首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein kinase GCN2 regulates translation in amino acid-starved cells by phosphorylating elF2. GCN2 contains a regulatory domain related to histidyl-tRNA synthetase (HisRS) postulated to bind multiple deacylated tRNAs as a general sensor of starvation. In accordance with this model, GCN2 bound several deacylated tRNAs with similar affinities, and aminoacylation of tRNAphe weakened its interaction with GCN2. Unexpectedly, the C-terminal ribosome binding segment of GCN2 (C-term) was required in addition to the HisRS domain for strong tRNA binding. A combined HisRS+ C-term segment bound to the isolated protein kinase (PK) domain in vitro, and tRNA impeded this interaction. An activating mutation (GCN2c-E803V) that weakens PK-C-term association greatly enhanced tRNA binding by GCN2. These results provide strong evidence that tRNA stimulates the GCN2 kinase moiety by preventing an inhibitory interaction with the bipartite tRNA binding domain.  相似文献   

2.
Using singlet-singlet energy transfer, we have measured the distance between the anticodons of two transfer RNAs simultaneously bound to a messengerprogramed Escherichia coli 70 S ribosome. The fluorescent Y base adjacent to the anticodon of yeast tRNAYPhe serves as a donor. A proflavine (Pf) chemically substituted for the Y base in tRNAPfPhe serves as an acceptor. By exploiting the sequential binding properties of 70 S ribosomes for two deacylated tRNAs, we can fill the strong site with either tRNAYPhe or tRNAPfPhe and then the weak site with the other tRNA. In both cases donor quenching and sensitized emission of the acceptor are observed. Analysis of these results leads to an estimate for the Y-proflavine distance of 18 ± 2 Å. This distance is very short and suggests strongly that the two tRNAs are simultaneously in contact with adjacent codons of the message. Separate experiments show that binding of a tRNA to the weak site does not perturb the environment of the hypermodified base of a tRNA bound to the strong site. This supports the assignment of the strong site as the peptidyl site. It also indicates that binding of the second tRNA proceeds without a change in the anticodon structure of a pre-existing tRNA at the peptidyl site.  相似文献   

3.
S J Park  Y M Hou  P Schimmel 《Biochemistry》1989,28(6):2740-2746
A single G3.U70 base pair in the acceptor helix is a major determinant of the identity of an alanine transfer RNA. Alteration of this base pair to A.U or G.C prevents aminoacylation with alanine. We show here that, at approximate physiological conditions (pH 7.5, 37 degrees C), high concentrations of the mutant A3.U70 species do not inhibit aminoacylation of a wild-type alanine tRNA. The observation suggests that, under these conditions, the G3 to A3 substitution increases Km for tRNA by more than 30-fold. Other experiments at pH 7.5 show that no aminoacylation of A3.U70, G3.C70, or U3.G70 mutant tRNAs occurs with substrate levels of enzyme. This suggests that kcat for these mutant tRNAs is sharply reduced as well and that the catalytic defect is not due to slow release of charged mutant tRNAs from the enzyme. Investigations were also done at pH 5.5, where association of tRNAs with synthetases is generally stronger and where binding can be conveniently measured apart from aminoacylation. Under these conditions, the binding of the A3.U70 and G3.C70 species is readily detected and is only 3-5-fold weaker than the binding of the wild-type tRNA. Although the A3.U70 species was demonstrated to compete with the wild-type tRNA for the same site on the enzyme, no aminoacylation could be detected. Thus, even when conditions are adjusted to obtain strong competitive binding, a sharp reduction in kcat prevents aminoacylation of a tRNA(Ala) species with a substitution at position 3.70.  相似文献   

4.
Ribosome binding by tRNAs with fluorescent labeled 3'' termini.   总被引:2,自引:1,他引:1       下载免费PDF全文
Yeast and E. coli tRNAPhe samples were oxidized and labeled at the 3' end with dansyl hydrazine or fluorescein thiosemicarbazide. These tRNAs can bind to poly(U)-programmed E. coli 70S tight couple ribosomes in 25 mM magnesium at 8 degrees C. Two binding sites with binding constants of about 1 X 10(9) M-1 (P) and 3 X 10(7) M-1 (A) were determined for the yeast tRNAPhe derivatives. With E. coli tRNAPhe the A site affinity is similar to yeast tRNAPhe but the P site affinity is 5-fold weaker. Singlet-singlet energy transfer showd that the distance from the 3' end of tRNAPhe in the P site to a fluorescein derivative of erythromycin is 23 A. This supports in vitro studies suggesting that erythromycin binds near the peptide moiety of peptidyl tRNA. A distance of 34 A between the 3' ends of 2 tRNAs bound simulatneously on the ribosome was also measured. This long distance may mean that the deacylated fluorescent tRNA binds to the A site in an orientation like that in the stringent response rather than in protein synthesis.  相似文献   

5.
Destabilization of codon-anticodon interaction in the ribosomal exit site   总被引:9,自引:0,他引:9  
The affinities of the exit (E) site of poly(U) or poly(A)-programmed Escherichia coli ribosomes for the respective cognate tRNA and a number of non-cognate tRNAs were determined by equilibrium titrations. Among the non-cognate tRNAs, the binding constants vary up to about tenfold (10(6) to 10(7) M-1 at 20 mM-Mg2+) or 50-fold (10 mM-Mg2+), indicating that codon-independent binding is modulated to a considerable extent by structural elements of the tRNA molecules other than the anticodon. Codon-anticodon interaction stabilizes tRNA binding in the E site approximately fourfold (20 mM-Mg2+) or 20-fold (10 mM-Mg2+), corresponding to delta G degree values of -3 and -7 kJ/mol (0.7 and 1.7 kcal/mol), respectively. Thus, the energetic contribution of codon-anticodon interaction to tRNA binding in the E site appears rather small, particularly in comparison to the large effects on the binding in A and P sites and to the binding of complementary oligonucleotides or of tRNAs with complementary anticodons. This result argues against a role of the E site-bound tRNA in the fixation of the mRNA on the ribosome. In contrast, we propose that the role of the E site is to facilitate the release of the discharged tRNA during translocation by providing an intermediate, labile binding site for the tRNA leaving the P site. The lowering of both affinity and stability of tRNA binding accompanying the transfer of the tRNA from the P site to the E site is predominantly due to the labilization of the codon-anticodon interaction.  相似文献   

6.
Coordinated translocation of the tRNA-mRNA complex by the ribosome occurs in a precise, stepwise movement corresponding to a distance of three nucleotides along the mRNA. Frameshift suppressor tRNAs generally contain an extra nucleotide in the anticodon loop and they subvert the normal mechanisms used by the ribosome for frame maintenance. The mechanism by which suppressor tRNAs traverse the ribosome during translocation is poorly understood. Here, we demonstrate translocation of a tRNA by four nucleotides from the A site to the P site, and from the P site to the E site. We show that translocation of a punctuated mRNA is possible with an extra, unpaired nucleotide between codons. Interestingly, the NMR structure of the four nucleotide anticodon stem-loop reveals a conformation different from the canonical tRNA structure. Flexibility within the loop may allow conformational adjustment upon A site binding and for interacting with the four nucleotide codon in order to shift the mRNA reading frame.  相似文献   

7.
Conformational transitions in several individual tRNAs (tRNA inff supMet , tRNAPhe from E. coli, tRNA inf1 supVal , tRNASer, tRNAPhe from yeast) have been studied under various environmental conditions. The binding isotherms studies for dyes-tRNA complexes exhibited similarities in conformational states of all tRNAs investigated at low ionic strength (0.01 M NaCl). By contrast, at high ionic strength (0.4 M NaCl or 2×10-4 M Mg2+) a marked difference is found in structural features of tRNA inff supMet as compared with other tRNAs used. The tRNA inff supMet is the only tRNA species that does not reveal the strong type of complexes with ethidium bromide, acriflavine and acridine orange.  相似文献   

8.
The binding of polyamines and of ethidium bromide to tRNA.   总被引:1,自引:0,他引:1  
The binding of spermidine and ethidium bromide to mixed tRNA and phenylalanine tRNA has been studied under equilibrium conditions. The numbers and classes of binding sites obtained have been compared to those found in complexes isolated by gel filtration a low ionic strength. The latter complexes contain 10-11 moles of either spermidine or ethidium per mole of tRNA; either cation is completely displaceable by the other. In ethidium complexes, the first 2-3 moles are bound in fluorescent binding sites; the remaining 7-8 molecules bind in non-fluorescent form. At least one of the binding sites for spermidine appears similar to a binding site for fluorescent ethidium. Similar results are found with E. coli formylmethionine tRNA. Spermine, in excess of 18-20 moles per mole tRNA, causes precipitation of the complex. Putrescine does not form isolable complexes with yeast tRNA and displaces ethidium less readily from preformed ethidium-tRNA complexes. Under equilibrium conditions, in the absence of Mg++, there are 16-17 moles of spermidine bound per mole of tRNA as determined by equilibrium dialysis. Of these, 2-3 bind with a Ksence of 9 mM Mg++, the total number of binding sites is decreased slightly and there appears to be only one class of sites with a Ka = 600 M(-1). Quantitatively similar results are obtained for the binding of spermidine to yeast phenylalanine tRNA. When the interaction between ethidium bromide and mixed tRNA is studied by equilibrium dialysis or spectrophotometric titration, two classes of binding sites are obtained: 2-3 molecules bind with an average Ka = 6.6 x 10(5) M(-1) and 14-15 molecules bind with an average Ka = 4.1 x 10(4) M(-1). Spermidine, spermine, and Mg++ compete effectively for both classes of ethidium sites and have the effect of reducing the apparent binding constants for ethidium. When the binding of ethidium is studied by fluorometry, there are 3-4 highly fluorescent sites per tRNA. These sites are also affected by spermidine, spermine and Mg++. Putrescine has little effect on any of the classes of binding sites. These data are consistent with those found under non-equilibrium conditions. They suggest that polyamines bind to fairly specific regions of tRNA and may be involved in the maintenance of certain structural features of tRNA.  相似文献   

9.
On the coordination properties of Eu3+ bound to tRNA   总被引:3,自引:0,他引:3  
The luminescence properties of Eu3+ have been used to investigate the binding and coordination properties of the ion with tRNA, as an attempt to resolve the discussion of whether metal ions bind to tRNA in solution only by Debye-Hückel screening, or whether direct coordination to specific sites may occur. Binding studies with Escherichia coli tRNAmet/f (taking advantage of 4-thiouracil-sensitized Eu3+ emission) distinguish three classes of binding affinities. Two of these are single sites with affinities approx. 10(4) and approx. 10(3) tighter than the nonspecific affinity of Eu3+ for native DNA. Mg2+ competes for binding at both these sites. Measurement of the lifetime and excitation spectrum of Eu3+ bound to the highest affinity site shows that the ion has two to five non-phosphate ligands in its inner coordination sphere. The existence of this coordinated site demonstrates that electrostatic screening is not the only mechanism for metal ion interaction with tRNA. The coordination properties of the high-affinity Eu3+ site do not agree with the properties of any of the metal ion sites found in the two tRNAphe crystal forms. Possible reasons for this discrepancy are discussed; it may be that ions bind differently to isolated molecules in solution than to molecules packed in a crystal lattice.  相似文献   

10.
The chromatographic profiles of isoaccepting tRNAs were analyzed at five time points during the 96 hr, dimethylsulfoxide induced, erythroid-like differentiation of Friend leukemia cells. Sixty-four isoaccepting species of tRNA for 16 amino acids were resolved by RPC-5 chromatography. The relative amounts of tRNAphe, tRNAile, and tRNAval species were maintained by the cells during differentiation; whereas the relative amounts of some of the isoacceptor tRNAs for the other 13 amino acids changed significantly. Fluctuations in amounts of isoacceptors occurred between 36 and 72 hr after addition of dimethysulfoxide, corresponding to globin mRNA appearance and hemoglobin synthesis, respectively. In most cases, thepredominant tRNA isoacceptors of uninduced cells were retained throughout differentiation. Notable exceptions were tRNA species for threonine, proline, and methionine. Some of the isoacceptors occurring in relatively smaller amounts were not expressed at all times. These changes possibly reflect the cell's functional adaptation of tRNA in differentiation for hemoglobin synthesis.  相似文献   

11.
Structural studies have revealed multiple contacts between the ribosomal P site and tRNA, but how these contacts contribute to P-tRNA binding remains unclear. In this study, the effects of ribosomal mutations on the dissociation rate (koff) of various tRNAs from the P site were measured. Mutation of the 30S P site destabilized tRNAs to various degrees, depending on the mutation and the species of tRNA. These data support the idea that ribosome-tRNA interactions are idiosyncratically tuned to ensure stable binding of all tRNA species. Unlike deacylated elongator tRNAs, N-acetyl-aminoacyl-tRNAs and tRNAfMet dissociated from the P site at a similar low rate, even in the presence of various P-site mutations. These data provide evidence for a stability threshold for P-tRNA binding and suggest that ribosome-tRNAfMet interactions are uniquely tuned for tight binding. The effects of 16S rRNA mutation G1338U were suppressed by 50S E-site mutation C2394A, suggesting that G1338 is particularly important for stabilizing tRNA in the P/E site. Finally, mutation C2394A or the presence of an N-acetyl-aminoacyl group slowed the association rate (kon) of tRNA dramatically, suggesting that deacylated tRNA binds the P site of the ribosome via the E site.  相似文献   

12.
tRNA binding sites of ribosomes from Escherichia coli   总被引:6,自引:0,他引:6  
70S tight-couple ribosomes from Escherichia coli were studied with respect to activity and number of tRNA binding sites. The nitrocellulose filtration and puromycin assays were used both in a direct manner and in the form of a competition binding assay, the latter allowing an unambiguous determination of the fraction of ribosomes being active in tRNA binding. It was found that, in the presence of poly(U), the active ribosomes bound two molecules of N-AcPhe-tRNAPhe, one in the P and the other in the A site, at Mg2+ concentrations between 6 and 20 mM. A third binding site in addition to P and A sites was observed for deacylated tRNAPhe. At Mg2+ concentrations of 10 mM and below, the occupancy of the additional site was very low. Dissociation of tRNA from this site was found to be rather fast, as compared to both P and A sites. These results suggest that the additional site during translocation functions as an exit site, to which deacylated tRNA is transiently bound before leaving the ribosome. Since tRNA binding to this site did not require the presence of poly(U), a function of exit site bound tRNA in the fixation of the mRNA appears unlikely. Both the affinity and stability of binding to the additional site were found lower for the heterologous tRNAPhe from yeast as compared to the homologous one. This difference possibly indicates some specificity of the E. coli ribosome for tRNAs from the same organism.  相似文献   

13.
The low temperature crystal structure of the ternary complex of Thermus thermophilus seryl-tRNA synthetase with tRNA(Ser) (GGA) and a non-hydrolysable seryl-adenylate analogue has been refined at 2.7 angstrom resolution. The analogue is found in both active sites of the synthetase dimer but there is only one tRNA bound across the two subunits. The motif 2 loop of the active site into which the single tRNA enters interacts within the major groove of the acceptor stem. In particular, a novel ring-ring interaction between Phe262 on the extremity of this loop and the edges of bases U68 and C69 explains the conservation of pyrimidine bases at these positions in serine isoaccepting tRNAs. This active site takes on a significantly different ordered conformation from that observed in the other subunit, which lacks tRNA. Upon tRNA binding, a number of active site residues previously found interacting with the ATP or adenylate now switch to participate in tRNA recognition. These results shed further light on the structural dynamics of the overall aminoacylation reaction in class II synthetases by revealing a mechanism which may promote an ordered passage through the activation and transfer steps.  相似文献   

14.
Specificity of the ribosomal A site for aminoacyl-tRNAs   总被引:1,自引:1,他引:0       下载免费PDF全文
Although some experiments suggest that the ribosome displays specificity for the identity of the esterified amino acid of its aminoacyl-tRNA substrate, a study measuring dissociation rates of several misacylated tRNAs containing the GAC anticodon from the A site showed little indication for such specificity. In this article, an expanded set of misacylated tRNAs and two 2′-deoxynucleotide-substituted mRNAs are used to demonstrate the presence of a lower threshold in koff values for aa-tRNA binding to the A site. When a tRNA binds sufficiently well to reach this threshold, additional stabilizing effects due to the esterified amino acid or changes in tRNA sequence are not observed. However, specificity for different amino acid side chains and the tRNA body is observed when tRNA binding is sufficiently weaker than this threshold. We propose that uniform aa-tRNA binding to the A site may be a consequence of a conformational change in the ribosome, induced by the presence of the appropriate combination of contributions from the anticodon, amino acid and tRNA body.  相似文献   

15.
Binding of the yeast Tyr-tRNA and Phe-tRNA to the A site, and the binding of their acetyl derivatives to the P site of poly(U11,A)-programmed Escherichia coli ribosomes was studied. Spermine stimulated the rate of binding of both tRNAs at least threefold, enabling more than 90% final saturation of both ribosomal binding sites. The effect is observed when the tRNAs, but not ribosomes or poly(U11,A), are preincubated with polyamine. Regardless of the binding site, optimal saturation was reached at spermine/tRNA molar ratios of 3 for tRNA(Phe) and 5 for tRNA(Tyr). The same low spermine/tRNA ratios were previously reported to stabilize the conformation of these tRNAs in solution. On the other hand, the messenger-free, EF-Tu- and EF-G-dependent polymerization of lysine from E. coli Lys-tRNA is drastically reduced, while the poly(A)-directed polymerization is stimulated by spermine through a wide range of Mg2+ concentrations. Misreading of UUU codons as isoleucine, assayed by the A-site binding of E. coli Ile-tRNA, is also inhibited by spermine. All these results demonstrate that spermine increases the efficiency and accuracy of a series of macromolecular interactions leading to the correct incorporation of an amino acid into protein, at the same time preventing some unspecific or erroneous interactions. From the analogy with its known structural effects, it can be inferred that spermine does so by conferring on the tRNA a specific biologically functional conformation.  相似文献   

16.
17.
Wower J  Zwieb CW  Hoffman DW  Wower IK 《Biochemistry》2002,41(28):8826-8836
Binding of the SmpB protein to tmRNA is essential for trans-translation, a process that facilitates peptide tagging of incompletely synthesized proteins. We have used three experimental approaches to study these interactions in vitro. Gel mobility shift assays demonstrated that tmRNA(Delta90-299), a truncated tmRNA derivative lacking pseudoknots 2-4, has the same affinity for the Escherichia coli and Aquifex aeolicus SmpB proteins as the intact E. coli tmRNA. These interactions can be challenged by double-stranded RNAs such as tRNAs and 5S rRNA and are abolished by removal of 24 amino acids from the C-terminus of the A. aeolicus protein. A combination of enzymatic probing and UV-induced cross-linking showed that three SmpB molecules can bind to a single tmRNA(Delta90-299) and tRNA molecule. Irradiation of E. coli tmRNA and yeast tRNA(Phe) bound to a single SmpB molecule with UV light induced cross-links to residues C343 and m(1)A48, respectively, in their T-loops and to their 3' terminal adenosines. These findings indicate that the acceptor-T arm constitutes the primary SmpB binding site in both tmRNA and tRNA. The remaining two SmpB molecules associate with the anticodon stem-like region of tmRNA and the anticodon arm of tRNAs. As the T and anticodon loops are dispensable for SmpB binding, it seems that SmpB recognizes double helical segments in both tmRNA and tRNA molecules. Although these interactions involve analogous elements in both molecules, their different effects on aminoacylation appear to reflect subtle structural differences between the tRNA-like domain of tmRNA and tRNA.  相似文献   

18.
P Y Shi  N Maizels    A M Weiner 《The EMBO journal》1998,17(11):3197-3206
The CCA-adding enzyme repairs the 3''-terminal CCA sequence of all tRNAs. To determine how the enzyme recognizes tRNA, we probed critical contacts between tRNA substrates and the archaeal Sulfolobus shibatae class I and the eubacterial Escherichia coli class II CCA-adding enzymes. Both CTP addition to tRNA-C and ATP addition to tRNA-CC were dramatically inhibited by alkylation of the same tRNA phosphates in the acceptor stem and TPsiC stem-loop. Both enzymes also protected the same tRNA phosphates in tRNA-C and tRNA-CC. Thus the tRNA substrate must remain fixed on the enzyme surface during CA addition. Indeed, tRNA-C cross-linked to the S. shibatae enzyme remains fully active for addition of CTP and ATP. We propose that the growing 3''-terminus of the tRNA progressively refolds to allow the solitary active site to reuse a single CTP binding site. The ATP binding site would then be created collaboratively by the refolded CC terminus and the enzyme, and nucleotide addition would cease when the nucleotide binding pocket is full. The template for CCA addition would be a dynamic ribonucleoprotein structure.  相似文献   

19.
Elongation factor Tu (EF-Tu) exhibits significant specificity for the different elongator tRNA bodies in order to offset its variable affinity to the esterified amino acid. Three X-ray cocrystal structures reveal that while most of the contacts with the protein involve the phosphodiester backbone of tRNA, a single hydrogen bond is observed between the Glu390 and the amino group of a guanine in the 51-63 base pair in the T-stem of tRNA. Here we show that the Glu390Ala mutation of Thermus thermophilus EF-Tu selectively destabilizes binding of those tRNAs containing a guanine at either position 51 or 63 and that mutagenesis of the 51-63 base pair in several tRNAs modulates their binding affinities to EF-Tu. A comparison of Escherichia coli tRNA sequences suggests that this specificity mechanism is conserved across the bacterial domain. While this contact is an important specificity determinant, it is clear that others remain to be identified.  相似文献   

20.
A transplantable rat tumor, mammary adenocarcinoma 13762, accumulates tRNA which can be methylated in vitro by mammalian tRNA (adenine-1) methyltransferase. This unusual ability of the tumor RNA to serve as substrate for a homologous tRNA methylating enzyme is correlated with unusually low levels of the A58-specific adenine-1 methyltransferase. The nature of the methyl-accepting RNA has been examined by separating tumor tRNA on two-dimensional polyacrylamide gels. Comparisons of ethidium bromide-stained gels of tumor vs. liver tRNA show no significant quantitative differences and no accumulation of novel tRNAs or precursor tRNAs in adenocarcinoma RNA. Two-dimensional separations of tumor RNA after in vitro [14C]methylation using purified adenine-1 methyltransferase indicate that about 25% of the tRNA species are strongly methyl-accepting RNAs. Identification of six of the tRNAs separated on two-dimensional gels has been carried out by hybridization of cloned tRNA genes to Northern blots. Three of these, tRNALys3, tRNAGln and tRNAMeti, are among the adenocarcinoma methyl-accepting RNAs. The other three RNAs, all of which are leucine-specific tRNAs, show no methyl-accepting properties. Our results suggest that low levels of a tRNA methyltransferase in the adenocarcinoma cause selected species of tRNA to escape the normal A58 methylation, resulting in the appearance of several mature tRNAs which are deficient in 1-methyladenine. The methyl-accepting tRNAs from the tumor appear as ethidium bromide-stained spots of similar intensity to those seen for RNA from rat liver; therefore, methyladenine deficiency does not seem to impair processing of these tRNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号