首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deitz, William H. (Sterling-Winthrop Research Institute, Rensselaer, N.Y.), Thomas M. Cook, and William A. Goss. Mechanism of action of nalidixic acid on Escherichia coli. III. Conditions required for lethality. J. Bacteriol. 91:768-773. 1966.-Nalidixic acid selectively inhibited deoxyribonucleic acid (DNA) synthesis in cultures of Escherichia coli 15TAU. Protein and ribonucleic acid synthesis were shown to be a prerequisite for the bactericidal action of the drug. This action can be prevented by means of inhibitors at bacteriostatic concentrations. Both chloramphenicol, which inhibits protein synthesis, and dinitrophenol, which uncouples oxidative phosphorylation, effectively prevented the bactericidal action of nalidixic acid on E. coli. The lethal action of nalidixic acid also was controlled by transfer of treated cells to drug-free medium. DNA synthesis resumed immediately upon removal of the drug and was halted immediately by retreatment. These studies indicate that nalidixic acid acts directly on the replication of DNA rather than on the "initiator" of DNA synthesis. The entry of nalidixic acid into cells of E. coli was not dependent upon protein synthesis. Even in the presence of an inhibiting concentration of chloramphenicol, nalidixic acid prevented DNA synthesis by E. coli 15TAU.  相似文献   

2.
The mechanism of bactericidal action of phenethyl alcohol (PEA) inE. coli, which was previously demonstrated to be dependent on protein synthesis, has been investigated. Mutants resistant to PEA were selected, but the resistance observed was associated with a change in permeation. PEA effects on DNA, RNA, and protein synthesis were studied with bacteriostatic and bactericidal concentrations Similar results (inhibition of DNA synthesis and decrease in RNA synthesis) were obtained with lethal concentrations of PEA in cells pretreated with chloramphenicol, and with bacteriostatic concentrations of PEA in unpretreated cells. The PEA intracellular accumulation reached a maximum within 4 min and was not inhibited by KCN or by 2,4-dinitrophenol. The presence of phenylacetaldehyde was demonstrated in both stationary and exponential growth phase cells exposed to PEA but not in cells pretreated with chloramphenicol. These results suggested that the bactericidal mechanism of action of PEA involves its conversion into the corresponding aldehyde.  相似文献   

3.
The effects of aminoglycoside and aminocyclitol antibiotics on intact cells of Escherichia coli were compared. The aminoglycosides streptomycin, gentamicin, kanamycin and neomycin had similar, but not identical, effects. They all caused misreading during protein synthesis, permeabilization of the cell membrane, inhibition of the initiation of DNA replication, and loss of cell viability. Cells treated with these antibiotics continued to synthesize two proteins (apparent molecular masses 72 and 60 kDa) that were not made by cells treated with the aminocyclitol hygromycin B, which did not cause misreading. Cells treated with the aminoglycosides regained their membrane tightness after residual protein synthesis in these cells had been inhibited by chloramphenicol, suggesting that under these conditions the mistranslated membrane proteins were rapidly degraded. The bacteriostatic aminocyclitols spectinomycin and kasugamycin did not cause membrane permeabilization, suggesting that these compounds do not cause misreading. Hygromycin B resembled these aminocyclitols in that it inhibited protein synthesis without causing misreading, membrane permeabilization or inhibition of initiation of DNA synthesis. However, hygromycin B also decreased cell viability. In minimal medium this lethal effect began late in comparison to the process of inhibition of protein synthesis. It is concluded that hygromycin B is an atypical bactericidal antibiotic that strongly resembles the bacteriostatic aminocyclitols spectinomycin and kasugamycin in its action.  相似文献   

4.
Mode of Action of Myxin on Escherichia coli   总被引:4,自引:1,他引:3       下载免费PDF全文
The effect of the new antibiotic, myxin, on the syntheses of deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein in Escherichia coli (strains B and 15T(-)) was examined. Within 7 min of the addition of myxin at 5 mug/ml, the synthesis of new bacterial DNA was almost completely inhibited. This was followed by an extensive degradation of the pre-existing DNA to an acid-soluble form. All of the evidence indicated that the primary effect of the antibiotic was on cellular DNA. The synthesis of RNA was completely inhibited after 15 min of exposure to myxin (5 mug/ml), and the synthesis of protein was markedly reduced after 30 min. There was no measurable breakdown of either RNA or protein in the myxin-treated cells. A marked stimulation of (14)C-uracil incorporation was found in the presence of myxin in 15T(-) cells only. This did not result from an increased rate of RNA synthesis but was due to an increase in the proportion of exogenous uracil, relative to endogenous uracil, incorporated into cellular RNA. This probably reflected a partial inhibition of the biosynthesis of uridine monophosphate from orotate. At 4.5 mug of myxin per ml and with 0.8 x 10(8) cells per ml, 50% of the antibiotic was reduced in 15 min from the biologically active oxidized form to the biologically inactive state. Under these conditions, a maximum of 0.6% (27 mumug/ml) of the myxin was retained in the cells.  相似文献   

5.
When cells of Escherichia coli B growing in a glucose-synthetic medium were treated with mitomycin C, the effects produced by the antibiotic varied, depending on the concentration. When the concentration was reduced to less than 0.1 mug/ml, the action of the antibiotic was bacteriostatic; cell elongation resulted, but no effect on the synthesis of cellular macromolecules was apparent. At higher levels (more than 5 mug/ml), mitomycin C was highly bactericidal and inhibited deoxyribonucleic acid synthesis almost completely. The exposure of growing cells to a bactericidal level of mitomycin C resulted also in a delayed inhibition of the synthesis of ribonucleic acid (RNA) and protein. The capacity of the treated cells to synthesize beta-galactosidase inducibly in a medium free from a carbon source remained constant for the first 30 min and then was destroyed progressively with time. Prolonged incubation with the bactericidal level of mitomycin C caused a degradation of cellular nucleic acids, particularly RNA. The degraded nucleic acid components were eventually released into the medium.  相似文献   

6.
7.
Hydroxyurea inhibited the replication of bacteriophage T4 in Escherichia coli B. The concentration of hydroxyurea required to inhibit net deoxyribonucleic acid (DNA) synthesis 50% was about 50-fold less than that required in uninfected cells. Even in the presence of high hydroxyurea concentrations, phage DNA was readily synthesized from the products of breakdown of the E. coli DNA, and viable phage were made. Deoxyribonucleotide, but not ribonucleotide, synthesis was strongly inhibited in the presence of hydroxyurea. The data indicate that hydroxyurea specifically inhibits de novo DNA synthesis in E. coli infected with bacteriophage T4 by inhibiting the ribonucleoside diphosphate reductase system, but does not affect DNA synthesis at subsequent steps.  相似文献   

8.
The effect of methyl, propyl and butyl esters of p-hydroxybenzoic acid on DNA and RNA synthesis has been tested in toluenized cells of Escherichia coli and Bacillus subtilis. Both RNA and DNA synthesis of these bacteria were inhibited. The inhibitory concentrations were higher than those previously reported for growth inhibition. Protein synthesis in cell-free extracts (S-30 fraction) of B. subtilis was even more sensitive to parabens than DNA and RNA synthesis, while protein synthesis in Esch. coli was largely unaffected.  相似文献   

9.
The effect of low chloramphenicol concentrations on the biosynthesis of RNA, ribosomal proteins and RNA polymerase in E. coli CP 78 cells was studied. When protein synthesis was decreased by 50--70%, 14C-uracil incorporation in DNA increased twice, the rRNA synthesis being stimulated preferentially. In the presence of antibiotic the RNA/DNA ratio increased from 5,7 to 13,3. The differential rate of r-protein synthesis increased simultaneously with the stimulation of rRNA synthesis, so that alphar rises from 0,083 (without antibiotic) to 0,122 and 0,161 at 5 and 10 microgram/ml of chloramphenicol, respectively. The inhibition of protein synthesis by chloramphenicol is accompanied also by the increase of differential rate of synthesis of beta and beta' subunits of RNA polymerase. In the presence of 5 and 10 microgram/ml of chloramphenicol, alphap increased from 0,90% to 1,44 and 1,57%, respectively. It is assumed that the genes for beta and beta' subunits of RNA polymerase as the ribosomal genes are negatively controlled by guanosine tetraphosphate which intracellular concentration decreased in the presence of chloramphenicol. The known data on the influence of streptolydigin and rifampicin on the RNA polymerase biosynthesis are discussed in view of proposed hypothesis.  相似文献   

10.
11.
The effect of methyl, propyl and butyl esters of p -hydroxybenzoic acid on DNA and RNA synthesis has been tested in toluenized cells of Escherichia coli and Bacillus subtilis. Both RNA and DNA synthesis of these bacteria were inhibited. The inhibitory concentrations were higher than those previously reported for growth inhibition. Protein synthesis in cell-free extracts (S-30 fraction) of B. subtilis was even more sensitive to parabens than DNA and RNA synthesis, while protein synthesis in Esch. coli was largely unaffected.  相似文献   

12.
The effects of hydroxyurea on Escherichia coli B/5 physiology (increases in cell mass, number of viable cells, and deoxyribonucleic acid [DNA], RNA, and protein concentrations) were studied in an attempt to find a concentration that completely inhibits DNA synthesis and increase in number of viable cells but has little or no effect on other metabolic processes. These conditions were the most closely approached at an hydroxyurea concentration of 0.026 to 0.033 m. A concentration of 0.026 or 0.033 m was used in subsequent experiments to study the site(s) of inhibition of DNA synthesis in E. coli B/5 by hydroxyurea. Hydroxyurea at a concentration of 10(-2)m was found to inhibit ribonucleoside diphosphate reductase activity completely in crude extracts of E. coli. The synthesis of deoxyribonucleotides was greatly reduced when E. coli cells were grown in the presence of 0.033 m hydroxyurea. Studies on the acid-soluble DNA precursor pools showed that hydroxyurea causes a decrease in the concentration of deoxyribonucleoside diphosphates and deoxyribonucleoside triphosphates and an increase in the total concentration of ribonucleotides. Sucrose density gradient sedimentation of DNA from cells treated with 0.026 m hydroxyurea for 30 min indicated that at this concentration hydroxyurea induces no detectable single- or double-strand breaks. In addition, both replicative and repair syntheses of DNA were found to occur normally in toluene-treated cells in the presence of relatively high concentrations of hydroxyurea. Pulse-chase studies showed that deoxyribonucleotides synthesized prior to the addition of hydroxyurea to cells are utilized normally for DNA synthesis in the presence of hydroxyurea. On the basis of these observations, we have concluded that the primary, if not the only, site of inhibition of DNA synthesis in E. coli B/5 by low concentrations of hydroxyurea is the inhibition of the enzyme ribonucleoside diphosphate reductase.  相似文献   

13.
DNA-damaging activity of patulin in Escherichia coli   总被引:1,自引:0,他引:1  
At a concentration of 10 micrograms/ml, patulin caused single-strand DNA breaks in living cells of Escherichia coli. At 50 micrograms/ml, double-strand breaks were observed also. Single-strand breaks were repaired in the presence of 10 micrograms of patulin per ml within 90 min when the cells were incubated at 37 degrees C in M9-salts solution without a carbon source. The same concentration also induced temperature-sensitive lambda prophage and a prophage of Bacillus megaterium. When an in vitro system with permeabilized Escherichia coli cells was used, patulin at 10 micrograms/ml induced DNA repair synthesis and inhibited DNA replication. The in vivo occurrence of DNA strand breaks and DNA repair correlated with the in vitro induction of repair synthesis. In vitro the RNA synthesis was less affected, and overall protein synthesis was not inhibited at 10 micrograms/ml. Only at higher concentrations (250 to 500 micrograms/ml) was inhibition of in vitro protein synthesis observed. Thus, patulin must be regarded as a mycotoxin with selective DNA-damaging activity.  相似文献   

14.
At a concentration of 10 micrograms/ml, patulin caused single-strand DNA breaks in living cells of Escherichia coli. At 50 micrograms/ml, double-strand breaks were observed also. Single-strand breaks were repaired in the presence of 10 micrograms of patulin per ml within 90 min when the cells were incubated at 37 degrees C in M9-salts solution without a carbon source. The same concentration also induced temperature-sensitive lambda prophage and a prophage of Bacillus megaterium. When an in vitro system with permeabilized Escherichia coli cells was used, patulin at 10 micrograms/ml induced DNA repair synthesis and inhibited DNA replication. The in vivo occurrence of DNA strand breaks and DNA repair correlated with the in vitro induction of repair synthesis. In vitro the RNA synthesis was less affected, and overall protein synthesis was not inhibited at 10 micrograms/ml. Only at higher concentrations (250 to 500 micrograms/ml) was inhibition of in vitro protein synthesis observed. Thus, patulin must be regarded as a mycotoxin with selective DNA-damaging activity.  相似文献   

15.
16.
Streptomyces antibioticus synthesizes a mixture of actinomycins which differ at the "imino acid" site of the peptide chains. In the presence of exogenous pipecolic acid, several new actinomycins were synthesized and 70% of the proline in the antibiotic mixture was replaced by the analogue. Three new antibiotics (designated Pip 1alpha, Pip 1beta, and Pip 2) were isolated from culture filtrates, purified, and crystallized. The molar ratio of pipecolic acid to proline was: Pip 1alpha, 1:0; Pip 1beta, 1:1; Pip 2, 2:0. These compounds inhibited the growth and cell division of gram-positive, but not gram-negative, bacteria. The relative inhibitory activity against bacteria, Escherichia coli deoxyribonucleic acid (DNA)-dependent ribonucleic acid (RNA) polymerase in vitro, and RNA synthesis in Bacillus subtilis and mouse L-929 cells was: actinomycin IV = Pip 1beta > Pip 2 > Pip 1alpha. Protein synthesis in B. subtilis was less affected, and DNA synthesis was inhibited only at higher concentrations of antibiotic tested. In L cells, DNA formation was reduced less than RNA synthesis, whereas protein synthesis was not blocked under the experimental conditions employed. Kinetic studies with B. subtilis revealed that RNA synthesis was inhibited rapidly followed by an inhibition of protein synthesis. All four antibiotics markedly inhibited the replication of vaccinia virus and reovirus in tissue culture cells, but the production of poliovirus was resistant to the antibiotics. These actinomycins bind to DNA, resulting in an elevation of its T(m) and a decrease in the peak extinction of the actinomycins. The mode of action, as well as the structure-activity relationships among the actinomycins, are discussed relative to a previously proposed model of binding.  相似文献   

17.
The synthesis of DNA, RNA and protein was measured in L1210 cells following treatment with 8-methoxypsoralen in combination with long wavelength ultraviolet irradiation. The results show that the DNA synthesis is strongly inhibited (approximately 95%) at 200 ng/ml reaching a minimum within 2 hours while RNA synthesis is only weakly affected at this concentration (approximately 40% inhibition). At 2 micrograms/ml the RNA synthesis is inhibited approximately 90%. Even at this concentration only a moderate effect is seen on the protein synthesis. These results strongly indicate that the phototoxic action of 8-methoxypsoralen is primarily due to inhibition of DNA synthesis.  相似文献   

18.
DNA-dependent RNA polymerase from Escherichia coli was purified further by elution through heparin-Sepharose CL-6B column after the enzyme was obtained, partially purified, using Burgess and Jendrisak's method [(1975)Biochemistry 14, 4634] The total yield of the pure protein was 10 mg from 50 g of E.coli cells. The method was found to be very reproducible and convenient. The enzyme preparation had 60% active molecules and the elongation rate of RNA synthesis by this enzyme was measured to be 11 bases/s over delta D111 T7 DNA.  相似文献   

19.
Seminalplasmin, a 6,000 dalton antimicrobial protein present in bovine seminal plasma, is shown to inhibit growth and/or RNA synthesis in several bacterial species. In only one strain out of twenty one belonging to fourteen species, did both RNA synthesis and growth appear to be resistant to seminalplasmin. The antibacterial activity of seminalplasmin, in the case of E. coli, was also studied as a function of its concentration and of time; the minimal concentration of the protein required for 100% bactericidal activity was only about twice that required for 100% bacteriostatic activity. The killing of E. coli cells proceeded in two phases, a slow phase and then a rapid one, and required several hours for completion. Several bacterial species tested secreted proteases into the medium that destroyed seminalplasmin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号