首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
I model the behavior of intracellular Ca(2+) release with high buffer concentrations. The model uses a spatially discrete array of channel clusters. The channel subunit dynamics is a stochastic representation of the DeYoung-Keizer model. The calculations show that the concentration profile of fast buffer around an open channel is more localized than that of slow buffers. Slow buffers allow for release of larger amounts of Ca(2+) from the endoplasmic reticulum and hence bind more Ca(2+) than fast buffers with the same dissociation constant and concentration. I find oscillation-like behavior for high slow buffer concentration and low Ca(2+) content of the endoplasmic reticulum. High concentration of slow buffer leads to oscillation-like behavior by repetitive wave nucleation for high Ca(2+) content of the endoplasmic reticulum. Localization of Ca(2+) release by slow buffer, as used in experiments, can be reproduced by the modeling approach.  相似文献   

2.
Stimulation of G-protein coupled membrane receptors linked to phospholipase C results in production of the second messengers diacylglycerol and inositol-1,4,5-trisphosphate (IP3). IP3 releases Ca2+ from the endoplasmic reticulum, which triggers increased Ca2+ influx across the plasma membrane, so-called capacitative calcium entry. DAG can also activate plasma membrane calcium-permeable channels but the mechanism is still not fully understood. In the pregnant human myometrial cell line PHM1 and in primary myometrial cells, 1-oleoyl-2-acetyl-sn-glycerol (OAG), a membrane-permeant analogue of diacylglycerol, induced variable oscillatory patterns of intracellular free Ca2+. Similar behavior was seen with Sr2+ entry. The Ca2+ oscillations were not blocked by a broad spectrum of protein kinase C inhibitors, including chelerytrine, bisindolylmaleimide I and calphostin C, and were enhanced and prolonged by RHC-80267, an inhibitor of diacylglycerol lipase. The OAG-induced oscillatory response was not dependent on Ca2+ release from the endoplasmic reticulum but required extracellular Ca2+. Our results indicate that diacylglycerol directly activates cation channels in PHM1 and primary myometrial cells and promotes intracellular Ca2+ oscillations by actions independent of intracellular Ca2+ -ATPase activity and protein kinase C involvement.  相似文献   

3.
Oscillations of free intracellular Ca2+ concentration ([Ca2+]i) are known to occur in many cell types during physiological cell signaling. To identify the basis for the oscillations, we measured both [Ca2+]i and extracellular Ca2+ concentration ([Ca2+]o) to follow the fate of Ca2+ during stimulation of [Ca2+]i oscillations in pancreatic acinar cells. [Ca2+]i oscillations were initiated by either t-butyloxycarbonyl-Tyr(SO3)-Nle-Gly-Tyr-Nle-Asp-2-phenylethyl ester (CCK-J), which mobilized Ca2+ from the inositol 1,4,5-trisphosphate (IP3)-insensitive pool, or low concentration of cholecystokinin octapeptide (CCK-OP), which mobilized Ca2+ from the IP3-sensitive internal pool. Little Ca2+ efflux occurred during the oscillations triggered by CCK-J or CCK-OP in spite of a large average increase in [Ca2+]i. When internal store Ca2+ pumps were inhibited with thapsigargin (Tg) during [Ca2+]i oscillations, a rapid Ca2+ efflux occurred similar to that measured in intensely stimulated, nonoscillatory cells. Tg also stimulated 45Ca efflux from internal pools of cells stimulated with CCK-J or a low concentration of CCK-OP. Hence, a large fraction of the Ca2+ released during each spike is reincorporated by the internal store Ca2+ pumps. Surprisingly, when the increase in [Ca2+]i during stimulation of oscillations was prevented by loading the cells with 1,2-bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid, a persistent activation of Ca2+ release and Ca2+ efflux occurred. This was reflected as a persistent increase in [Ca2+]o in cells suspended at low [Ca2+]o or persistent efflux of 45Ca from internal stores of cells maintained at high [Ca2+]o. Since agonist-stimulated Ca2+ release evidently remains activated when [Ca2+]i is highly buffered, the primary mechanism determining Ca2+ oscillations must include an inhibition of Ca2+ release by [Ca2+]i. Loading the cells with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid had no apparent effect on the levels or kinetics of IP3 formation in agonist-stimulated cells. This suggests that [Ca2+]i regulated the oscillation by inhibition of Ca2+ release independent of its possible effects on cellular levels of IP3.  相似文献   

4.
The inositol 1,4,5-trisphosphate (InsP(3)) receptor is a ligand-gated Ca(2+) channel playing an important role in the control of intracellular Ca(2+). In the study presented here, we demonstrate that angiotensin (AngII), phorbol ester (PMA), and FK506 significantly increase the level of InsP(3) receptor phosphorylation in intact bovine adrenal glomerulosa cells. With a back-phosphorylation approach, we showed that the InsP(3) receptor is a good substrate for protein kinase C (PKC) and that FK506 increases the level of PKC-mediated InsP(3) receptor phosphorylation. With a microsomal preparation from bovine adrenal cortex, we showed that PKC enhances the release of Ca(2+) induced by a submaximal dose of InsP(3). We also showed that FK506 blocks intracellular Ca(2+) oscillations in isolated adrenal glomerulosa cells by progressively increasing the intracellular Ca(2+) concentration to a high plateau level. This effect is consistent with an inhibitory role of FK506 on calcineurin dephosphorylation of the InsP(3) receptor, thus keeping the receptor in a phosphorylated, high-conductance state. Our results provide further evidence for the crucial role of the InsP(3) receptor in the regulation of intracellular Ca(2+) oscillations and show that FK506, by maintaining the phosphorylated state of the InsP(3) receptor, causes important changes in the Ca(2+) oscillatory process.  相似文献   

5.
An increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) may play a role in the proliferative effect of several growth factors. In this study, the changes in [Ca(2+)](i) elicited by epidermal growth factor (EGF) in rat cardiac microvascular endothelial cells (CMEC) have been investigated by using fura-2 conventional and confocal microscopy. A large heterogeneity in the latency and in the pattern of the Ca(2+) response was found at each dose of EGF (2.5-100 ng/ml), whereas some cells displayed a non-oscillatory behavior and others exhibited a variable number of Ca(2+) oscillations. On average, the fraction of responsive cells, the total number of oscillations and the duration of the Ca(2+) signal were higher at around 10 ng/ml EGF, while there was no dose-dependence in the lag time and in the amplitude of the [Ca(2+)](i) increase. EGF-induced Ca(2+) spikes were abolished by the tyrosine kinase inhibitor genistein, but not by its inactive analogue daidzein, and by the phospholipase C blocker NCDC. Only 1-2 transients could be elicited in Ca(2+)-free solution, while re-addition of extracellular Ca(2+) recovered the spiking activity. The oscillatory signal was prevented by the SERCA inhibitor thapsigargin and abolished by the calcium entry blockers Ni(2+) and La(3+). Moreover, EGF-induced Ca(2+) transients were abolished by the InsP(3) receptor blocker caffeine, while ryanodine was without effect. Confocal imaging microscopy showed that the Ca(2+) response to EGF was localized both in the cytoplasm and in the nucleus. We suggest that EGF-induced [Ca(2+)](i) increase may play a role in the proliferative action of EGF on endothelial cells.  相似文献   

6.
In heart failure (HF), arrhythmogenic Ca(2+) release and chronic Ca(2+) depletion of the sarcoplasmic reticulum (SR) arise due to altered function of the ryanodine receptor (RyR) SR Ca(2+)-release channel. Dantrolene, a therapeutic agent used to treat malignant hyperthermia associated with mutations of the skeletal muscle type 1 RyR (RyR1), has recently been suggested to have effects on the cardiac type 2 RyR (RyR2). In this investigation, we tested the hypothesis that dantrolene exerts antiarrhythmic and inotropic effects on HF ventricular myocytes by examining multiple aspects of intracellular Ca(2+) handling. In normal rabbit myocytes, dantrolene (1 μM) had no effect on SR Ca(2+) load, postrest decay of SR Ca(2+) content, the threshold for spontaneous Ca(2+) wave initiation (i.e., the SR Ca(2+) content at which spontaneous waves initiate) and Ca(2+) spark frequency. In cardiomyocytes from failing rabbit hearts, SR Ca(2+) load and the wave initiation threshold were decreased compared with normal myocytes, Ca(2+) spark frequency was increased, and the postrest decay was potentiated. Using a novel approach of measuring cytosolic and intra-SR Ca(2+) concentration (using the low-affinity Ca(2+) indicator fluo-5N entrapped within the SR), we showed that treatment of HF cardiomyocytes with dantrolene rescued postrest decay and increased the wave initiation threshold. Additionally, dantrolene decreased Ca(2+) spark frequency while increasing the SR Ca(2+) content in HF myocytes. These data suggest that dantrolene exerts antiarrhythmic effects and preserves inotropy in HF cardiomyocytes by decreasing the incidence of diastolic Ca(2+) sparks, increasing the intra-SR Ca(2+) threshold at which spontaneous Ca(2+) waves occur, and decreasing the loss of Ca(2+) from the SR. Furthermore, the observation that dantrolene reduces arrhythmogenicity while at the same time preserves inotropy suggests that dantrolene is a potentially useful drug in the treatment of arrhythmia associated with HF.  相似文献   

7.
Calcium (Ca2+) oscillations play fundamental roles in various cell signaling processes and have been the subject of numerous modeling studies. Here we have implemented a general mathematical model to simulate the impact of store-operated Ca2+ entry on intracellular Ca2+ oscillations. In addition, we have compared two different models of the inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) and their influences on intracellular Ca2+ oscillations. Store-operated Ca2+ entry following Ca2+ depletion of endoplasmic reticulum (ER) is an important component of Ca2+ signaling. We have developed a phenomenological model of store-operated Ca2+ entry via store-operated Ca2+ (SOC) channels, which are activated upon ER Ca2+ depletion. The depletion evokes a bi-phasic Ca2+ signal, which is also produced in our mathematical model. The IP3R is an important regulator of intracellular Ca2+ signals. This IP3 sensitive Ca2+ channel is also regulated by Ca2+. We apply two IP3R models, the Mak-McBride-Foskett model and the De Young and Keizer model, with significantly different channel characteristics. Our results show that the two separate IP3R models evoke intracellular Ca2+ oscillations with different frequencies and amplitudes. Store-operated Ca2+ entry affects the oscillatory behavior of these intracellular Ca2+ oscillations. The IP3 threshold is altered when store-operated Ca2+ entry is excluded from the model. Frequencies and amplitudes of intracellular Ca2+ oscillations are also altered without store-operated Ca2+ entry. Under certain conditions, when intracellular Ca2+ oscillations are absent, excluding store-operated Ca2+ entry induces an oscillatory response. These findings increase knowledge concerning store-operated Ca2+ entry and its impact on intracellular Ca2+ oscillations.  相似文献   

8.
Intracellular Ca2+ signalling is pivotal to cell function and [Ca2+]i oscillations permit precise and prolonged modulation of an array of Ca2+-sensitive processes without the need for extended, global elevations in [Ca2+]i. We have studied [Ca2+]i signalling in primary rat marrow stromal cells exposed to foetal calf serum (FCS) constituents at concentrations up to those required to promote growth and differentiation in culture. Spontaneous [Ca2+]i signalling was not observed, but exposure to 1% FCS induced regular, sustained Ca2+ oscillations in 41 +/- 3% of cells. Incidence of FCS-induced oscillations was dose-dependent, saturating at 0.5%. These oscillations were arrested by disruption of Ca2+ stores with 100 nM-1 microM thapsigargin or discharge of mitochondrial membrane potential and were sensitive to blockade of IP3-receptors by 50 microM 2-amino-ethoxydiphenyl borate (2-APB) and inhibition of phospholipase C with 5 microM U73122. The oscillations decreased in frequency and amplitude following inhibition of Ca2+ influx with EGTA or La3+ but were poorly sensitive to nifedipine (1-10 microM) and Bay K 8644 (300 nM). The factor(s) responsible for inducing [Ca2+]i oscillations are heat stable, insensitive to disulphide bond reduction with 20 mM dithioerythritol and retained by a 30 kDa molecular weight filter. Serum is routinely present in culture medium at 10%-15% [v/v] and marrow stromal cells maintained under culture conditions exhibited sustained oscillations. This is the first demonstration of agonist-induced complex Ca2+ signals in marrow stromal cells. We conclude that Ca2+ oscillations occur constantly in these cells in culture and are potentially important regulators of cell proliferation and differentiation.  相似文献   

9.
The toxin alpha-hemolysin expressed by uropathogenic Escherichia coli bacteria was recently shown as the first pathophysiologically relevant protein to induce oscillations of the intracellular Ca(2+) concentration in target cells. Here, we propose a generic three-variable kinetic model describing the Ca(2+) oscillations induced in single rat renal epithelial cells by this toxin. Specifically, we take into account the interplay between 1), the cytosolic Ca(2+) concentration; 2), IP(3)-sensitive Ca(2+) channels located in the membrane separating the cytosol and endoplasmic reticulum; and 3), toxin-related activation of production of IP(3) by phospholipase C. With these ingredients, the predicted response of cells exposed to the toxin is in good agreement with the results of experiments.  相似文献   

10.
The soy-derived isoflavones genistein and daidzein affect the contractile state of different kinds of smooth muscle. We describe acute effects of genistein and daidzein on contractile force and intracellular Ca2+ concentration ([Ca2+]i) in in situ smooth muscle of rat aorta. Serotonin (5-HT) (2 microM) or a depolarizing high K+ solution produced the contraction of aortic rings, which were immediately relaxed by 20 microM genistein and by 20 microM daidzein. Accordingly, both 5-HT and a high K+ solution increased the [Ca2+]i in in situ smooth muscle cells. Genistein strongly inhibited the [Ca2+]i increase evoked by 5-HT (74.0 +/- 7.3%, n = 11, p < 0.05), and had a smaller effect on high K+ induced [Ca2+]i increase (19.9 +/- 4.0%, n = 7, p < 0.05). The K+ channels blocker tetraethylammonium (TEA) (0.5 mM) diminished genistein effects on 5-HT-induced [Ca2+]i increase. Interestingly, during prolonged application of 5-HT, the [Ca2+]i oscillated and a short (90 s) preincubation with genistein (20 microM) significantly diminished the frequency of the oscillations. This effect was totally abolished by TEA. In conclusion, in rat aortic smooth muscle, genistein is capable of diminishing the increase in [Ca2+]i and in force evoked by 5-HT and high K+ solution, and of decreasing the frequency of [Ca2+]i oscillations induced by 5-HT. The short time required by genistein, and the relaxing effect of daidzein suggest that tyrosine kinases inhibition is not involved. The small inhibiting effect of genistein on the [Ca2+]i increase evoked by high K+ and the effect of TEA point to the activation by genistein of calcium-activated K+ channels.  相似文献   

11.
The present study investigates the potential role of the Ca2+-calmodulin-dependent type I phosphodiesterase (PDE)-cGMP-protein kinase G (PKG) pathway in spontaneous [Ca2+]i oscillations in GH3 cells using fura-2 single cell videoimaging. Vinpocetine (2.5-50 microM), a selective inhibitor of type I PDE, induced a concentration-dependent inhibition of spontaneous [Ca2+]i oscillations in these pituitary cells, and at the same time produced an increase of the intracellular cGMP content. The cell permeable cGMP analog N2,2'-O-dibutyryl-cGMP (dB-cGMP) (1 mM) caused a progressive reduction of the frequency and the amplitude of spontaneous [Ca2+]i oscillations when added to the medium. KT5823 (400 nM), a selective inhibitor of cGMP-dependent protein kinase (PKG), produced an increase of baseline [Ca2+]i and the disappearance of spontaneous [Ca2+]i oscillations. When KT5823 was added before vinpocetine, the PKG inhibitor counteracted the [Ca2+]i lowering effect of the cGMP catabolism inhibitor. Finally, the removal of extracellular Ca2+ or the blockade of L-type voltage-sensitive calcium channels (VSCC) by nimodipine produced a decrease of cytosolic cGMP levels. Collectively, the results of the present study suggest that spontaneous [Ca2+]i oscillations in GH3 cells may be regulated by the activity of type I PDE-cGMP-PKG pathway.  相似文献   

12.
The cytosolic free Ca2+ concentration of calcium-tolerant rat myocytes has been measured by the null point titration technique using arsenazo III as a Ca2+ indicator and digitonin to permeabilize the plasma membrane. The mean value obtained for 8 separate preparations was 270 +/- 35 nM. The distribution of releasable calcium between the mitochondrial and sarcoplasmic reticular compartments was measured by the successive additions of uncoupler and A23187 to cells pretreated with ruthenium red. The relative distribution of calcium in each pool was independent of the cell calcium content up to the maximum value of releasable calcium investigated (4.5 nmol/mg of cell dry weight) and was distributed in the approximate ratio of 2:1 in favor of the sarcoplasmic reticulum. The cells contained 1 nmol of calcium/mg of cell dry weight in a form nonreleasable by A23187, which was independent of the total cell calcium content as measured by atomic absorption spectroscopy. It is calculated that the calcium content of mitochondria in heart under physiological conditions is about 5 nmol/mg of mitochondrial protein. At this level, the mitochondria are likely to provide effective buffering of the cytosolic free Ca2+ concentration of quiescent heart cells. The corresponding intramitochondrial free Ca2+ is in a range above values needed to regulate the activity of Ca2+-dependent enzymes of the citric acid cycle in heart. The physiological calcium content of the sarcoplasmic reticulum in heart cells is estimated to be about 2.5 nmol/mg of cell dry weight, which is at least 5-fold greater than the amount of calcium release calculated to cause maximum tension development of cardiac muscle.  相似文献   

13.
On mammalian fertilization, long-lasting Ca2+ oscillations are induced in the egg by the fusing spermatozoon. While each transient Ca2+ increase in Ca2+ concentration ([Ca2+]) in the cytosol is due to Ca2+ release from the endoplasmic reticulum (ER), Ca2+ influx from outside is required for Ca2+ oscillations to persist. In this study, we investigated how Ca2+ influx is interrelated to the cycle of Ca2+ release and uptake by the intracellular Ca2+ stores during Ca2+ oscillations in fertilized mouse eggs. In addition to monitoring cytosolic [Ca2+] with fura-2, the influx rate was evaluated using Mn2+ quenching technique, and the change in [Ca2+] in the ER lumen was visualized with a targeted fluorescent probe. We found that the influx was stimulated after each transient Ca2+ release and then diminished gradually to the basal level, and demonstrated that the ER Ca2+ stores once depleted by Ca2+ release were gradually refilled until the next Ca2+ transient to be initiated. Experiments altering extracellular [Ca2+] in the middle of Ca2+ oscillations revealed the dependence of both the refilling rate and the oscillation frequency on the rate of Ca2+ influx, indicating the crucial role of Ca2+ influx in determining the intervals of Ca2+ transients. As for the influx pathway supporting Ca2+ oscillations to persist, STIM1/Orai1-mediated store-operated Ca2+ entry (SOCE) may not significantly contribute, since neither known SOCE blockers nor the expression of protein fragments that interfere the interaction between STIM1 and Orai1 inhibited the oscillation frequency or the influx rate.  相似文献   

14.
Li XC  Wei L  Zhang GQ  Bai ZL  Hu YY  Zhou P  Bai SH  Chai Z  Lakatta EG  Hao XM  Wang SQ 《PloS one》2011,6(9):e24787
Heart tissues from hibernating mammals, such as ground squirrels, are able to endure hypothermia, hypoxia and other extreme insulting factors that are fatal for human and nonhibernating mammals. This study was designed to understand adaptive mechanisms involved in intracellular Ca(2+) homeostasis in cardiomyocytes from the mammalian hibernator, ground squirrel, compared to rat. Electrophysiological and confocal imaging experiments showed that the voltage-dependence of L-type Ca(2+) current (I(Ca)) was shifted to higher potentials in ventricular myocytes from ground squirrels vs. rats. The elevated threshold of I(Ca) did not compromise the Ca(2+)-induced Ca(2+) release, because a higher depolarization rate and a longer duration of action potential compensated the voltage shift of I(Ca). Both the caffeine-sensitive and caffeine-resistant components of cytosolic Ca(2+) removal were more rapid in ground squirrels. Ca(2+) sparks in ground squirrels exhibited larger amplitude/size and much lower frequency than in rats. Due to the high I(Ca) threshold, low SR Ca(2+) leak and rapid cytosolic Ca(2+) clearance, heart cells from ground squirrels exhibited better capability in maintaining intracellular Ca(2+) homeostasis than those from rats and other nonhibernating mammals. These findings not only reveal adaptive mechanisms of hibernation, but also provide novel strategies against Ca(2+) overload-related heart diseases.  相似文献   

15.
Listeriolysin (LLO) is a major virulence factor of Listeria monocytogenes, a Gram-positive bacterium that can cause life-threatening diseases. Various signalling events and cellular effects, including modulation of gene expression, are triggered by LLO through unknown mechanisms. Here, we demonstrate that LLO applied extracellularly at sublytic concentrations causes long-lasting oscillations of the intracellular Ca2+ level of human embryonic kidney cells; resulting from a pulsed influx of extracellular Ca2+ through pores that are formed by LLO in the plasma membrane. Calcium influx does not require the activity of endogenous Ca2+ channels. LLO-formed pores are transient and oscillate between open and closed states. Pore formation and Ca2+ oscillations were also observed after exposure of cells to native Listeria monocytogenes. Our data identify LLO as a tool used by Listeria monocytogenes to manipulate the intracellular Ca2+ level without direct contact of the bacterium with the target cell. As Ca2+ oscillations modulate cellular signalling and gene expression, our findings provide a potential molecular basis for the broad spectrum of Ca2+-dependent cellular responses induced by LLO during Listeria infection.  相似文献   

16.
A quantitative kinetic model is proposed to simulate the ATP-induced intracellular Ca(2+) oscillations. The quantitative effect of ATP concentration upon the oscillations was successfully simulated. Our simulation results support previous experimental explanations that the Ca(2+) oscillations are mainly due to interaction of Ca(2+) release from the endoplasmic reticulum (ER) and the ATP-dependent Ca(2+) pump back into the ER, and the oscillations are prolonged by extracellular Ca(2+) entry that maintains the constant Ca(2+) supplies to its intracellular stores. The model is also able to simulate the sudden disappearance phenomenon of the Ca(2+) oscillations observed in some cell types by taking into account of the biphasic characteristic of the Ca(2+) release from the endoplasmic reticulum (ER). Moreover, the model simulation results for the Ca(2+) oscillations characteristics such as duration, peak [Ca(2+)](cyt), and average interval, etc., lead to prediction of some possible factors responsible for the variations of Ca(2+) oscillations in different types of cells.  相似文献   

17.
18.
19.
We propose a mechanism for agonist-stimulated Ca2+ oscillations that involves two roles for cytosolic Ca2+: (a) inhibition of inositol-1,4,5-trisphosphate (IP3) stimulated Ca2+ release from the endoplasmic reticulum (ER) and (b) stimulation of the production of IP3 through its action on phospholipase C (PLC), via a Gq protein related mechanism. Relying on quantitative experiments by Parker, I., and I. Ivorra (1990. Proc. Natl. Acad. Sci. USA. 87:260-264) on the inhibition of Ca2+ release from the ER using caged-IP3, we develop a kinetic model of inhibition that allows us to simulate closely their experiments. The model assumes that the ER IP3 receptor is a tetramer of independent subunits that can bind both Ca2+ and IP3. Upon incorporation of the action of Ca2+ on PLC that leads to production of IP3, we observe in-phase-oscillations of Ca2+ and IP3 at intermediate values of agonist stimulation. The oscillations occur on a time scale of 10-20 s, which is comparable to the time scale for inhibition in Xenopus oocytes. Analysis of the mechanism shows that Ca(2+)-inhibition of IP3-stimulated Ca2+ release from the ER is an essential step in the mechanism. We also find that the effect of Ca2+ on PLC can lead to an indirect increase of cytosolic Ca2+, superficially resembling "Ca(2+)-induced Ca(2+)-release." The mechanism that we propose appears to be consistent with recent experiments on REF52 cells by Harootunian, A. T., J. P. Y. Kao, S. Paranjape, and R. Y. Tsien. (1991. Science [Wash. DC]. 251:75-78.) and we propose additional experiments to help test its underlying assumptions.  相似文献   

20.
The present study was designed to determine whether the cADP-ribose-mediated Ca(2+) signaling is involved in the inhibitory effect of nitric oxide (NO) on intracellular Ca(2+) mobilization. With the use of fluorescent microscopic spectrometry, cADP-ribose-induced Ca(2+) release from sarcoplasmic reticulum (SR) of bovine coronary arterial smooth muscle cells (CASMCs) was determined. In the alpha-toxin-permeabilized primary cultures of CASMCs, cADP-ribose (5 microM) produced a rapid Ca(2+) release, which was completely blocked by pretreatment of cells with the cADP-ribose antagonist 8-bromo-cADP-ribose (8-Br-cADPR). In intact fura 2-loaded CASMCs, 80 mM KCl was added to depolarize the cells and increase intracellular Ca(2+) concentration ([Ca(2+)](i)). Sodium nitroprusside (SNP), an NO donor, produced a concentration-dependent inhibition of the KCl-induced increase in [Ca(2+)](i), but it had no effect on the U-46619-induced increase in [Ca(2+)](i). In the presence of 8-Br-cADPR (100 microM) and ryanodine (10 microM), the inhibitory effect of SNP was markedly attenuated. HPLC analyses showed that CASMCs expressed the ADP-ribosyl cyclase activity, and SNP (1-100 microM) significantly reduced the ADP-ribosyl cyclase activity in a concentration-dependent manner. The effect of SNP was completely blocked by addition of 10 microM oxygenated hemoglobin. We conclude that ADP-ribosyl cyclase is present in CASMCs, and NO may decrease [Ca(2+)](i) by inhibition of cADP-ribose-induced Ca(2+) mobilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号