首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Translational regulation of ferritin synthesis by iron   总被引:2,自引:0,他引:2  
R S Eisenstein  H N Munro 《Enzyme》1990,44(1-4):42-58
  相似文献   

2.
In rats with chronic dietary iron overload, a higher amount of liver ferritin L-subunit mRNA was found mainly engaged on polysomes, whereas in control rats ferritin L-subunit mRNA molecules were largely stored in ribonucleoprotein particles. On the other hand, ferritin H-subunit mRNA was unchanged by chronic iron load and remained in the inactive cytoplasmic pool. In agreement with previous reports, in rats acutely treated with parenteral iron, only the ferritin L-subunit mRNA increased in amount, whereas both ferritin subunit mRNAs shifted to polysomes. This may indicate that, whereas in acute iron overload the hepatocyte operates a translation shift of both ferritin mRNAs to confront rapidly the abrupt entry of iron into the cell, during chronic iron overload it responds to the slow iron influx by translating a greater amount of L-subunit mRNA to synthesize isoferritins more suitable for long-term iron storage.  相似文献   

3.
We have examined the distribution of ferritin mRNA to free and endoplasmic reticulum (ER)-bound liver polyribosomes during inflammation and iron treatment of rats. Postnuclear tissue supernatants were fractionated on a discontinuous sucrose gradient developed to separate free and bound polyribosomes. Total RNA recovered averaged 3.2 mg/g tissue, 40% of which was with ER and 30% with the free polyribosomes, about 25% being with the postribosomal/RNP fraction. Slot-blot hybridization of equal portions of RNA revealed that 12 h after injection of turpentine to induce inflammation, ferritin mRNA was concentrated on the ER-bound polyribosomes, while it was concentrated on the free polyribosomes 2 h after injection of ferric ammonium citrate. Differences were highly significant, based on multiple determinations and densitometry. Profiles of ferritin mRNA distribution on linear sucrose gradients corroborated the differential findings. Concentrations of total ferritin mRNA per gram liver doubled with iron treatment but were not significantly different 12 h after turpentine treatment. At the same time point after turpentine, ferritin protein synthesis was increased twofold, as measured by the 1 h incorporation of [14C]leucine. We conclude that a significant portion of ferritin mRNA always associates with the ER-bound polyribosomes, and that inflammation and iron differentially alter the polysomal distribution of ferritin mRNA, suggesting that two different kinds of mRNA may be involved.  相似文献   

4.
5.
Ferritin is a multisubunit protein that is responsible for storing and detoxifying cytosolic iron. Ferritin can be found in serum but is relatively iron poor. Serum ferritin occurs in iron overload disorders, in inflammation, and in the genetic disorder hyperferritinemia with cataracts. We show that ferritin secretion results when cellular ferritin synthesis occurs in the relative absence of free cytosolic iron. In yeast and mammalian cells, newly synthesized ferritin monomers can be translocated into the endoplasmic reticulum and transits through the secretory apparatus. Ferritin chains can be translocated into the endoplasmic reticulum in an in?vitro translation and membrane insertion system. The insertion of ferritin monomers into the ER occurs under low-free-iron conditions, as iron will induce the assembly of ferritin. Secretion of ferritin chains provides a mechanism that limits ferritin nanocage assembly and ferritin-mediated iron sequestration in the absence of the translational inhibition of ferritin synthesis.  相似文献   

6.
Role of iron in the regulation of ferritin metabolism   总被引:5,自引:0,他引:5  
  相似文献   

7.
Translational control: the ferritin story   总被引:1,自引:0,他引:1  
  相似文献   

8.
9.
Rat liver ferritin is an effective donor of iron to rat hepatocytes. Uptake of iron from ferritin by the cells is partially inhibited by including apotransferrin in the culture medium, but not by inclusion of diferric transferrin. This inhibition is dependent on the concentration of apotransferrin, with a 30% depression in iron incorporation in the cells detected at apotransferrin concentrations above 40 micrograms/ml. However, apotransferrin does not interfere with uptake of 125I-labeled ferritin, suggesting that apotransferrin decreases retention of iron taken up from ferritin by hepatocytes by sequestering a portion of released iron before it has entered the metabolic pathway of the cells. The iron chelators desferrioxamine (100 microM), citrate (10 mM) and diethylenetriaminepentaacetate (100 microM) reduce iron uptake by the cells by 35, 25 and 8%, respectively. In contrast, 1 mM ascorbate increases iron accumulation by 20%. At a subtoxic concentration of 100 microM, chloroquine depresses ferritin and iron uptake by hepatocytes by more than 50% after 3 h incubation. Chloroquine presumably acts by retarding lysosomal degradation of ferritin and recycling of ferritin receptors.  相似文献   

10.
The rate of Fe3+ release from horse spleen ferritin (HoSF) was measured using the Fe3+-specific chelator desferoxamine (DES). The reaction consists of two kinetic phases. The first is a rapid non-linear reaction followed by a slower linear reaction. The overall two-phase reaction was resolved into three kinetic events: 1) a rapid first-order reaction in HoSF (k1); 2) a second slower first-order reaction in HoSF (k2); and 3) a zero-order slow reaction in HoSF (k3). The zero-order reaction was independent of DES concentration. The two first-order reactions had a near zero-order dependence on DES concentration and were independent of pH from 6.8 to 8.2. The two first-order reactions accounted for 6-9 rapidly reacting Fe3+ ions. Activation energies of 10.5 ± 0.8, 13.5 ± 2.0 and 62.4 ± 2.1 kJ/mol were calculated for the kinetic events associated with k1, k2, and k3, respectively. Iron release occurs by: 1) a slow zero-order rate-limiting reaction governed by k3 and corresponding to the dissociation of Fe3+ ions from the FeOOH core that bind to an Fe3+ binding site designated as site 1 (proposed to be within the 3-fold channel); 2) transfer of Fe3+ from site 1 to site 2 (a second binding site in the 3-fold channel) (k2); and 3) rapid iron loss from site 2 to DES (k1).  相似文献   

11.
12.
Mitochondria mobilize iron from ferritin by a mechanism that depends on external FMN. With rat liver mitochondria, the rate of mobilization of iron is higher from rat liver ferritin than from horse spleen ferritin. With horse liver mitochondria, the rate of iron mobilization is higher from horse spleen ferritin than from rat liver ferritin. The results are explained by a higher affinity between mitochondria and ferritins of the same species. The mobilization of iron increases with the iron content of the ferritin and then levels off. A maximum is reached with ferritins containing about 1 200 iron atoms per molecule. The results represent further evidence that ferritin may function as a direct iron donor to the mitochondria.  相似文献   

13.
14.
The rate of release of iron to 1,10-phenanthroline from ferritin fractions of different iron contents has been studied. The experimental results could be interpreted by a simple hypothetical model of the shape of the hydrous ferric oxide micelle at different iron contents, and reasonable correlation obtained between the rate of release and the calculated micelle surface areas. Initial rates of release did not correlate significantly with protein concentration.  相似文献   

15.
The release of iron from horse spleen ferritin by reduced flavins   总被引:5,自引:3,他引:5       下载免费PDF全文
Ferritin-Fe(III) was rapidly and quantitatively reduced and liberated as Fe(II) by FMNH2, FADH2 and reduced riboflavin. Dithionite also released Fe(II) from ferritin but at less than 1% of the rate with FMNH2. Cysteine, glutathione and ascorbate gave a similar slower rate and yielded less than 20% of the total iron from ferritin within a few hours. The reduction of ferritin-Fe(III) by the three riboflavin compounds gave complex second-order kinetics with overlapping fast and slow reactions. The fast reaction appeared to be non-specific and may be due to a reduction of Fe(III) of a lower degree of polymerization, equilibrated with ferritin iron. The amount of this Fe3+ ion initially reduced was small, less than 0.3% of the total iron. Addition of FMN to the ferritin–dithionite system enhanced the reduction; this is due to the reduction of FMN by dithionite to form FMNH2 which then reduces ferritin-Fe(III). A comparison of the thermodynamic parameters of FMNH2–ferritin and dithionite–ferritin complex formation showed that FMNH2 required a lower activation energy and a negative entropy change, whereas dithionite required 50% more activation energy and showed a positive entropy change in ferritin reduction. The effectiveness of FMNH2 in ferritin–Fe(III) reduction may be due to a specific binding of the riboflavin moiety to the protein portion of the ferritin molecule.  相似文献   

16.
1. The ferritin content of liver and spleen in normal and iron-loaded rats decreased during repeated phlebotomy. 2. During increased iron demand, ferritin is degraded in toto. 3. With the ESI and EELS technique the iron distribution was followed in different cell types and cellular compartments. 4. We have demonstrated two methods of iron mobilisation: (a) catabolism of lysosomal ferritin in toto and (b) delivery of ferritin from parenchymal cell into the bile and degradation of ferritin in toto.  相似文献   

17.
18.
19.
The effect of iron on ferritin turnover in rat liver   总被引:1,自引:0,他引:1  
125I-labelled angiotensin II (A II) specifically binds to solubilized receptors extracted from rat isolated glomeruli using CHAPS (3-[3-( cholamidopropyl ) dimethylammonio ]-1-propanesulfonate). The yield of solubilization of the binding sites was 3.3%. Equilibrium was reached after 15-20 min and specific binding represented 75% of total binding. Dissociation of the hormone-receptor complex after addition of an excess of A II was very slow in the presence of Ca2+ and Mg2+. [Sar1 Ala8] A II and [Sar1 Ile8] A II were more potent as competitive inhibitors of 125I-labelled A II than A II itself and its heptapeptide. These basic features of 125I-labelled A II binding to the extracted material were similar to those observed previously with untreated glomeruli.  相似文献   

20.
Regulation of synthesis and turnover of ferritin in rat liver   总被引:30,自引:0,他引:30  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号