首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Alternative states are a widely recorded phenomenon in shallow lakes, which may shift between turbid‐ and clear‐water conditions. Here, we investigate whether such shifts in a tropical floodplain pond may be related to the effect of the flood pulse regime on the community structures of fish and macrophytes. 2. Using a long‐term data set, we demonstrate how benthic fish migration together with colonisation by submerged plants affected the transition from a turbid to a macrophyte‐dominated state in a floodplain pond without top‐down control. 3. In our study, the turbid state occurred mostly during low water phases and was largely characterised by high values for the biomass of benthic fish, chlorophyll‐a and total phosphorous. 4. During the period of rising water levels, the migration of benthic fish out of the pond occurs simultaneously with the establishment of submerged plants, while water turbidity decreases along with phytoplankton and nutrient concentrations, inducing a clear‐water phase. However, when submerged plants are absent and fish migration is low, a transient state is generated. 5. We suggest that, in contrast to temperate ponds and shallow lakes, where the main driving mechanisms establishing alternative states are related to cascading effects via the food chain, in tropical ponds and shallow lakes it is resuspension of sediments by benthic fish that plays the most significant role in establishing alternative states. However, the effect of the flood pulse regime plays an important role in the temporal dynamics of fish community structure by controlling benthic fish migration.  相似文献   

2.
Regime shifts between clear and turbid water states are commonly found in shallow lakes. These shifts are attributed to a positive feedback between water clarity and submerged macrophytes (underwater plants). Altering the retention time of the water may influence these interactions and thus potentially reduce the probability of alternative stable states. Here we assessed the effect of water retention time on the occurrence of alternative states in water quality of flushed lakes, chains of lakes and rivers using a spatially explicit simple model. Our results indicate that increased flushing of lakes rapidly decreases the range of parameters with alternative stable states up to their total disappearance at a flushing rate of about 50% the algal growth rate. Similarly, in a chain of lakes or in rivers with low flowing velocity, our model predicts that alternative stable states can only occur for systems with a high retention time. Despite the lack of hysteresis at lower water retention times, we predict that abrupt changes between clear and turbid states are still possible both in time and in space. Over a wide range of parameters, the equilibrium state of the chain of lakes shows a steep gradient of vegetation cover. Further, the transient dynamics of the model often include rapid shifts in time. For example, a local regime shift that occurs upstream may propagate through the whole lake chain or river due to a domino effect. All results of the simple model could qualitatively be reproduced with a more mechanistic model. The abrupt rather than gradual response of submerged macrophytes to reduced turbidity levels still makes river systems rather resilient to management measure. The importance of the initial turbidity and the observed domino effect suggest that restoration measures should start upstream and that these measures should eventually trigger regime shifts downstream.  相似文献   

3.
Albufera de Adra (Southern Spain) constitutes an internationally-recognised marsh for waterbirds; important populations of some endangered species such as White-headed Duck and Red-crested Pochard overwinter and breed in its two shallow permanent lakes (Lake Honda and Lake Nueva). In a recently published article, we revealed the factors responsible for the irregular alternation between phytoplankton-dominated turbid phases and macrophyte-dominated clear water phases in Lake Honda and Lake Nueva. In this note, we try to clarify the impact of such an alternation of equilibrium states on the waterbird dynamics. Marked increments in abundance, and brood recruitment of dabbling and diving waterbirds were recorded during the clear water phases in contrast with the turbid water phases, as the increase of macrophytes associated with increased water transparency attract waterbirds for available food. Implications for ecosystem management, restoration and conservation are identified.  相似文献   

4.
Some shallow lakes switch repeatedly back and forth between a vegetation dominated clear-water state and a contrasting turbid state. Usually such alternations occur quite irregularly, but in some cases the switches between states are remarkably regular. Here we use data from a well-studied Dutch lake and a set of simple models to explore possible explanations for such cyclic behavior. We first demonstrate from a graphical model that cycles may in theory occur if submerged macrophytes promote water clarity in the short run, but simultaneously cause an increased nutrient retention, implying an accumulation of nutrients in the long run. Thus, although submerged plants create a positive feedback on their own growth by clearing the water, they may in the long run undermine their position by creating a slow “internal eutrophication”. We explore the potential role of two different mechanisms that may play a role in this internal eutrophication process using simulation models: (1) reduction of the P concentration in the water column by macrophytes, leading to less outflow of P, and hence to a higher phosphorus accumulation in the lake sediments and (2) a build-up of organic matter over time resulting in an increased sediment oxygen demand causing anaerobic conditions that boost P release from the sediment. Although the models showed that both mechanisms can produce cyclic behavior, the period of the cycles caused by the build-up of organic material seemed more realistic compared to data of the Dutch Lake Botshol in which regular cycles with a period of approximately 7 years have been observed over the past 17 years.  相似文献   

5.
Shifts between alternative stable states have become a focus of research in temperate shallow lakes. Here we show that sharp transitions between a clear, macrophyte-dominated state and a turbid state without submerged plants can also occur in tropical floodplain lakes, albeit driven by a largely different set of mechanisms. We show how a shallow lake in the Pantanal becomes covered by an exploding population of the submerged macrophyte Egeria najas Planchon as the water level rises during the annual high-water period. Water clarity increases spectacularly in this period due to flushing with river water that has lost most of its suspended matter during its slow flow over the flooded vegetated plains. A few months later when the water level drops again, the submerged plant beds die and decompose rapidly, triggering a phase of increasing turbidity. During this period an increase in dissolved organic matter, suspended matter, and phytoplankton biomass results in a sharp deterioration in water clarity. The concomitant water level decrease largely counteracts the effects on the underwater light climate, so that the amount of light at the bottom may not differ in comparison with the high-water period. Therefore, changes in light climate seem unlikely to be the sole driver of the vegetation shifts, and other mechanisms may prevent recovery of the submerged vegetation until the next high-water episode. Also, contrary to what is found in temperate lakes, there is no evidence for top-down control of phytoplankton biomass associated with the macrophyte-dominated state in our tropical lake. Author Contributions  Simoni Maria Loverde-Oliveira, Vera Lúcia Moraes Huszar—conceived the study, Simoni Maria Loverde-Oliveira—performed research and analyzed data, Simoni Maria Loverde-Oliveira, Vera Lúcia Moraes Huszar, Nestor Mazzeo, Marten Scheffer—wrote the paper.  相似文献   

6.
Long-term pattern of alternative stable states in two shallow eutrophic lakes   总被引:36,自引:1,他引:35  
  • 1 Lake Tåkern and Lake Krankesjön, two moderately eutrophic, shallow lakes in southern Sweden, have during the past few decades shifted several times between a clear-water state with abundant submerged vegetation and a turbid state with high phytoplankton densities.
  • 2 Between 1985 and 1991, Lake Takern was in a clear state, whereas Lake Krankesjon shifted from a turbid to a clear state. During this shift, the area covered by submerged macrophytes expanded, followed by an increase in water transparency, plant-associated macroinvertebrates, and piscivorous fish. Nutrient concentrations, phytoplankton biomass and abundance of planktonic cladocerans decreased.
  • 3 In both lakes, water level fluctuations were the most common factor causing shifts, affecting submerged macrophytes either through changes in light availability or through catastrophic events such as dry-out or mechanical damage by ice movement.
  • 4 Our data give further support for the existence of two alternative stable states in shallow lakes maintained by self-stabilizing feedback mechanisms.
  相似文献   

7.
Invasion by common carp (Cyprinus carpio) and red swamp crayfish (Procambarus clarkii) in shallow lakes have been followed by stable-state changes from a macrophyte-dominated clear water state to a phytoplankton-dominated turbid water state. Both invasive carp and crayfish are, therefore, possible drivers for catastrophic regime shifts. Despite these two species having been introduced into ecosystems world-wide, their relative significance on regime shifts remains largely unexplored. We compared the ecological impacts of carp and crayfish on submerged macrophytes, water quality, phytoplankton, nutrient dynamics, zooplankton and benthic macroinvertebrates by combining an enclosure experiment and a meta-analysis. The experiment was designed to examine how water quality and biological variables responded to increasing carp or crayfish biomass. We found that even at a low biomass, carp had large and positive impacts on suspended solids, phytoplankton and nutrients and negative impacts on benthic macroinvertebrates. In contrast, crayfish had a strong negative impact on submerged macrophytes. The impacts of crayfish on macrophytes were significantly greater than those of carp. The meta-analysis showed that both carp and crayfish have significant effects on submerged macrophytes, phytoplankton, nutrient dynamics and benthic macroinvertebrates, while zooplankton are affected by carp but not crayfish. It also indicated that crayfish have significantly greater impacts on macrophytes relative to carp. Overall, the meta-analysis largely supported the results of the experiment. Taken as a whole, our results show that both carp and crayfish have profound effects on community composition and ecosystem processes through combined consequences of bioturbation, excretion, consumption and non-consumptive destruction. However, key variables (e.g. macrophytes) relating to stable-state changes responded differently to increasing carp or crayfish biomass, indicating that they have differential ecosystem impacts.  相似文献   

8.
We analyzed experimentally the relative contribution of phytoplankton and periphyton in two shallow lakes from the Pampa Plain (Argentina) that represent opposite scenarios according to the alternative states hypothesis for shallow lakes: a clear lake with submerged macrophytes, and a turbid lake with high phytoplankton biomass. To study the temporal changes of both microalgal communities under such contrasting conditions, we placed enclosures in the littoral zone of each lake, including natural phytoplankton and artificial substrata, half previously colonized by periphyton until a mature stage and half clean to analyze periphyton colonization. In the clear vegetated shallow lake, periphyton chlorophyll a concentrations were 3–6 times higher than those of the phytoplankton community. In contrast, phytoplankton chlorophyll a concentrations were 76–1,325 times higher than those of periphyton in the turbid lake. Here, under light limitation conditions, the colonization of the periphyton was significantly lower than in the clear lake. Our results indicate that in turbid shallow lakes, the light limitation caused by phytoplankton determines a low periphyton biomass dominated by heterotrophic components. In clear vegetated shallow lakes, where nitrogen limitation probably occurs, periphyton may develop higher biomass, most likely due to their higher efficiency in nutrient recycling.  相似文献   

9.
Eutrophication is common in shallow lakes in lowland areas. In their natural state, most shallow lakes would have clear water and a thriving aquatic plant community. However, eutrophication often causes turbid water, high algal productivity, and low species diversity and abundance of submerged macrophytes. A key indicator of the ecological state of lake ecosystems is the maximum growing depth (MGD) of aquatic plants. However, few studies have yet quantified the relationship between changes in external phosphorus (P) input to a lake and associated variation in MGD. This study examines the relationship between these variables in Loch Leven, a shallow, eutrophic loch in Scotland, UK. A baseline MGD value from 1905 and a series of more recent MGD values collected between 1972 and 2006 are compared with estimated P loads over a period of eutrophication and recovery. The results suggest a close relationship between changes in MGD of macrophytes and changes in the external P load to the loch. Variation in MGD reflected the ‘light history’ that submerged macrophytes had been exposed to over the 5-year period prior to sampling, rather than responding to short term, within year, variations in water clarity. This suggests that changes in macrophyte MGD may be a good indicator of overall, long term, changes in water quality that occur during the eutrophication and restoration of shallow lakes.  相似文献   

10.
Within-lake horizontal heterogeneity of bacterioplankton community composition (BCC) was investigated in the large and shallow subtropical Taihu Lake (2338 km(2), maximum depth < 3 m). Samples were collected at 17 sites along a trophic gradient ranging from mesotrophic to hypertrophic areas in August and September 2004. These sites cover two alternative stable states of shallow lakes, which are basically characterized by the dominance or the lack of submerged macrophytes. In the case of Taihu Lake, the macrophyte-dominated state is characterized by clear water and immobilized sediment, and the state largely lacking macrophytes is characterized by the dominance of phytoplankton, frequent wind-driven re-suspension of sediments, and a high turbidity. Three different methods, i.e. denaturing gradient gel electrophoresis (DGGE), reverse line blot hybridization (RLB) with probes targeting 17 freshwater bacterial groups, and 16S rRNA gene cloning and sequencing, were used for analysis of BCC. The BCC varied strongly between the two alternative ecological states, but less pronounced between phytoplankton-dominated sites even spanning chlorophyll a gradients from 16.5 (mesotrophic) to 229.8 microg l(-1) (hypertrophic). The 16S rRNA gene library representing the turbid water state contained many sequences closely related to sequences previously obtained from soil or freshwater sediment samples. Furthermore, sequences representing two new lineages of freshwater Actinobacteria were obtained from the investigated samples. Comparative statistical analyses of BCC along the investigated ecological gradients revealed that the dominance of submersed macrophytes was the most influential factor on BCC, responsible for a major part of the observed within-habitat heterogeneity of BCC in Taihu Lake.  相似文献   

11.
In Mexico, as in many other subtropical and tropical countries, there has been a recent trend towards stocking non-native carp (Cyprinus carpio) in lakes and ponds as a source of food in rural areas. However, the results of a study in a series of small(1–8 ha.), shallow (<2 m), semi-natural ponds in Acambay, a high altitude valley in the basin of the Lerma river in the volcanic belt in central west Mexico, illustrate that the stocking of carp over a threshold value may have a detrimental ecological impact at several trophic levels. Ponds with carp tended to be turbid with high levels of suspended solids, and with few rooted macrophytes and epibenthic invertebrates. In contrast, ponds without carp had clear water and abundant rooted macrophytes and associated invertebrates, particularly gastropod molluscs. The direct uprooting of macrophytes by benthic foraging carp appeared to be the most important mechanism in switching the ponds from a clear macrophyte-dominated to a turbid state. The subtropical study ponds thus appear to confirm the alternative stable-state hypothesis developed intemperate lakes, although the importance of benthic rather than pelagic interactions was emphasised. The implications of stocking carp for native fauna of high intrinsic conservation value and as a food supply for local people are outlined. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
  1. Water level and submerged macrophytes are critical players for the functioning of shallow lake ecosystems; understanding how waterbird communities respond to changes in both can have important implications for conservation and management. Here, we evaluated the effects of changes in water level and submerged macrophyte status on wintering waterbird community size, functional group abundances, functional diversity (FD), and community assembly by using a dataset compiled over 50 years.
  2. We built generalised linear models to evaluate the effects of water level and submerged macrophyte status on the above-listed attributes of the waterbird communities by using mid-winter waterbird censuses, water level measurements, and submerged macrophyte surveys, along with submerged macrophyte macrofossil records from two shallow lakes in Turkey. Using a relevant set of functional traits, we defined functional groups, calculated four FD measures, and simulated null distributions of the FD measures for assessing assembly rules.
  3. We found that macrophyte-dominated years had significantly higher abundances of waterbirds in one of the study lakes, and had more diving herbivores and omnivores in both lakes, while diving/scooping fish-eating waterbird abundance was lower in macrophyte-dominated years. Community size in Lake Beyşehir exhibited a negative association with water level; surprisingly, however, none of the functional group abundances and FD indices were significantly related to water level.
  4. In our study communities, standardised effect sizes of functional richness and functional dispersion—two indices that are particularly sensitive to community assembly processes—were mostly lower than those of randomly assembled communities, which implies functional clustering. Shifts to a scarce-macrophyte state were associated with increases in these two indices, possibly due to either changes in the relative strength of environmental filtering and limiting similarity in community assembly or sampling of transitional communities. Further studies covering a wider range of the trophic/macrophyte status spectrum are needed to be certain.
  5. The results of this study indicate that shifts between abundant and scarce-macrophyte states can have significant effects on wintering waterbird abundances, FD and community assembly. The results also suggest that shallow lakes in macrophyte-dominated states can support more wintering waterbirds, especially diving omnivores, some of which are globally threatened.
  相似文献   

13.
Monitoring data were used to assess causes behind a recent shift from a clear-water to a turbid-water state in Lake Major, a 10 ha shallow lake in Hungary. In 1999–2000, fish manipulation was conducted in this hypertrophic lake. Reduced fish stock resulted in clearing water and the development of a dense (>80% coverage) submerged vegetation in 2005. During the recent abrupt shift, which occurred in 2007, submerged vegetation subsequently declined after a two-year period of clear water and abundant vegetation. An intense decay of macrophytes within the lake produced a rapid transition between the clear- and turbid-water states. During the clear-water state in 2005–2006, the most important variables predominantly correlating with macrophyte cover were Secchi transparency, temperature and TN, while TN, temperature, Secchi depth and chlorophyll-a were the most significant variables during the turbid-water state in 2007. Nitrogen may play a significant role in the cover of submerged macrophytes when TP is moderate. We argue that several factors in concert are necessary to initiate a shift. Water temperature likely has contributed to triggering shift through inter-year-dependent changes in cover of macrophytes, with fish recruitment having key roles in the dynamics of shallow lakes. Handling editor: Luigi Naselli-Flores  相似文献   

14.
Dahlgren  Stefan  Kautsky  Lena 《Hydrobiologia》2004,514(1-3):249-258
Hydrobiologia - Two different vegetative states, i.e. one clear water state dominated by benthic macrophytes and one turbid state dominated by phytoplankton, are commonly found in shallow lakes. In...  相似文献   

15.
Diel horizontal migration (DHM), where zooplankton moves towards macrophytes during daytime to avoid planktivorous fish, has been reported as a common migration pattern of zooplankton in shallow temperate freshwater lakes. However, in shallow eutrophic brackish lakes, macrophytes seem not to have the same refuge effect, as these lakes may remain turbid even at relatively high macrophyte abundances. To investigate the extent to which macrophytes serve as a refuge for zooplankton at different salinities, we introduced artificial plants mimicking submerged macrophytes in the littoral zone of four shallow lakes, with salinities ranging from almost freshwater (0.3) to oligohaline waters (3.8). Furthermore, we examined the effects of different salinities on the community structure. Diel samples of zooplankton were taken from artificial plants, from areas where macrophytes had been removed (intermediate areas) and, in two of the lakes, also in open water. Fish and macroinvertebrates were sampled amongst the artificial plants and in intermediate areas to investigate their influence on zooplankton migration. Our results indicated that diel vertical migration (DVM) was the most frequent migration pattern of zooplankton groups, suggesting that submerged macrophytes were a poor refuge against predation at all salinities under study. Presumably, this pattern was the result of the relatively high densities of small planktivorous fish and macroinvertebrate predators within the submerged plants. In addition, we found major differences in the composition of zooplankton, fish and macroinvertebrate communities at the different salinities and species richness and diversity of zooplankton decreased with increasing salinity. At low salinities both planktonic/free-swimming and benthic/plant-associated cladocerans occurred, whilst only benthic ones occurred at the highest salinity. The low zooplankton biomass and overall smaller-bodied zooplankton specimens may result in a lower grazing capacity on phytoplankton, and enhance the turbid state in nutrient rich shallow brackish lakes.  相似文献   

16.
The restoration of macrophytes in eutrophic shallow lakes has been the focus of active research in the past decade. The approach of building up a mosaic community of macrophytes (MCMs) to improve water quality and remediate the ecosystems of lakes is proposed in this paper. Several species of floating, floating-leaved, and submerged macrophytes were introduced in experimental enclosures in eutrophic shallow lakes. These macrophytes were intercropped in small patches and formed mosaic communities of spatial and temporal combinations (spatial and seasonal mosaic patterns) in the lakes. Macrophytes can improve water transparency quickly and the MCM system can stabilize this clear water state over a long time in turbid eutrophic shallow lakes. The constructed MCM created heterogeneous habitats that are favourable for different macrophytes and for the growth and succession of other organisms, as well as for removing water pollutants. When the eutrophic water flowed through the MCM system at a retention time of 7 days, the removal efficiency rates of the MCM system for algae biomass, NH4+–N, TN, TP and PO43?–P were 58%, 66%, 60%, 72% and 80%, respectively.  相似文献   

17.
We describe the limnological changes between 1989 and 2006 in an urban, shallow lake, Laguna Alalay, located in the Andean valley of Cochabamba (Bolivia). Until 1960, water diversion to the lake was used to lower the inundation risk of Cochabamba city. In the 1980s and 1990s, the high waterfowl diversity and recreational services provided by the lake increased its conservation value. However, the population increase and the discharge of wastewater rich in nutrients increased eutrophication, and the lake became characterized by an annual alternation of submerged macrophytes and phytoplankton. The main aim of the present study is to analyze the response of the lake to manipulations implemented by local authorities: (a) sediment removal and accidental introduction of the exotic fish species Odontesthes bonariensis in 1997 and (b) manual mass removal of floating macrophytes during 2004–2006. The sediment removal and species introduction had several unpredictable consequences for the functioning of the lake, namely the transition to a permanent turbid water state and the persistent dominance of floating macrophytes. A general conclusion of our study is that any lake recovery measures in Bolivia should consider not only ecological, but also socio-economic and political aspects. Taking these into account, restoration of the submerged macrophyte-dominated state may not be that universally desirable as is widely held.  相似文献   

18.
Shallow lakes have become the archetypical example of ecosystems with alternative stable states. However, since the early conception of that theory, the image of ecosystem stability has been elaborated for shallow lakes far beyond the simple original model. After discussing how spatial heterogeneity and fluctuation of environmental conditions may affect the stability of lakes, we review work demonstrating that the critical nutrient level for lakes to become turbid is higher for smaller lakes, and seems likely to be affected by climatic change too. We then show how the image of just two contrasting states has been elaborated. Different groups of primary producers may dominate shallow lakes, and such states dominated by a particular group may often represent alternative stable states. In tropical lakes, or small stagnant temperate waters, free-floating plants may represent an alternative stable state. Temperate shallow lakes may be dominated alternatively by charophytes, submerged angiosperms, green algae or cyanobacteria. The change of the lake communities along a gradient of eutrophication may therefore be seen as a continuum in which gradual species replacements are interrupted at critical points by more dramatic shifts to a contrasting alternative regime dominated by different species. The originally identified shift between a clear and a turbid state remains one of the more dramatic examples, but is surely not the only discontinuity that can be observed in the response of these ecosystems to environmental change.  相似文献   

19.
Many macrophyte-dominated clear lakes switch to a phytoplankton-dominated turbid state when the lake becomes eutrophic. An existing Yuqiao Reservoir Water Quality Model (YRWQM) and the macrophyte submodel were coupled to simulate the effect of submerged macrophytes on nutrients and dissolve oxygen cycles in a shallow reservoir in China. The level of phosphorus loading in a transition from a clear to turbid state was addressed using the integrated model. The model runs from seedling establishment until dying out, from March 1 to July 18 in 2009. The simulations were performed for a contingent range of P loadings, starting from three different initial conditions. The results indicated that the integrated model improves accuracy of predictions compared to YRWQM. The concentrations of nutrients declined slightly during the macrophyte growth period in the reservoir and dissolved oxygen increased slightly. Although nutrient concentrations increased by submerged macrophyte release during the extinction period, the effect on the nutrients was less than that of transfer with nutrient-rich water. More released nutrients may enhance increases in substantial abundance. The critical phosphorus loading level during a switch from the clear to turbid state was estimated by these scenarios. The threshold for the switch is ∼6.1 mgP m−2 d−1 with an initial total phosphorus concentration of 160 μg l−1. Moreover, the results demonstrated that the switch was also dependent on the initial total phosphorus concentration. These results suggest that the reservoir in a clear water state is at risk of a switch as nutrient levels are close to the critical levels.  相似文献   

20.
1. The alternative state theory claims that shallow lakes may have either clear water, and be dominated by submerged macrophytes, or turbid water and be dominated by phytoplankton. Most evidence for this theory comes from studies in temperate or boreal regions of Europe. Because of differences in the strength of trophic interactions, such as in the pressure of zooplankton grazing on phytoplankton, this influential theory might not apply elsewhere. 2. Here, we test the theory for South American lakes, combining field data and Landsat satellite data. We studied the frequency distribution of primary producers and water transparency, looking for potential bimodality separating clear and turbid lakes. A bimodal distribution might be observed if there are indeed alternative states, although would not itself be sufficient evidence for the theory. Possible shifts between alternative states were analysed by comparing satellite data from 1987 to 2005. 3. In our field data, there was a bimodal pattern in phytoplankton abundance and possibly in the abundance of submerged macrophytes, but not in water transparency. Analyses of the larger satellite data set revealed bimodality in lake transparency in 2005, but less so in 1987. In 1987, the lakes were generally clearer, and the transition to higher turbidity was more gradual than in 2005. The stronger bimodality in the more recent data, and the overall lower transparency, could have been caused by an increase in fertiliser use and subsequent eutrophication but also by differences in hydrology. Further, 1987 was much wetter than 2005, which could have caused dilution of suspended particles, leading to clearer water. 4. While a bimodal distribution in the abundance of primary producers and water clarity is not decisive evidence for or against the theory of alternative states, our data clearly fail to refute it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号