?ek and Teuber [34] revealed the same but unique restriction profiles for LMG 1529T and SKU 1109. Further analyses of nearly complete 16S rRNA gene sequences, nearly complete 16S-23S rDNA ITS sequences, as well as concatenated partial sequences of the housekeeping genes dnaK, groEL and rpoB, allocated both strains to a single phylogenetic cluster well separated from the other species of the genus Gluconacetobacter. DNA–DNA hybridizations confirmed their novel species identity by 73% DNA–DNA relatedness between both strains, and values below the species level (<70%) between SKU 1109 and the type strains of the closest phylogenetic neighbors. The classification of strains LMG 1529T and SKU 1109 into a single novel species was confirmed also by AFLP and (GTG)5-PCR DNA fingerprinting data, as well as by phenotypic data. Strains LMG 1529T and SKU 1109 can be differentiated from their closely related Gluconacetobacter species, Gluconacetobacter entanii and Gluconacetobacter hansenii, by their ability to form 2-keto-d-gluconic acid from d-glucose, their ability to use d-mannitol, d-gluconate and glycerol as carbon source and form acid from d-fructose, and their ability to grow without acetic acid. The major fatty acid of LMG 1529T and SKU 1109 is C18:1ω7c (60.2–64.8%). The DNA G + C content of LMG 1529T and SKU 1109 is 62.5 and 63.3 mol% respectively. The name Gluconacetobacter maltaceti sp. nov. is proposed. The type strain is LMG 1529T (= NBRC 14815T = NCIMB 8752T).  相似文献   

19.
Three Gram-stain negative, aerobic, non-motile, non-spore-forming, rod-shaped bacterial strains, PYM5-11T, RaM5-2 and PYM5-8, were isolated from the drinking water supply system of Budapest (Hungary) and their taxonomic positions were investigated by a polyphasic approach. All three strains grew optimally at 20-28 °C and pH 5-7 without NaCl. The G+C content of the DNA of the type strain was 65.4 mol%. On the basis of 16S rRNA gene sequence analysis, the isolates showed 94.5-94.9% sequence similarity to the type strain of Dokdonella koreensis and a similarity of 93.0-94.1% to the species of the genera Aquimonas and Arenimonas. The major isoprenoid quinone of the strains was ubiquinone Q-8. The predominant fatty acids were iso-C15:0, iso-C17:1ω9c, C16:1ω7c, and C16:0. Diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and phosphatidylmonomethylethanolamine, as well as several unidentified aminolipids and phospholipids were present. The 16S rRNA gene sequence analysis, the predominant fatty acids, the polar lipid composition, RiboPrint patterns, physiological and biochemical characteristics showed that the three strains were related but distinct from the type strains of the four recognized species of the genus Dokdonella, and indicated that the strains represented a new genus within the Gammaproteobacteria. The strain PYM5-11 (=DSM 21667T=NCAIM B 02337T) is proposed as the type strain of a new genus and species, designated as Tahibacter aquaticus gen. nov., sp. nov.  相似文献   

20.
Two isolates, designated PRQ-67T and PRQ-68, with an optimum growth temperature of about 50 °C, growth range in medium containing between 1 and 9% NaCl and an optimum pH for growth between 7.5 and 8.0, were recovered from a shallow marine hot spring on a beach, Praia do Fogo, at Ribeira Quente, on the Island of São Miguel in the Azores. Comparisons of 16S rRNA gene sequences show these strains to be most closely related (93.1–94.7% similarity) to species of the genus Amaricoccus, within the family Rhodobacteraceae. Strains are non-pigmented and form non-motile pleomorphic cells that stain Gram-negative, are aerobic, oxidase and catalase positive. The major fatty acids are C18:1ω7c and C18:1ω7c 11-methyl. Ubiquinone 10 is the major respiratory quinone. Major polar lipids are phosphatidylcholine, phosphatidylglycerol and one aminolipid. Based on 16S rRNA gene sequence analysis, physiological and biochemical characteristics we describe a new species of a novel genus represented by strain PRQ-67T (=DSM 22673T = LMG 25334T) for which we propose the name Oceanicella actignis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号