首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tissue engineering of bone has the potential to overcome the limitations of using autologous, allogeneic or synthetic bone grafts to treat extensive bone defects. It involves culturing of osteogenic cells within appropriate scaffold materials under conditions that optimize bone development. Stem cells, progenitor cells, terminally differentiated cells or genetically modified cells may be used. Scaffold materials include polymers, ceramics or composites which are used to maintain the desirable characteristics of the individual materials. Preclinical and clinical studies on the use of growth factors such as bone morphogenetic proteins to increase bone formation have had promising results. This review discusses the approaches to and the challenges associated with producing tissue engineered bone.  相似文献   

2.
Corneal diseases are a major cause of blindness in the world. Although great progress has been achieved in the treatment of corneal diseases, wound healing after severe corneal damage and immunosuppressive therapy after corneal transplantation remain prob-lematic. Mesenchymal stem cells(MSCs) derived from bone marrow or other adult tissues can differentiate into various types of mesenchymal lineages, such as osteocytes, adipocytes, and chondrocytes, both in vivo and in vitro. These cells can further differentiate into specific cell types under specific conditions. MSCs migrate to injury sites and promote wound healing by secreting anti-inflammatory and growth factors. In ad-dition, MSCs interact with innate and acquired immune cells and modulate the immune response through their powerful paracrine function. Over the last decade, MSCs have drawn considerable attention because of their beneficial properties and promising therapeutic prospective. Furthermore, MSCs have been applied to various studies related to wound healing, autoim-mune diseases, and organ transplantation. This review discusses the potential functions of MSCs in protecting corneal tissue and their possible mechanisms in corneal wound healing and corneal transplantation.  相似文献   

3.
Based on its proven anabolic effects on bone in osteoporosis patients, recombinant parathyroid hormone (PTH1-34) has been evaluated as a potential therapy for skeletal repair. In animals, the effect of PTH1-34 has been investigated in various skeletal repair models such as fractures, allografting, spinal arthrodesis and distraction osteogenesis. These studies have demonstrated that intermittent PTH1-34 treatment enhances and accelerates the skeletal repair process via a number of mechanisms, which include effects on mesenchymal stem cells, angiogenesis, chondrogenesis, bone formation and resorption. Furthermore, PTH1-34 has been shown to enhance bone repair in challenged animal models of aging, inflammatory arthritis and glucocorticoid-induced bone loss. This pre-clinical success has led to off-label clinical use and a number of case reports documenting PTH1-34 treatment of delayed-unions and non-unions have been published. Although a recently completed phase 2 clinical trial of PTH1-34 treatment of patients with radius fracture has failed to achieve its primary outcome, largely because of effective healing in the placebo group, several secondary outcomes are statistically significant, highlighting important issues concerning the appropriate patient population for PTH1-34 therapy in skeletal repair. Here, we review our current knowledge of the effects of PTH1-34 therapy for bone healing, enumerate several critical unresolved issues (e.g., appropriate dosing regimen and indications) and discuss the long-term potential of this drug as an adjuvant for endogenous tissue engineering.  相似文献   

4.
《Organogenesis》2013,9(1):23-27
Mesenchymal stem cells (MSCs) are of great interest to both clinicians and researchers for their great potential to enhance tissue engineering. Their ease of isolation, manipulability, and potential for differentiation are specifically what have made them so attractive. These multipotent cells have been found to differentiate into cartilage, bone, fat, muscle, tendon, skin, hematopoietic-supporting stroma and neural tissue. Their diverse in vivo distribution includes bone marrow, adipose, periosteum, synovial membrane, skeletal muscle, dermis, pericytes, blood, trabecular bone, human umbilical cord, lung, dental pulp, and periodontal ligament. Despite their frequent use in research, no standardized criteria exist for the identification of mesenchymal stem cells; The International Society for Cellular Therapy has sought to change this with a set of guidelines elucidating the major surface markers found on these cells. While many studies have shown MSCs to be just as effective as unipotent cells for certain types of tissue regeneration, limitations do exist due to their immunosuppressive properties. This paper serves as a review pertaining to these issues, as well as others related to the use of MSCs in tissue engineering.  相似文献   

5.
The incidence of lung fibrosis increases with age. Aging is associated with modifications in the intracellular and extracellular environment including alteration of the extracellular matrix, imbalance of the redox state, accumulation of senescent cells and potential alteration of the recruitment of bone marrow mesenchymal stem cells. The combination of these senescence-related alterations in the lung and in bone marrow progenitor cells might be responsible of the higher susceptibility to lung fibrosis in elderly individuals. The understanding of these age related changes must be considered in the rationale for the development of therapeutic interventions to control lung injury and fibrosis.  相似文献   

6.
Mesenchymal stem cells (MSCs) are of great interest to both clinicians and researchers for their great potential to enhance tissue engineering. Their ease of isolation, manipulability and potential for differentiation are specifically what have made them so attractive. These multipotent cells have been found to differentiate into cartilage, bone, fat, muscle, tendon, skin, hematopoietic-supporting stroma and neural tissue. Their diverse in vivo distribution includes bone marrow, adipose, periosteum, synovial membrane, skeletal muscle, dermis, pericytes, blood, trabecular bone, human umbilical cord, lung, dental pulp and periodontal ligament. Despite their frequent use in research, no standardized criteria exist for the identification of mesenchymal stem cells; The International Society for Cellular Therapy has sought to change this with a set of guidelines elucidating the major surface markers found on these cells. While many studies have shown MSCs to be just as effective as unipotent cells for certain types of tissue regeneration, limitations do exist due to their immunosuppressive properties. This paper serves as a review pertaining to these issues, as well as others related to the use of MSCs in tissue engineering.Key words: mesenchymal stem cells, tissue engineering, regenerative medicine  相似文献   

7.
8.
This report reviews three categories of precursor cells present within adults. The first category of precursor cell, the epiblast-like stem cell, has the potential of forming cells from all three embryonic germ layer lineages, e.g., ectoderm, mesoderm, and endoderm. The second category of precursor cell, the germ layer lineage stem cell, consists of three separate cells. Each of the three cells is committed to form cells limited to a specific embryonic germ layer lineage. Thus the second category consists of germ layer lineage ectodermal stem cells, germ layer lineage mesodermal stem cells, and germ layer lineage endodermal stem cells. The third category of precursor cells, progenitor cells, contains a multitude of cells. These cells are committed to form specific cell and tissue types and are the immediate precursors to the differentiated cells and tissues of the adult. The three categories of precursor cells can be readily isolated from adult tissues. They can be distinguished from each other based on their size, growth in cell culture, expressed genes, cell surface markers, and potential for differentiation. This report also discusses new findings. These findings include the karyotypic analysis of germ layer lineage stem cells; the appearance of dopaminergic neurons after implantation of naive adult pluripotent stem cells into a 6-hydroxydopamine-lesioned Parkinson's model; and the use of adult stem cells as transport mechanisms for exogenous genetic material. We conclude by discussing the potential roles of adult-derived precursor cells as building blocks for tissue repair and as delivery vehicles for molecular medicine.  相似文献   

9.
Human Immunodeficiency Virus Type 1 (HIV-1) protease inhibitors (PIs) are the most potent class of drugs in antiretroviral therapies. However, viral drug resistance to PIs could emerge rapidly thus reducing the effectiveness of those drugs. Of note, all current FDA-approved PIs are competitive inhibitors, i.e., inhibitors that compete with substrates for the active enzymatic site. This common inhibitory approach increases the likelihood of developing drug resistant HIV-1 strains that are resistant to many or all current PIs. Hence, new PIs that move away from the current target of the active enzymatic site are needed. Specifically, allosteric inhibitors, inhibitors that prohibit PR enzymatic activities through non-competitive binding to PR, should be sought. Another common feature of current PIs is they were all developed based on the structure-based design. Drugs derived from a structure-based strategy may generate target specific and potent inhibitors. However, this type of drug design can only target one site at a time and drugs discovered by this method are often associated with strong side effects such as cellular toxicity, limiting its number of target choices, efficacy, and applicability. In contrast, a cell-based system may provide a useful alternative strategy that can overcome many of the inherited shortcomings associated with structure-based drug designs. For example, allosteric PIs can be sought using a cell-based system without considering the site or mechanism of inhibition. In addition, a cell-based system can eliminate those PIs that have strong cytotoxic effect. Most importantly, a simple, economical, and easy-to-maintained eukaryotic cellular system such as yeast will allow us to search for potential PIs in a large-scaled high throughput screening (HTS) system, thus increasing the chances of success. Based on our many years of experience in using fission yeast as a model system to study HIV-1 Vpr, we propose the use of fission yeast as a possible surrogate system to study the effects of HIV-1 protease on cellular functions and to explore its utility as a HTS system to search for new PIs to battle HIV-1 resistant strains.  相似文献   

10.
Osteochondral tissue engineering has shown an increasing development to provide suitable strategies for the regeneration of damaged cartilage and underlying subchondral bone tissue. For reasons of the limitation in the capacity of articular cartilage to self-repair, it is essential to develop approaches based on suitable scaffolds made of appropriate engineered biomaterials. The combination of biodegradable polymers and bioactive ceramics in a variety of composite structures is promising in this area, whereby the fabrication methods, associated cells and signalling factors determine the success of the strategies. The objective of this review is to present and discuss approaches being proposed in osteochondral tissue engineering, which are focused on the application of various materials forming bilayered composite scaffolds, including polymers and ceramics, discussing the variety of scaffold designs and fabrication methods being developed. Additionally, cell sources and biological protein incorporation methods are discussed, addressing their interaction with scaffolds and highlighting the potential for creating a new generation of bilayered composite scaffolds that can mimic the native interfacial tissue properties, and are able to adapt to the biological environment.  相似文献   

11.
12.
The identification of multipotential mesenchymal stem cells (MSCs) derived from adult human tissues, including bone marrow stroma and a number of connective tissues, has provided exciting prospects for cell-based tissue engineering and regeneration. This review focuses on the biology of MSCs, including their differentiation potentials in vitro and in vivo, and the application of MSCs in tissue engineering. Our current understanding of MSCs lags behind that of other stem cell types, such as hematopoietic stem cells. Future research should aim to define the cellular and molecular fingerprints of MSCs and elucidate their endogenous role(s) in normal and abnormal tissue functions.  相似文献   

13.
The identification of multipotential mesenchymal stem cells (MSCs) derived from adult human tissues, including bone marrow stroma and a number of connective tissues, has provided exciting prospects for cell-based tissue engineering and regeneration. This review focuses on the biology of MSCs, including their differentiation potentials in vitro and in vivo, and the application of MSCs in tissue engineering. Our current understanding of MSCs lags behind that of other stem cell types, such as hematopoietic stem cells. Future research should aim to define the cellular and molecular fingerprints of MSCs and elucidate their endogenous role(s) in normal and abnormal tissue functions.  相似文献   

14.
Summary Selective disruption of the neuroglia in penultimate abdominal connectives of the cockroach nerve is followed by a rapid accumulation of cells in the perineurial layer of the lesion. Subsequently, there is an abrupt, secondary, rise in cell numbers in the undamaged perineurial tissues, anterior to the lesion and adjacent to the 4th abdominal ganglia. By 7 days the increased cell numbers are again effectively confined to the original lesion zone. The initial rise in cell numbers is postulated to result from an invasion by blood-borne haemocytes and the subsequent increase, in undamaged perineurial tissues, from the mobilization of endogenous reactive cells. Recruitment of the endogenous cells is inhibited if the haemocytes are excluded from the lesion. There is a slower mobilization of sub-perineurial cells, which, again, is inhibited following exclusion of haemocytes from the lesion zone. It is postulated that the recruitment of the endogenous reactive cells is initiated by the invading haemocytes which transform to granule-containing cells and release diffusible morphogenic and/or mitogenic factors.  相似文献   

15.
In this issue, De Bari et al. (2003) present elegant data to counter the recent claims that adult stem cells have a limited plasticity. Further, they provide evidence that adult stem cells can seek out damaged tissues and repair them.  相似文献   

16.
Reexpansion pulmonary edema parallels reperfusion (reoxygenation) injuries in other organs in that hypoxic and hypoperfused lung tissue develops increased vascular permeability and neutrophil infiltration after reexpansion. This study investigated endogenous lung catalase activity and H2O2 production during hypoxia (produced by lung collapse) and after reoxygenation (resulting from reexpansion), in addition to assessing the effects of exogenous catalase infusion on the development of unilateral pulmonary edema after reexpansion. Lung collapse resulted in a progressive increase in endogenous catalase activity after 3 (14%) and 7 days (23%), while activities in contralateral left lungs did not change (normal left lungs averaged 180 +/- 11 units/mg DNA). Tissue from control left lungs released H2O2 into the extracellular medium at a rate calculated to be 242 +/- 34 nmol.h-1.lung-1. No significant change in extracellular release of H2O2 occurred after 7 days of right lung collapse. However, after reexpansion of the previously collapsed right lungs for 2 h, H2O2 release from both reexpanded right and contralateral left lungs significantly increased (88 and 60%, respectively) compared with controls. Infusion of exogenous catalase significantly increased plasma and lung catalase activities. Exogenous catalase infusion prevented neither the increase in lung permeability nor the infiltration with neutrophils that typically occurs in reexpanded lungs. These data indicate that lung hypoxia/reoxygenation, induced by sequential collapse and reexpansion, has specific effects on endogenous lung catalase activity and H2O2 release. However, exogenous catalase does not prevent reexpansion pulmonary edema, eliminating extracellular (but not intracellular) H2O2 as an important mediator of unilateral lung injury in this model.  相似文献   

17.
Atherosclerosis and heart disease are still the leading causes of morbidity and mortality worldwide. The lack of suitable autologous grafts has produced a need for artificial grafts but the patency of such grafts is limited compared to natural materials. Tissue engineering, whereby living tissue replacements can be constructed, has emerged as a solution to some of these difficulties. This, in turn, is limited by the availability of suitable cells from which to construct the vessels. The development of prosthesis using progenitor cells and switching these into endothelial cells is an important and exciting advance in the field of tissue engineering. Here, we describe recent developments in the use of stem cells for the development of replacement vessels. These paradigm shifts in vascular engineering now offer a new route for effective clinical therapy.  相似文献   

18.
Lung disease is a leading cause of death and likely to become an epidemic given increases in pollution and smoking worldwide. Advances in stem cell therapy may alleviate many of the symptoms associated with lung disease and induce alveolar repair in adults. Concurrent with the ongoing search for stem cells applicable for human treatment, precise delivery and homing (to the site of disease) must be reassured for successful therapy. Here, I report that stem cells can safely be instilled via the trachea opening a non-stop route to the lung. This method involves a skin incision, caudal insertion of a cannula into and along the tracheal lumen, and injection of a stem cell vehicle mixture into airways of the lung. A broad range of media solutions and stabilizers can be instilled via tracheotomy, resulting in the ability to deliver a wider range of cell types. With alveolar epithelium confining these cells to the lumen, lung expansion and negative pressure during inhalation may also assist in stem cell integration. Tracheal delivery of stem cells, with a quick uptake and the ability to handle a large range of treatments, could accelerate the development of cell-based therapies, opening new avenues for treatment of lung disease.  相似文献   

19.
20.
Two major difficulties facing widespread clinical implementation of existing Tissue Engineering (TE) strategies for the treatment of musculoskeletal disorders are (1) the cost, space and time required for ex vivo culture of a patient’s autologous cells prior to re-implantation as part of a TE construct, and (2) the potential risks and availability constraints associated with transplanting exogenous (foreign) cells. These hurdles have led to recent interest in endogenous TE strategies, in which the regenerative potential of a patient’s own cells is harnessed to promote tissue regrowth without ex vivo cell culture. This article provides a focused perspective on key issues in the development of endogenous TE strategies, progress to date, and suggested future research directions toward endogenous repair and regeneration of musculoskeletal tissues and organs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号