首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Initiation of synthesis of the structural proteins of Semliki Forest virus.   总被引:6,自引:0,他引:6  
Insertion of phage λ DNA into the normal attachment site of the DNA of the host Escherichia coli has been studied by ultracentrifugation analysis of the conversion of covalent circles of F′450 (F′gal attλ bio) to F′450(λ) circles. We have found that integration proceeds at the normal rate if, in addition to the int gene product and a proper combination of phage and bacterial attachment sites, a large pool of λ DNA and some activity of the excision gene xis are present. In addition, turnoff of both phage DNA synthesis and xis gene activity are required.  相似文献   

2.
The replication of Semliki Forest virus requires four nonstructural proteins (nsP1 to nsP4), all derived from the same polyprotein. One of these, nsP2, is a multifunctional protein needed in RNA replication and in the processing of the nonstructural polyprotein. On the basis of amino acid sequence homologies, nsP2 was predicted to possess nucleoside triphosphatase and RNA helicase activities. Here, we report the engineered expression in Escherichia coli of nsP2 and of an amino-terminal fragment of it by use of the highly efficient T7 expression system. Both polypeptides were produced as fusion proteins with a histidine tag at the amino terminus and purified by immobilized-metal affinity chromatography. The two recombinant proteins exhibited ATPase and GTPase activities, which were further stimulated by the presence of single-stranded RNA. The activities were not found in similarly prepared fractions from uninduced control cells or cells expressing an unrelated polypeptide. Radiolabeled ribonucleoside triphosphates could be cross-linked to both the full-length and the carboxy-terminally truncated nsP2 protein, and both polypeptides had RNA-binding capacity. We also expressed and purified an nsP2 variant which had a single amino acid substitution in the nucleotide-binding motif (Lys-192-->Asn). No nucleoside triphosphatase activity was associated with this mutant protein.  相似文献   

3.
The nucleotide sequence coding for the nonstructural proteins of Semliki Forest virus has been determined from cDNA clones. The total length of this region is 7381 nucleotides, it contains an open reading frame starting at position 86 and ending at an UAA stop codon at position 7379-7381. This open reading frame codes for a 2431 amino acids long polyprotein, from which the individual nonstructural proteins are formed by proteolytic processing steps, so that nsPl is 537, nsP2 798, nsP3 482 and nsP4 614 amino acids. In the closely related Sindbis and Middelburg viruses there is an opal stop codon (UGA) between the genes for nsP3 and nsP4. Interestingly, no stop codon is found in frame in this region of the Semliki Forest virus 42S RNA. In other aspects the amino acid sequence homology between Sindbis, Middelburg and Semliki Forest virus nonstructural proteins is highly significant.  相似文献   

4.
The C-terminal cysteine protease domain of Semliki Forest virus nonstructural protein 2 (nsP2) regulates the virus life cycle by sequentially cleaving at three specific sites within the virus-encoded replicase polyprotein P1234. The site between nsP3 and nsP4 (the 3/4 site) is cleaved most efficiently. Analysis of Semliki Forest virus-specific cleavage sites with shuffled N-terminal and C-terminal half-sites showed that the main determinants of cleavage efficiency are located in the region preceding the cleavage site. Random mutagenesis analysis revealed that amino acid residues in positions P4, P3, P2, and P1 of the 3/4 cleavage site cannot tolerate much variation, whereas in the P5 position most residues were permitted. When mutations affecting cleavage efficiency were introduced into the 2/3 and 3/4 cleavage sites, the resulting viruses remained viable but had similar defects in P1234 processing as observed in the in vitro assay. Complete blockage of the 3/4 cleavage was found to be lethal. The amino acid in position P1' had a significant effect on cleavage efficiency, and in this regard the protease markedly preferred a glycine residue over the tyrosine natively present in the 3/4 site. Therefore, the cleavage sites represent a compromise between protease recognition and other requirements of the virus life cycle. The protease recognizes at least residues P4 to P1', and the P4 arginine residue plays an important role in the fast cleavage of the 3/4 site.  相似文献   

5.
The proteolytic processes involved in the cotranslational production of the Semliki Forest virus proteins p62, 6K, and E1 from a common precursor polypeptide were analyzed by an in vitro translation-translocation assay. By studying the behavior of wild-type and mutant variants of the polyprotein, we show that the signal sequences responsible for membrane translocation of the 6K and E1 proteins reside in the C-terminal regions of p62 and 6K, respectively. We present evidence suggesting that the polyprotein is processed on the luminal side by signal peptidase at consensus cleavage sites immediately following the signal sequences. Our results also lead us to conclude that the 6K protein is a transmembrane polypeptide with its N terminus on the luminal side of the membrane (type I). Thus, the production of all three membrane proteins is directed by alternating signal and stop-transfer (anchor) sequences that function in translocation and cleavage of the virus precursor polyprotein. This also shows conclusively that internally located signal sequences can be cleaved by signal peptidase.  相似文献   

6.
Nonstructural protein 3 (Nsp3) is an essential subunit of the alphavirus RNA replication complex, although its specific function(s) has yet to be well defined. Previously, it has been shown that Semliki Forest virus Nsp3 (482 amino acids) is a phosphoprotein, and, in the present study, we have mapped its major phosphorylation sites. Mass spectrometric methods utilized included precursor ion scanning, matrix-assisted laser desorption/ionization mass spectrometry used in conjunction with on-target alkaline phosphatase digestions, and tandem mass spectrometry. Two-dimensional peptide mapping was applied to separate tryptic (32)P-labeled phosphopeptides of Nsp3. Radiolabeled peptides were then subjected to Edman sequencing, and phosphoamino acid analysis. In addition, radiolabeled Nsp3 was cleaved successively with cyanogen bromide and trypsin, and microscale iron-chelate affinity chromatography was used to enrich phosphopeptides. By combining these methods, we showed that Nsp3 is phosphorylated on serine residues 320, 327, 332, 335, 356, 359, 362, and 367, and is heavily phosphorylated on peptide Gly(338)-Lys(415), which carries 7-12 phosphates distributed over its 13 potential phosphorylation sites. These analytical findings were corroborated by constructing a Nsp3 derivative devoid of phosphorylation. The results represent the first determination of phosphorylation sites of an alphavirus nonstructural protein, but the approach can be utilized in phosphoprotein analysis in general.  相似文献   

7.
It has been shown that isolated nucleocapsids of Semliki Forest virus (SFV) contract upon low pH exposure (Soederlundet al., 1972). This contraction of the nucleocapsids has been used as an indicator to demonstrate that the spike proteins of SFV can translocate protons into the interior of the virus particle upon low pH (5.8) exposure. Spikeless virus particles obtained after bromelain digestion, which were used as a control, did not translocate protons. This implies that the ectodomain of the spike plays a crucial role for the proton translocation.  相似文献   

8.
About 50% of Semliki Forest virus-specific nonstructural protein nsP2 is associated with the nuclear fraction in virus-infected BHK cells. Transport into the nucleus must be specific, since only trace amounts of nsP3 and nsP4 and about 13% of nsP1, all derived from the same polyprotein, were found in the nucleus. Subfractionation of [35S]methionine-labeled Semliki Forest virus-infected cells showed that 80 to 90% of the nuclear nsP2 was associated with the nuclear matrix. Indirect immunofluorescence, with anti-nsP2 antiserum, showed the most intensive staining of structures which by Nomarski optics appeared to be nucleoli. In the presence of 1 to 5 micrograms of dactinomycin per ml the nuclei were stained evenly and no nucleoli could be found. Transport of nsP2 into the nucleus occurred early in infection and was fairly rapid. A cDNA encoding the complete nsP2 was isolated by the polymerase chain reaction technique and ligated into a simian virus 40 expression vector derivative. When BHK cells were transfected with this pSV-NS2 vector by the lipofection procedure, nsP2 was expressed in about 1 to 5% of the cells, as shown by indirect immunofluorescence. In positively transfected cells the immunofluorescence stain was most intensive in the nucleoli. Thus, Semliki Forest virus-specific nsP2 must have information which directs it into the nuclear matrix and, more specifically, into the nucleoli.  相似文献   

9.
BHK cells, late in infection with Semliki Forest virus, were found to contain a small virus-specific polypeptide not found in the mature virion. This polypeptide had an apparent molecular weight of 6,000 and is referred to here as the 6K protein. No [2-3H]mannose was incorporated into 6K, and hence it does not appear to be a glycoprotein. This protein appears to be a primary translation product of the subgenomic 26S mRNA, which encodes the viral structural proteins. The genes encoding the viral structural proteins are arranged on the message in the order of 5'-C-E3-E2-E1-3'. We have found that the gene coding for 6K is located to the 3' side of the gene encoding E2. Subcellular fractionation of pulse-labeled cells infected with Semliki Forest virus demonstrated that 6K, like the viral glycoproteins p62 and E1, was present predominantly in the rough microsomal membrane fraction. 6K appears to be analogous, therefore, to the nonstructural 4.2K protein present in cells infected with Sindbis virus.  相似文献   

10.
Increasing concentrations of Triton X100 have been found to cause stepwise dissociation of the membrane of Semliki Forest virus. The final stage of the breakdown process leads to solubilization of the membrane proteins which can be separated from the membrane lipids and the viral nucleocapsid by density gradient centrifugation in the presence of 0.05% Triton X100. Two different forms of Semliki Forest virus protein have been observed with sedimentation coefficients of approximately 4 S and 23 S. The 4 S aggregate appears to consist of two polypeptide chains complexed with about 75 molecules of Triton X100. The 23 S form is a rosette-like aggregate containing about 16 polypeptide chains and about 260 molecules of Triton X100. Sucrose alters the equilibrium between the 4 S and 23 S forms: removal of sucrose leads to association of the 4 S form to the 23 S form and addition of sucrose to dissociation.A scheme for the dissociation of the Semliki Forest virus membrane is presented which is discussed with reference to other biological membranes. It is suggested that Triton X100 and deoxycholate solubilize amphipathic membrane proteins by binding to the hydrophobic segments of these proteins.  相似文献   

11.
A total of 115 clones of Aedes albopictus cells were examined for their response to infection with Semliki Forest virus. Virus yield and cytopathology showed a bimodal distribution. More than 68% of the clones gave low yields of virus (between 8 x 10(6) and 2 x 10(8) PFU/ml) with no discernable cytopathology, and 30% gave high yields of virus (between 1 x 10(9) and 8 x 10(9) PFU/ml) and showed moderate to severe cytopathology. To determine the level at which restriction in virus growth occurs in the low-virus-producing clones, we compared the nature and extent of several virus-directed events in selected low-virus-producing clones with the same events in high-virus-producing clones. Specifically, we compared virus-specified polypeptide synthesis, positive- and negative-strand RNA synthesis, adsorption, uncoating, and transfection with virion 42S RNA. These studies showed that whereas events before negative-strand RNA synthesis and all subsequent virus-specified events were markedly reduced in the low-virus-producing lines, compared with the high-virus-producing lines. Thus, the restriction in virus growth in the low-virus-producing lines occurs at the level of synthesis of negative-strand RNA. The consequence of this restriction in an early step in the virus multiplication cycle is discussed in terms of the survival of invertebrate cells after alphavirus infection.  相似文献   

12.
The phospholipids of Semliki Forest virus grown in mosquito cells (Aedes albopictus) were analyzed radiochemically. The ratio of 32P-labeled phospholipids to total 32P-label in the virus grown in mosquito cells equilibrated with radiophosphorus was 0.558 +/- 0.021. This value was similar to the lipid phosphorus: total phosphorus ratio (0.539 +/- 0.025) of the virus grown in the BHK cells. It is concluded that an average virion of the two types of Semliki Forest virus contains approximately the same number of phospholipid molecules. Phosphatidylethanolamine (62%), phosphatidylcholine (14%), phosphatidylserine (10%) and the ethanolamine analogue of sphingomyelin, ceramide phosphoethanolamine (9%) were the principal phospholipids in the mosquito cell-grown virus. Comparison with the lipids of virus grown in hamster cells (BHK cells) revealed that two-thirds of the polar structures were dissimilar. Surface labeling with formylmethionyl [35S] sulfone methylphosphate suggests that a relatively large fraction of ceramide phosphoethanolamine is located in the outer half of the lipid bilayer of the viral membrane.  相似文献   

13.
Processing of the p62 envelope precursor protein of Semliki Forest virus   总被引:5,自引:0,他引:5  
The spike protein of Semliki Forest virus is composed of three subunits, E1, E2, and E3, which mediate the fusion of the virus membrane with that of the host cell. E2 and E3 are synthesized as a precursor, p62, which is cleaved post-translationally after an Arg-His-Arg-Arg sequence. In vitro mutagenesis of a cDNA clone of the spike proteins was used to specifically alter amino acids in this cleavage site. Cleavage of p62 was completely blocked by mutation of the proximal Arg residue to Phe, without affecting transport or surface expression of the spike protein. The cleavage mutation resulted in the loss of spike protein fusion activity within the physiological pH range. Fusion activity was restored by cleavage with exogenous chymotrypsin and showed the same low pH dependence as that of wild type. The cleavage sensitivity of newly synthesized p62 was investigated by pulse-chase analysis and chymotrypsin treatment in detergent solution. p62 was sensitive to cleavage immediately following its synthesis. Protein trapped in the rough endoplasmic reticulum or Golgi apparatus by carbonyl cyanide m-chlorophenylhydrazone, monensin, or Brefeldin A treatment was also fully sensitive to cleavage. These results suggest that p62 does not require an organelle-mediated conformational change for processing. Thus, in vivo, the site of p62 processing is probably controlled by the location or activity of the cleavage enzyme, rather than the sensitivity of the p62 substrate.  相似文献   

14.
Binding of Semliki Forest virus and its spike glycoproteins to cells.   总被引:8,自引:0,他引:8  
We have studied the binding of the Semliki Forest virus and its isolated spike glycoproteins, in the form of water-soluble octameric complexes, to various cells at 5 degrees C. The number of viruses bound per cell increased strongly with increasing free concentrations of virus up to about 0.2 nM. At higher concentrations smaller increases in binding were observed but saturation was not achieved. The number of viruses bound at a given free concentration was widely different for different cells. For some cells the binding of the virus was maximal at pH 6.8 with little decrease at lower pH, for other cells it was maximal around pH 6.0. The spike protein complexes were used at 100 times higher molar concentrations than the virus. The binding increased strongly with increasing free concentrations up to about 50 nM and saturation was obtained at higher concentrations. Up to 1.3 X 10(6) spike protein complexes could be bound per cell but great variation could be seen between different cell types. For all cells maximal binding was found below pH 6.0. Together with earlier observations, our results suggest that the virus can bind to a cell by two different modes. Around neutral pH the virus binds to specific glycoproteins and at low pH unspecifically to the lipids of the plasma membrane. The possible physiological roles of these two types of binding are discussed.  相似文献   

15.
Semliki Forest virus was grown in BHK cells and labeled in vivo with radioactive monosaccharides. Pronase digests of the virus chromatographed on Bio-Gel P6 revealed glycopeptides of A-type and B-type. (For the nomenclature see Johnson, J. and Clamp, J.R. (1971) Biochem. J. 123, 739-745.) The former was labeled with [3H]fucose, [3H]galactose, [3H]mannose and [14C]glucosamine, the latter only with [3H]mannose and [14C]glucosamine. The three envelope glycoproteins E1, E2 and E3 were isolated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and subjected to pronase digestion. The glycoproteins E1 and E3 revealed glycopeptides of A-type. E2 revealed glycopeptides of B-type. E2 yielded additionally a glycopeptide (Mr3100) which was heavily labeled from [3H]galactose, but only marginally from [14C]glucosamine, [3H]fucose and [3H]mannose. Whether this glycopeptide belongs to the A-type or not remains uncertain. The apparent molecular weights of the A-type units measured by gel filtration were 3400 in E1 and 4000 in E3; the B-type unit of E2 had an apparent molecular weight of 2000. Combined with the findings of our earlier chemical analysis these data suggest that E1 and E3 contain on the average one A-type unit; E2 probably contains one 3100 dalton unit plus one or two B-type units.  相似文献   

16.
[3H]Mannose- and [3H]glucosamine-labeled lactosamine-type glycopeptides of Semliki Forest virus membrane proteins were stripped of their fucose, sialic acid, galactose and distal N-acetylglucosamine residues and subsequently digested with endo-beta-D-N-acetylglucosaminidase D from Diplococcus pneumoniae. Two products were obtained, a neutral tetrasaccharide and a residual glycopeptide fraction. The tetrasaccharide appeared to consist of two alpha-mannose residues, one beta-mannose residue and one N-acetylglucosamine residue located at the reducing terminus of the molecule. Results of Smith degradation, beta-elimination and acetolysis were compatible with four structures; (1) Man alpha-1-3[Man alpha 1-6]Man beta 1-4GlcNAc; (2) Man alpha 1-3Man beta 1-4[Man alpha 1-6] GlcNAc; (3) Man alpha 1-3Man alpha 1-4[Man beta 1-6]GlcNAc, or (4) Man alpha 1-6Man alpha 1-3Man beta-1-4GlcNAc. The reactivity of the viral glycopeptides with endo-beta-D-N-acetylglucosaminidase D and the chromatographic properties of the liberated core tetrasaccharide suggest that its most likely structure was Man alpha 1-3[Man alpha-1-6]Man beta 1-4GlcNAc. The core tetrasaccharide of glycans of membrane protein E3, one of the viral membrane proteins obtained from infected cell, was similar to that of the virion glycans.  相似文献   

17.
Chemical cross-linking of the proteins of Semliki Forest virus has been performed in virus particles and in baby hamster kidney-21 (BHK-21) cells infected with Semliki Forest virus. Most of the studies were done with the reversible cross-linkers dimethyl 3,3'-thiobis(propionimidate) and dithiobis(succinimidyl propionate). The identity of the cross-linked species was determined by two-dimensional electrophoresis. The results with virus particles showed extensive cross-linking of the nucleocapsid proteins and the formation of dimers of the two large envelope glycoproteins (E1 and E2). Similar patterns for the cross-linked virus proteins were observed in plasma membranes isolated from BHK-21 cells infected with Semliki Forest virus. No cross-linking of the third envelope glycoprotein (E3) was observed. Also, there was no evidence for significant cross-linking between host and virus proteins. The addition of colchicine, a drug that disrupts microtubules, to infected BHK-21 cells had no effect on the cross-linking of virus proteins in the plasma membrane. In contrast, dibucaine, a local anesthetic, greatly inhibited the formation of envelope dimers (E1-E2) in plasma membranes, but not in virus particles. The implication of these results for the involvement of the cytoskeletal system in the morphogenesis of Semliki Forest virus is discussed.  相似文献   

18.
Cells preinfected with fowl plague virus followed by treatment with actinomycin D are a suitable system for studying early protein synthesis in cells infected with Semliki forest virus. One and one-half hours after superinfection, three new nonstructural proteins (NVP) were detected: NVP 145, NVP, 112, and NVP 65. They appeared in parallel with a low incorporation of mannose at the beginning of the infectious cycle. Behavior on chasing suggested a precursor relationship of NVP 112 to the envelope glycoproteins. Two kinds of NVP 65 are described, both of which are varieties of NVP 68 with an incomplete mannose content. One type, detected early after infection, was converted into NVP 68 by supplementary glycosylation. The second, late type was stable. It contains fucose and resembles the NVP 65 observed after impairment of glycosylation. The mechanism of NVP 68 glycosylation is discussed. The presence of the complete carbohydrate moiety is crucial for the cleavage of NVP 68 into the envelope proteins E2 and E3 and, thus, for virus maturation. Only the complete form of NVP 68 was precipitated by envelope-specific antisera. A large production of NVP 78 is a further feature of the early events in infected cells. It is not related to the structural proteins.  相似文献   

19.
The synthesis of the nonstructural (ns) proteins of Semliki Forest virus was studied in vivo. The fourth ns protein, ns60, was identified and isolated. The order of translation (NH2-ns70-ns86-ns60-ns72-COOH) was determined by using various labeling procedures after or in the presence of a hypertonic block of translation initiation. A sequential labeling procedure was devised to specifically label defined segments of the polyprotein. The specific labeling procedures allowed isolation of the four ns proteins in radiochemically pure form by gradient polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The four ns proteins were shown to have different primary structures by digestion with V8 protease of Staphylococcus aureus. The processing of the ns polyprotein and the stability of the mature ns proteins were studied by pulse-chase experiments. The cleavage of each of the proteins from the polyprotein took place within 2 to 3 min after the translation of the polypeptide chain. The N-terminal protein, ns70, appeared in its mature form later than ns86, which follows it in the polyprotein, suggesting that ns70 undergoes a post-translational modification. The migration of the C-terminal protein, ns72, immediately after a pulse was slightly faster than after a chase, suggesting that ns72 also undergoes a post-translational modification other than a cleavage. The half-life of ns72 was shorter than that of the other ns proteins.  相似文献   

20.
The synthesis and processing of feline leukemia virus (FeLV) polypeptides were studied in a chronically infected feline thymus tumor cell line, F-422, which produces the Rickard strain of FeLV. Immune precipitation with antiserum to FeLV p30 and subsequent sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) were used to isolate intracellular FeLV p30 and possible precursor polypeptides. SDS-PAGE of immune precipitates from cells pulse-labeled for 2.5 min with [35S]methionin revealed the presence of a 60,000-dalton precursor polypeptide (Pp60) as well as a 30,000-dalton polypeptide. When cells were grown in the presence of the proline analogue L-azetidine-2-carboxylic acid, a 70,000-dalton precursor polypeptide (Pp70) was found in addition to Pp60 after a 2.5-min pulse. The cleavage of Pp60 could be partially inhibited by the general protease inhibitor phenyl methyl sulfonyl fluoride (PMSF). This partial inhibition was found to occur only if PMSF was present during pulse-labeling. Intracellular Pp70 and Pp60 and FeLV virion p70, p30, p15, p11, and p10 were subjected to tryptic peptide analysis. The results of this tryptic peptide analysis demonstrated that intracellular Pp70 and virion p70 were identical and that both contained the tryptic peptides of FeLV p30, p15, p11, and p10. Pp60 contained the tryptic peptides of FeLV P30, P15, and P10, but lacked the tryptic peptides of P11. The results of pactamycin gene ordering experiments indicated that the small structural proteins of FeLV are ordered p11-p15-p10-p30. The data indicate that the small structural proteins of FeLV are synthesized as part of a 70,000-dalton precursor. A cleavage scheme for the generation of FeLV p70, p30, p15, p11, and p10 from precursor polypeptides is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号