首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Estrous cycles of 10 postpartum cyclic Holstein cows were synchronized using prostaglandin f(2alpha) (PGF(2alpha)) given twice 12 d apart to study the relationship of the onset of estrus, body temperature, milk yield, luteinizing hormone (LH) and progesterone concentration to ovulation. Blood samples and body temperatures (vaginal and rectal) were taken every 4 h until ovulation, starting 4 h prior to the second PGF(2alpha) treatment. All cows were observed for estrus following the second administration of PGF(2alpha). Ultrasound scanning of the ovaries commenced at standing estrus and thereafter every 2 h until the disappearance of the fluid filled preovulatory follicle (ovulation). Two cows failed to ovulate and became cystic following the second PGF(2alpha) treatment. The remaining eight cows exhibited a decline in progesterone to <1.0 ng/ml within 28 h, standing estrus and a measurable rise (> 1.0 degrees C) in vaginal but not rectal temperature, and ovulated 90 +/- 10 h after the second PGF(2alpha) treatment. Onset of standing estrus, LH peak and vaginal temperature were highly correlated (P<0.05) with time of ovulation (0.82, 0.81 and 0.74, respectively). Intervals to ovulation tended to depend upon parity. Pluriparous (n = 4) and biparous (n = 4) cows ovulated within 24 and 30 +/- 3 h from the onset of standing estrus; 22 and 31 +/- 2 h from the LH peak; and 22 and 27 +/- 3 h from peak vaginal temperature (mean +/- standard error of the mean), respectively. The results indicated that the onset of standing estrus and rise in vaginal temperature are good practical parameters for predicting ovulation time in dairy cattle.  相似文献   

2.
The first experiment was a 2 x 2 factorial experiment with calf removal (none or short-term) and method of GnRH administration (intramuscularly in saline or subcutaneously in gelatin capsules) as main effects. The durations of the GnRH-induced LH surges were similar among groups but the LH surges were delayed in the cows that received GnRH subcutaneously in gelatin capsules. Calf removal enhanced the GnRH-induced LH release for cows administered GnRH subcutaneously in a gelatin capsule but not for cows administered GnRH intramuscularly in saline. In the second experiment, 191 postpartum suckled beef cows were administered two injections of prostaglandin F(2)alpha(PGF(2)alpha) 11 days apart. After the second PGF(2)alpha injection, the cows were assigned to a 2 x 2 factorial experiment as in Experiment 1 plus one control group. Short-term calf removal (47 h) began 28 h after the second PGF(2)alpha injection. GnRH was administered 30 h after the time of calf removal. The number of cows that ovulated following the time of the GnRH treatment, the number that had abnormal luteal phases and the first-service pregnancy rates among treatment groups within the anestrous and cyclic cows classifications were not significantly different. However, several effects were detected and are reported.  相似文献   

3.
To investigate the effects of prostaglandin (PGF 2alpha) plus GnRH at different stages of the luteal phase 13 ewes received PGF 2alpha on Day 9 of the synchronized cycle, followed 36 h later by GnRH. This control regimen resulted in ovulation and normal corpus luteum (CL) function. In the next cycle, the ewes were treated simultaneously with PGF 2alpha and GnRH either on Day 4 (early, n = 7) or Day 9 (late, n = 6). Ovarian activity was monitored daily by ultrasonography, and blood samples were obtained to monitor hormonal patterns. Size of the largest follicle present when GnRH was administered was similar in all groups, but the preceding growth rate was greatest for the early group. In the 36 h after injection of PGF 2alpha, serum progesterone (P4) had declined to basal levels in the control cycles when GnRH was administered, but P4 concentrations were higher in the early group and were highest in the late group when the GnRH was administered with PGF 2alpha. The LH surges induced by GnRH were highest in the control cycles, and were lower in the 2 treated groups. In the early group, 6 of 7 ewes demonstrated ovulation within 48 h of GnRH, resulting in the formation of normal CL. In the late group, ovulation was delayed for about 5 d in 4 of 6 ewes, and subsequent luteal function was normal; no ovulation was detected in the other 2 ewes of this group, but the follicles became luteinized, resulting in a normal P4 profile in one and subnormal in the other. These results suggest that follicles present during the early luteal phase are capable of ovulating and forming fully functional CL in response to exogenous GnRH. In contrast, follicles present during the late luteal phase fail to ovulate in response to GnRH while P4 levels are high, even though the LH stimulus is adequate; however, these follicles persist and subsequently ovulate after P4 levels have decreased. Therefore, the endocrine milieu to which a follicle was exposed may be more important than its size in determining its ability to undergo ovulation and development into a normal CL.  相似文献   

4.
Prolonged postpartum acyclicity in suckled beef cows is a source of economic loss to beef cattle producers. Duration of postpartum acyclicity is influenced by suckling status, nutritional status, calving season, age, and several other factors. Although uterine involution begins and ovarian follicular waves resume soon after parturition, dominant follicles of these waves fail to ovulate, due to a failure to undergo terminal maturation. As a result, postpartum anovulatory dominant follicles are smaller than the ovulatory follicles in cyclic cows. Failure of postpartum dominant follicles to undergo terminal maturation is due to absence of appropriate LH pulses, a prerequisite for follicular terminal maturation prior to ovulation. Absence of LH pulses early post partum is primarily due to depletion of anterior pituitary LH stores, although GnRH pulses are also absent during this period due to suckling. Following replenishment of LH stores between Days 15 and 30 post partum, absence of LH pulses is due to continued sensitivity of the hypothalamic GnRH pulse-generator to the negative feedback effect of ovarian estradiol-17beta, which results in absence of GnRH pulses. This negative feedback effect of estradiol-17beta is modulated by suckling which stimulates release of endogenous opioid peptides from the hypothalamus. As the postpartum interval increases, sensitivity of the GnRH pulse-generator to the negative feedback effect of ovarian estradiol-17beta decreases. This is followed by an increasing frequency of GnRH discharges and LH pulses, terminal follicular maturation, ovulation, and continued cyclicity. The first ovulation post partum is usually followed by a short cycle due to premature luteolysis because of premature release of PGF2alpha from the uterine endometrium, which is possibly intensified by the suckling-induced oxytocin release from the posterior pituitary. A model for the postpartum ovulatory acyclicity and for the resumption of cyclicity is presented.  相似文献   

5.
This study evaluated the effect of exogenous PGF(2)alpha on circulating LH concentrations in postpartum multiparous (n = 32) and primiparous (n = 46) Brahman cows. The cows were randomly allotted within parity and calving date to receive 0, 1, 2 or 3 mg im PGF(2)alpha (alfaprostol)/100 kg body weight (BW), with or without GnRH on Day 30 after calving. Blood samples were collected at weekly intervals from calving through treatment. Serum progesterone concentrations were determined using RIA procedures to assure that only anestrous cows were treated. Sterile marker bulls were maintained with cows on Coastal bermudagrass pastures until the first estrus was detected. Multiparous cows had a shorter (P < 0.05) interval from calving to estrus than did primiparous cows. Serum LH was affected by time (P < 0.0001), PGF(2)alpha dose (P < 0.0002), GnRH (P < 0.0001), parity by PGF(2)alpha dose (P < 0.0003), PGF(2)alpha dose by GnRH (P < 0.0009), parity by GnRH (P < 0.0008), and by parity by PGF(2)alpha dose by GnRH (P < 0.0005). Multiparous cows not receiving GnRH had higher mean serum LH (P < 0.02), LH peak pulse height (P < 0.03), and area under the LH release curve (P < 0.03) compared with primiparous cows. The number of LH pulses/6 h was greater (P < 0.06) in multiparous than primiparous cows, and was greater (P < 0.02) in multiparous cows receiving 3 mg/100 kg BW than in cows receiving 2 mg/100 kg BW, but not in the controls or in cows receiving 1 mg/100 kg BW. Exogenous GnRH resulted in increased (P < 0.0001) serum LH concentrations in all cows, and LH was enhanced (P < 0.0009) by simultaneous treatment with PGF(2)alpha. Primiparous cows had a greater response (P < 0.0005) to PGF(2)alpha and GnRH compared with multiparous cows. Pituitary release of LH in response to GnRH was enhanced by simultaneous exposure to PGF(2)alpha in Day 30 postpartum cows.  相似文献   

6.
A linear-array ultrasound instrument was used to monitor the dynamics of follicular cyst formation following estradiol valerate (EV) administration in postpartum dairy cattle. Twelve cyclic cows were given two intramuscular (i.m.) injections of prostaglandin and F(2alpha) (PGF(2alpha)) 12 d apart to synchronize estrus. On Day 16 (Day 0 = day of estrus) six cows received 10 mg of EV in 1 ml sesame oil; the remaining six cows were treated with 1 ml sesame oil. The ovaries of all cows were scanned rectally each morning from Day 9 until 14 or 30 d post treatment. Plasma concentrations of luteinizing hormone (LH) and progesterone (P(4)) were also determined as objective indices of treatment effects. Day 0 to 16 ultrasound pictures of the ovaries of both control and treated cows were characterized by the presence of a corpus luteum (CL; 19 to 38 mm), several small follicles (<5 mm) and a medium-sized follicle (6 to 28 mm). Following treatment in control cows, the CL regressed gradually, and a preovulatory follicle was identifiable by Day 17 to 18, it increased in size and reached a maximum of 28 to 30 mm by Day 20 after ovulation and was identifiable throughout the rest of the cycle. Administration of 0 mg of EV resulted in a rapid reduction in the size of the CL. Growth of a large follicle was observed in all treated animals around Days 16 to 20, but having reached a maximum diameter of 12 to 24 mm it regressed without resulting in ovulation. Subsequent ultrasound pictures of EV-treated cows were characterized by the absence of a new CL and the presence of medium-sized persistent follicles. Estradiol valerate treatment induced early luteolysis (43 +/- 05 h post EV vs 101 +/- 22 h) and an LH surge (41 +/- 11 h vs 125 +/- 17 h).  相似文献   

7.
Peter AI  Bosu WI 《Theriogenology》1988,29(5):1163-1175
The effects of intrauterine infections and prior follicular development on the response to gonadotropin releasing hormone (GnRH) administration in postpartum dairy cows were studied. Fifty lactating Holstein cows were assigned at random to one of two groups after calving. Group I (control) consisted of 25 cows given a single intramuscular injection of saline on Day 15 postpartum. Group II (treated) consisted of 25 herdmates given a single i.m. injection of 100 mug of GnRH on Day 15 postpartum. Palpation per rectum and real-time ultrasonography were used to monitor ovarian activity, and endometrial swabs were cultured to determine the presence of uterine infection. Blood samples were collected for progesterone (P(4)) and luteinizing hormone (LH) analysis. Fourteen cows (control, n = 5; treated, n = 9) did not ovulate during the first 60 d postpartum. Ovaries in these cows contained 4 to 8-mm size follicles and both P(4) and LH remained at basal concentrations. Fourteen other cows (control, n = 6; treated, n = 8) ovulated by Day 15 postpartum. Follicles >/= 10 mm were demonstrable in the ovaries of these cows before or by Day 12 postpartum. GnRH treatment had no effect on the lifespan of the existing corpus luteum in these cows. In the remaining cows, 7 of 14 Control and all 8 Treated cows ovulated within 3 d of treatment. All cows ovulating within this period were free of uterine infection and the ovaries contained follicles 相似文献   

8.
Administering gonadotropin-releasing hormone (GnRH) improved conception rates in our previous studies. Our objective was to determine if the effect of GnRH was mediated through serum luteinizing hormone (LH) and/or by altered secretion of serum progesterone (P) and estradiol-17 beta (E) during the periestrual and post-insemination periods. Cattle were given either GnRH (n = 54) or saline (n = 55) at 72 h and inseminated artificially (AI) 80 h after the second of two injections of either prostaglandin F2 alpha or its analog, cloprostenol. Progesterone and E were measured in blood serum collected during 3 wk after AI (estrus) from 60 females. Blood was collected for LH determinations via indwelling jugular cannulae from 14 cows and 11 heifers. Collections were taken every 4 h from 32 to 108 h after the second PGF injection (PGF-2) (periestrual period) and at more frequent intervals during 240 min after administration of GnRH (n = 18) or saline (n = 7). Ten females had a spontaneous preovulatory LH surge before GnRH treatment (GnRH-spontaneous), whereas GnRH induced the preovulatory LH surge in six females. A spontaneous LH surge appeared to be initiated in two heifers at or near the time of GnRH treatment (spontaneous and/or induced). The remaining seven cows had spontaneous LH surges with no subsequent change in LH after saline treatment. Serum P during the 21 days after estrus was lower (p less than 0.05) in both pregnant and nonpregnant (open) cattle treated previously with GnRH compared with saline. Serum P during the first week after estrus was greater (p less than 0.01) and increased (p less than 0.05) more rapidly in saline controls and in GnRH-spontaneous cattle than in those exhibiting GnRH-induced or GnRH-spontaneous and/or-induced surges of LH. Conception rate of cattle receiving GnRH was higher (p = 0.06) than that of saline-treated controls. These data suggest that GnRH treatment at insemination initiated the preovulatory LH surge in some cattle, but serum P in both pregnant and open cows was compromised during the luteal phase after GnRH treatment. Improved fertility may be associated with delayed or slowly rising concentrations of serum progesterone after ovulation.  相似文献   

9.
In sheep, induction of ovulation during anoestrus is accompanied by a high incidence of short luteal phases, though pre-treatment with progesterone can overcome this problem. We have investigated the effects of supplementing oestradiol during GnRH-induced ovulation on subsequent PGF2alpha release and luteal life span. Thirty anoestrous crossbred ewes received 250 ng GnRH i.v. at 2 h intervals for 48 h to induce ovulation either alone (group 1; n=10) or in association with either an i.m. injection of 20 mg progesterone 3 days earlier (group 2; n=10) or 3 i.m. injections of 10 microg oestradiol at 8 h intervals on the second day of GnRH treatment (group 3; n=10). Laparoscopy, performed 3 days following GnRH to confirm ovulation and 8 days later, coupled with plasma progesterone analysis were used to determine luteal life span. On day 4 following GnRH, plasma samples were collected at 20 min intervals for 8 h to monitor PGF2alpha release. One ewe from group 1 failed to ovulate and was excluded from further analysis. All groups showed an increase (P<0.01) in plasma oestradiol during GnRH treatment, with group 3 showing a marked (P<0.001) increase over that seen in the other two groups. In group 1 there were 1.4+/-0.2 PGF2alpha episodes/ewe/8 h. In group 2, pre-treatment with progesterone caused the complete inhibition of PGF2alpha episodes (0 episodes/ewe/8 h) while in group 3, treatment with oestradiol resulted in a significant reduction (0.3+/-0.1 episodes/ewe/8 h) compared with group 1 (P<0.01). In group 1, 9/9 ewes exhibited short cycles compared with 2/10 ewes in group 2 (P<0.01). In group 3 the proportion of ewes showing short cycles 7/10 ewes was not significantly different from the other groups. While treatment with oestradiol caused a significant attenuation of PGF2alpha release, this was associated with only a partial reduction in the incidence of short cycles.  相似文献   

10.
Simultaneous injections of prostaglandin F2alpha (PGF) and gonadotropin releasing hormone (GnRH) or saline were given to 32 diestrous dairy cows to test the ability of GnRH to improve estrous and ovulation synchrony beyond that of PGF alone. Cows were randomly assigned to receive PGF on Day 8 or Day 10 of the estrous cycle (estrus = Day 0), and all cows were further assigned to simultaneous injection of GnRH or saline. Corpus luteum (CL) regression, return to estrus and follicular activity were monitored by plasma progesterone assay, twice-daily estrous detection and ultrasonographic examination, respectively. Plasma progesterone concentrations declined to <1.0 ng/ml at 24 hours after PGF in all cows and were not affected by GnRH. Gonadotropin releasing hormone inducted premature ovulation or delayed return to estrus in 7 of 8 cows treated with PGF/GnRH on Day 8 and 3 of 8 cows treated with PGF/GnRH on Day 10. Further, cows with premature GnRH-induced ovulations failed to develop and maintain a fully functional CL, and all returned to estrus 7 to 13 days after the induced ovulation. These data indicate that GnRH administered simultaneously with a luteolytic dose of PGF disrupts follicular dynamics and induces premature ovulation or delays normal return to estrus and, therefore, does not improve the synchrony of estrus and ovulation achieved with PGF alone.  相似文献   

11.
The influence of Buserelin injection and Deslorelin (a GnRH analogue) implants administered on Day 5 of the estrous cycle on plasma concentrations of LH and progesterone (P4), accessory CL formation, and follicle and CL dynamics was examined in nonlactating Holstein cows. On Day 5 (Day 1 = ovulation) following a synchronized estrus, 24 cows were assigned randomly (n = 4 per group) to receive 2 mL saline, i.m. (control), 8 micrograms, i.m. Buserelin or a subcutaneous Deslorelin (DES) implant in concentrations of 75 micrograms, 150 micrograms, 700 micrograms or 2100 micrograms. Blood samples were collected (for LH assay) at 30-min intervals for 2 h before and 12 h after GnRH-treatment from cows assigned to Buserelin, DES-700 micrograms and DES-2100 micrograms treatments and thereafter at 4-h intervals for 48 h. Beginning 24 h after treatment, ovaries were examined by ultrasound at 2-h intervals until ovulation was confirmed. Thereafter, ultrasonography and blood sampling (for P4 assay) was performed daily until a spontaneous ovulation before Day 45. A greater release of LH occurred in response to Deslorelin implants than to Buserelin injection (P < 0.01). Basal levels of LH between 12 and 48 h were higher in DES-700 micrograms group than in DES-2100 micrograms and Buserelin (P < 0.05). The first wave dominant follicle ovulated in all cows following GnRH treatment. Days to CL regression did not differ between treatments, but return to estrus was delayed (44.2 vs 27.2 d; P < 0.01) in cows of DES-2100 micrograms group. All GnRH treatments elevated plasma P4 concentrations, and the highest P4 responses were observed in the DES-700 micrograms and DES-2100 micrograms groups. The second follicular wave emerged earlier in GnRH-treated than in control cows (9.9 vs 12.8 d; P < 0.01). However, emergence of the third dominant follicle was delayed in cows of DES-2100 micrograms treatment (37.0 d) compared with DES-700 micrograms (22.2 d), Buserelin (17.8 d) or control (19.0 d). In conclusion, Deslorelin implants of 700 micrograms increased plasma P4 and LH concentrations and slightly delayed the emergence of the third dominant follicle. On the contrary, Deslorelin implants of 2100 micrograms drastically altered the P4 profiles and follicle dynamics.  相似文献   

12.
Our objective was to determine the feasibility of prompt reinsemination of dairy cows when diagnosed not pregnant 27-29 days after first-service timed AI (TAI). We assumed that a first-wave dominant follicle was present at that time that would ovulate in response to GnRH once precocious luteal regression was induced after administration of PGF(2alpha). Cows that had not been detected in estrus and reinseminated by Days 27-29 after a first-service TAI were diagnosed not pregnant by ultrasonography. Nonpregnant cows from three herds were assigned randomly to receive either no further treatment until reinsemination (controls; n=189); 25mg i.m. of PGF(2alpha) and then reinsemination according to detected estrus (81 of 108) or at 72-80h after PGF(2alpha) treatment (PGF) in the absence of estrus (27 of 108); or 25mg i.m. of PGF(2alpha) followed by 100 microg i.m. of GnRH 48h later (PGF+GnRH) and then reinsemination after detection of estrus (9 of 160) or at 16-20h after GnRH (151 of 160). Blood samples were collected at the time of the not-pregnant diagnosis and again 48h later. Concentrations of progesterone before treatment with PGF(2alpha) were elevated (<1ng/ml) in 61% of the cows when PGF(2alpha) was administered and 81% of the cows given PGF(2alpha) had low (<1ng/ml) concentrations of progesterone 48h after PGF(2alpha). Treated cows were re-inseminated earlier (P<0.01; 31+/-1days) after first-service TAI than controls (55+/-1days). Conception rates after treatment were not different among treatments: PGF (22%), PGF+GnRH (23%), and control (23%). Average intervals from calving to conception were 22-23 days less (P<0.001) in treated cows than in controls. We concluded that treating nonpregnant cows with PGF(2alpha) on Days 27-29 after insemination produced acceptable conception rates when inseminations were made after detected estrus or when TAI was used after GnRH treatment. Further, both treatments reduced days between first-service TAI and second inseminations, and days from calving to conception.  相似文献   

13.
We hypothesized that reducing the size of the ovulatory follicle using aspiration and GnRH would reduce the size of the resulting CL, reduce circulating progesterone concentrations, and alter conception rates. Lactating dairy cows (n=52) had synchronized ovulation and AI by treating with GnRH and PGF2alpha as follows: Day -9, GnRH (100 microg); Day -2, PGF2alpha (25 mg); Day 0, GnRH (100 microg); Day 1, AI. Treated cows (aspirated group; n=29) had all follicles > 4 mm in diameter aspirated on Days -5 or -6 in order to start a new follicular wave. Control cows (nonaspirated group: n=23) had no follicle aspiration. The size of follicles and CL were monitored by ultrasonography. The synchronized ovulation rate (ovulation rate to second GnRH injection: 42/52=80.8%) and double ovulation rate of synchronized cows (6/42=14.3%) did not differ (P > 0.05) between groups. Aspiration reduced the size of the ovulatory follicle (P < 0.0001; 11.5 +/- 0.2 vs 14.5 +/- 0.4 mm), and serum estradiol concentrations at second GnRH treatment (P < 0.0002; 2.5 +/- 0.4 vs 5.7 +/- 0.6 pg/mL). The volume of CL was less (P < 0.05) for aspirated than nonaspirated cows on Day 7 (2,862 +/- 228 vs 5,363 +/- 342 mm3) or Day 14 (4,652 +/- 283 vs 6,526 +/- 373 mm3). Similarly, serum progesterone concentrations were less on Day 7 (P < 0.05) and Day 14 (P < 0.10) for aspirated cows. Pregnancy rate per AI for synchronized cows was lower (P < 0.05) for aspirated (3/21=14.3%) than nonaspirated (10/21=47.6%) cows. In conclusion, ovulation of smaller follicles produced lowered fertility possibly because development of smaller CL decreased circulating progesterone concentrations.  相似文献   

14.
The effect of an intravenous infusion of gonadotrophin releasing hormone (GnRH) on the duration of postpartum anestrus in suckled beef cows was studied. Twenty-eight, mature, suckled beef cows were assigned in equal numbers to one of four treatment groups which were based on infusion with saline or GnRH (15ug/hour for 12 hours) and stage postpartum (pp) (20 or 35 days). Serum LH and progesterone were determined by radioimmunoassay for the period which began 5 days pre-infusion and ended at 55 days postpartum (ie: 35 or 20 days post-infusion). Serum LH remained below 5ng/ml during infusion in all control cows. Peak serum LH values, times of LH peaks, and duration of LH responses (means +/- SE) during infusion were 49 +/- 12 ng/ml, 162 +/- 42 minutes and 7.8 +/- 1.3 hours for the 20 day group and 44 +/- ng/ml, 144 +/- 6 minutes, and 8.2 +/- 1.1 hours for the 35 day group respectively. Serum progesterone levels indicated that the proportion of cows showing the onset of estrous cycles within 10 days of infusion was greater in the 20 day pp GnRH group (4/7) than the 20 day pp saline group (0/7) (p < .05) but was not significantly different between the 35 day pp GnRH (4/7) and 35 day pp saline (2/6) groups. The incidence of estrus was not affected by GnRH treatment and was 37% in all cows prior to 55 days pp. It was concluded that infusions of GnRH for 12 hours at a rate of 15 ug/hour could induce estrous cycles in suckled beef cows treated at 20 days postpartum.  相似文献   

15.
The primary objective was to evaluate fertility of anovular dairy cows given GnRH 4 d after first postpartum timed AI (TAI). Secondary objectives were to determine ovulatory response to treatment, effect of treatment on serum progesterone (P(4)) concentrations, and the proportion with a short luteal phase. Lactating Holstein cows (n=1047) were submitted for first postpartum TAI using a Presynch+Ovsynch protocol. Anovular cows were identified from an initial 1047 lactating Holstein cows using transrectal ultrasonography, based on the absence of a CL at the first GnRH injection of a Presynch+Ovsynch protocol, and anovular cows were randomly assigned to receive either no further treatment (Control, n=85), or 100 microg of GnRH 4 d after TAI (GnRH treated; n=71). For GnRH treated cows, 51% responded by ovulating a follicle in response to GnRH treatment 4 d after TAI; however, pregnancies per AI (P/AI) did not differ between GnRH treated cows that ovulated (36%) compared to GnRH treated cows that did not ovulate (21%). There was a quadratic effect of P(4) at the PGF(2 alpha) injection of Ovsynch on P/AI, and cows with P(4)>or=1 ng/mL at the PGF(2 alpha) injection of Ovsynch had greater P/AI (41%) than cows with P(4)<1 ng/mL (12%); however, no treatment difference was detected. Overall, P/AI did not differ between control (30.1%) and GnRH treated (29.6%) treatments for synchronized cows. Although treatment of anovular cows with GnRH 4 d after TAI failed to improve fertility, variation among cows in serum P(4) at the PGF(2 alpha) injection of Ovsynch dramatically affected fertility of anovular dairy cows.  相似文献   

16.
The objective of this study was to evaluate protocols for synchronizing ovulation in beef cattle. In Experiment 1, Nelore cows (Bos indicus) at random stages of the estrous cycle were assigned to 1 of the following treatments: Group GP controls (nonlactating, n=7) received GnRH agonist (Day 0) and PGF2alpha (Day 7); while Groups GPG (nonlactating, n=8) and GPG-L (lactating, n=9) cows were given GnRH (Day 0), PGF2alpha (Day 7) and GnRH again (Day 8, 30 h after PGF2alpha). A new follicular wave was observed 1.79+/-0.34 d after GnRH in 19/24 cows. After PGF2alpha, ovulation occurred in 19/24 cows (6/7 GP, 6/8 GPG, 7/9 GPG-L). Most cows (83.3%) exhibited a dominant follicle just before PGF2alpha, and 17/19 ovulatory follicles were from a new follicular wave. There was a more precise synchrony of ovulation (within 12 h) in cows that received a second dose of GnRH (GPG and GPG-L) than controls (GP, ovulation within 48 h; P<0.01). In Experiment 2, lactating Nelore cows with a visible corpus luteum (CL) by ultrasonography were allocated to 2 treatments: Group GPE (n=10) received GnRH agonist (Day 0), PGF2alpha (Day 7) and estradiol benzoate (EB; Day 8, 24 h after PGF2alpha); while Group EPE (n=11), received EB (Day 0), PGF2alpha (Day 9) and EB (Day 10, 24 h after PGF2alpha). Emergence of a new follicular wave was observed 1.6+/-0.31 d after GnRH (Group GPE). After EB injection (Day 8) ovulation was observed at 45.38+/-2.03 h in 7/10 cows within 12 h. In Group EPE the emergence of a new follicular wave was observed later (4.36+/-0.31 d) than in Group GEP (1.6+/-0.31 d; P<0.001). After the second EB injection (Day 10) ovulation was observed at 44.16+/-2.21 h within 12 (7/11 cows) or 18 h (8/11 cows). All 3 treatments were effective in synchronizing ovulation in beef cows. However, GPE and, particularly, EPE treatments offer a promising alternative to the GPG protocol in timed artificial insemination of beef cattle, due to the low cost of EB compared with GnRH agonists.  相似文献   

17.
Forty-two Holstein cows were randomly assigned to three superovulatory treatment groups of 14 cows each. Cows in Group I received follicle stimulating hormone (FSH; 50 mg i.m.); those in Group II received FSH (50. mg i.m.) along with GnRH (250 ug in 2 % carboxymethylcellulose s.c.) on the day of estrus; and cows in Group III were infused FSH (49 mg) via osmotic pump implants. FSH was administered over a 5-d period for cows in Groups I and II (twice daily in declining doses). Cows in Group III received FSH over a 7-d period (constantly at a rate of 7 mg/day). All cows received 25 mg PGF(2)alpha (prostaglandin F(2)alpha) 48 hours after initiation of the FSH treatment. Blood samples were collected from seven cows from each group at 2 hour intervals on the fifth day of superovulation for serum luteinizing hormone (LH) concentration analysis by radioimmunoassay, and blood samples were collected from all cows on the day of embryo recovery for plasma progesterone determination. The LH profile was not altered (P>0.05) by either GnRH administration or by the constant infusion of FSH as compared to FSH treatment alone. Plasma progesterone concentrations were highly correlated with the number of corpora lutea (CL) palpated (r=0.92; P<0.01) and with the number of ova and/or embryos recovered (r=0.88; P<0.01). The accuracy of predicting the number of recoverable ova and/or embryos by the concentration of plasma progesterone was 86%.  相似文献   

18.
Prolonged postpartum anoestrus in beef cows is due to failure of early dominant follicles to ovulate. It is hypothesized that this failure to ovulate is due to inadequate LH pulse frequency. The objective of this study was to determine whether administration of hourly LH pulses would cause the first dominant follicle to ovulate. In Expt 1, 16 cows received either saline (n = 8) or porcine LH (pLH; 50 micrograms h-1; n = 8) as hourly pulses for 3-5 days from the second day of dominance of the first dominant follicle (day 0). In Expt 2, 21 cows received either saline (n = 7), or 50 micrograms pLH (n = 7) or 100 micrograms pLH (n = 7) as hourly pulses for 3 days. Appropriate ovarian scanning and assays of blood samples were carried out. In Expt 1, the number of dominant follicles that underwent atresia was not affected by increasing the number of LH pulses, but the duration of dominance (days) of the first and second dominant follicles and maximum size (mm) of the second dominant follicle were increased (P < 0.05). Oestradiol concentrations were higher (P < 0.05) in cows given hourly pLH pulses (3.1 +/- 1.2 pg ml-1) compared with controls (1.2 +/- 0.2 pg ml-1). Four of eight treated cows had an anovulatory LH surge. The number of follicle waves to first ovulation was not different (P < 0.05) between control (4.6 +/- 0.9) and pLH treated cows (3.9 +/- 0.5). In Expt 2, four of seven cows given pulses of 100 micrograms pLH h-1 ovulated the first dominant follicle, and the interval from calving to first ovulation was decreased (P < 0.05). In the remaining three cows, the duration of dominance of the first dominant follicle was increased (P < 0.005), the maximum size of the first dominant follicle was greater (P < 0.05), and the interval (days) from the start of infusion to new wave emergence was greater (P < 0.05) compared with cows that failed to ovulate in either the 50 micrograms pLH h-1 or control treatments. In conclusion, hourly pulses of pLH from day 1 after dominance of the first dominant follicle in postpartum beef cows can either prolong dominance or induce it to ovulate. This finding supports the hypothesis that LH pulse frequency is a key determinant of the fate of the dominant follicle in the early postpartum period.  相似文献   

19.
Peters MW  Pursley JR 《Theriogenology》2003,60(6):1197-1204
Synchronization of ovulation (Ovsynch) is an effective method for controlling time of first and subsequent AI in lactating dairy cows. However, validation of the original Ovsynch program did not include testing the optimal time to deliver the final treatment of GnRH. In Experiment 1, the effect of administering the final dose of GnRH on the same day as prostaglandin F2alpha (PGF2alpha) administration was tested. Lactating dairy cows (n = 218) were randomly assigned to receive either Ovsynch (OV; cows were given 100 microg GnRH, then 7 days later cows were administered 25mg PGF2alpha followed by a subsequent treatment of 100 microg GnRH 2 days after the PGF2alpha or the modified version of Ovsynch (MOV; cows were given 100 microg GnRH, then 7 days later cows were administered 25mg PGF2alpha followed immediately with 100 microg GnRH). In both treatment groups, AI took place 16 h after the final administration of GnRH. In Experiment 2, cows (n = 457) were randomly divided into four treatment groups that were administered GnRH 0, 12, 24 and 36 h following PGF(2alpha). The 36 h treatment group served as control. Pregnancy diagnoses were performed by palpation per rectum 36 days post-AI in Experiment 1 and by ultrasonography on Day 28 in Experiment 2. In Experiment 1, pregnancy rate/AI (PR/AI) was greater (P<0.025) in OV versus MOV. In a subset (n = 85), percentage of cows with both synchronized ovulations and regressed CL following administration of PGF2alpha were similar (P>0.1) between OV and MOV, respectively. All cows that became pregnant in the MOV subset group showed regression of the CL in response to the PGF2alpha. Diameter of the ovulatory follicle at the time of final GnRH administration was greater (P<0.05) in OV versus MOV. In Experiment 2, the synchronization rate was once again similar among treatments (P>0.28). There was a linear effect of treatment on follicle size (P<0.05) and PR/AI (P<0.0001) as time increased between administration of PGF2alpha and GnRH, with the greatest PR/AI at 36 h. There was a trend for a greater percentage of cows with short luteal phases in the 0 h group (P<0.10). In summary, delivering the final treatment of GnRH of the Ovsynch program at the same time as PGF2alpha, or in the 24h following PGF2alpha, resulted in lower fertility compared to controls.  相似文献   

20.
Synchronization of ovulation in dairy cows using PGF2alpha and GnRH   总被引:2,自引:0,他引:2  
This paper reports a new method for synchronizing the time of ovulation in cattle using GnRH and PGF(2alpha). In Experiments 1 and 2, lactating dairy cows (n=20) ranging from 36 to 280 d postpartum and dairy heifers (n=24) 14 to 16 mo old were treated with an intramuscular injection of 100 mug GnRH at a random stage of the estrous cycle. Seven d later the cattle received PGF(2alpha) to regress corpora lutea (CL). Lactating cows and heifers received a second injection of 100 mug GnRH 48 and 24 h later, respectively. Lactating cows were artificially inseminated 24 h after the second GnRH injection. Ovarian morphology was monitored daily by trans-rectal ultrasonography from 5 d prior to treatment until ovulation. In Experiment 3, the flexibility in the timing of hormonal injections with this synchronization protocol was evaluated by randomly assigning 66 lactating dairy cows to 3 different treatment groups. Lactating cows received the injection of PGF(2alpha) 48 (Group 1), 24 (Group 2), and 0 h (Group 3) prior to the second injection of GnRH, which was administered at the same time in each group to ensure the second injection of GnRH was given when follicles were at a similar stage of growth. In Experiments 1 and 2, the first injection of GnRH caused ovulation and formation of a new or accessory CL in 18 20 cows and 13 24 heifers. In addition, this injection of GnRH initiated or was coincident with initiation of a new follicular wave in 20 20 lactating cows and 18 24 heifers. Corpora lutea regressed after PGF(2alpha) in 20 20 cows and in 18 24 heifers. All cows and 18 24 heifers ovulated a newly formed dominant follicle between 24 and 32 h after the second injection of GnRH. Ten of 20 cows conceived to the timed artificial insemination. In Experiment 3, the conception rate in Groups 1 and 2 were greater than in Group 3, (55 and 46 % vs 11%, respectively). In summary, this protocol could have a major impact on managing reproduction in lactating dairy cows, because it allows for AI to occur at a known time of ovulation and eliminates the need for detection of estrus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号