首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Unlike most eukaryotic mRNAs studied to date, Xenopus serum albumin mRNA has a short (17-residue), discrete poly(A) tail. We recently reported that this short poly(A) tail results from regulation of the length of poly(A) on albumin pre-mRNA. The purpose of the present study was to locate the cis-acting element responsible for this, the poly(A)-limiting element or PLE. An albumin minigene consisting of albumin cDNA joined in exon 13 to the 3' end of the albumin gene produced mRNA with <20 nt poly(A) when transfected into mouse fibroblasts. This result indicates both that cis-acting sequences that regulate poly(A) length are within this construct, and that nuclear regulation of poly(A) length is conserved between vertebrates. Poly(A) length regulation was retained after replacing the terminal 53 bp and 3' flanking region of the albumin gene with a synthetic polyadenylation element (SPA). Conversely, fusing albumin gene sequence spanning the terminal 53 bp of the albumin gene and 3' flanking sequence onto the human beta-globin gene yielded globin mRNA with a 200-residue poly(A)tail. These data indicate that the PLE resides upstream of the sequence elements involved in albumin pre-mRNA 3' processing. Poly(A) length regulation was restored upon fusing a segment bearing albumin intron 14, exon 15, and 3' flanking sequence onto the beta-globin gene. We demonstrate that exon 15 contains two PLEs that can act independently to regulate the length of poly(A).  相似文献   

2.
3.
Regulation of poly(A) tail length during mRNA 3'-end formation requires a specific poly(A)-binding protein in addition to the cleavage/polyadenylation machinery. The mechanism that controls polyadenylation in mammals is well understood and involves the nuclear poly(A)-binding protein PABPN1. In contrast, poly(A) tail length regulation is poorly understood in yeast. Previous studies have suggested that the major cytoplasmic poly(A)-binding protein Pab1p acts as a length control factor in conjunction with the Pab1p-dependent poly(A) nuclease PAN, to regulate poly(A) tail length in an mRNA specific manner. In contrast, we recently showed that Nab2p regulates polyadenylation during de novo synthesis, and its nuclear location is more consistent with a role in 3'-end processing than that of cytoplasmic Pab1p. Here, we investigate whether PAN activity is required for de novo poly(A) tail synthesis. Components required for mRNA 3'-end formation were purified from wild-type and pan mutant cells. In both situations, 3'-end formation could be reconstituted whether Nab2p or Pab1p was used as the poly(A) tail length control factor. However, polyadenylation was more efficient and physiologically more relevant in the presence of Nab2p as opposed to Pab1p. Moreover, cell immunofluorescence studies confirmed that PAN subunits are localized in the cytoplasm which suggests that cytoplasmic Pab1p and PAN may act at a later stage in mRNA metabolism. Based on these findings, we propose that Nab2p is necessary and sufficient to regulate poly(A) tail length during de novo synthesis in yeast.  相似文献   

4.
Translational control of maternal mRNA through regulation of poly(A) tail length is crucial during early development. The nuclear poly(A) binding protein, PABP2, was identified biochemically from its role in nuclear polyadenylation. Here, we analyze the in vivo function of PABP2 in Drosophila. PABP2 is required in vivo for polyadenylation, and Pabp2 function, including poly(A) polymerase stimulation, is essential for viability. We also demonstrate an unanticipated cytoplasmic function for PABP2 during early development. In contrast to its role in nuclear polyadenylation, cytoplasmic PABP2 acts to shorten the poly(A) tails of specific mRNAs. PABP2, together with the deadenylase CCR4, regulates the poly(A) tails of oskar and cyclin B mRNAs, both of which are also controlled by cytoplasmic polyadenylation. Both Cyclin B protein levels and embryonic development depend upon this regulation. These results identify a regulator of maternal mRNA poly(A) tail length and highlight the importance of this mode of translational control.  相似文献   

5.
6.
In eukaryotic cells, newly synthesized mRNAs acquire a poly(A) tail that plays several fundamental roles in export, translation and mRNA decay. In mammals, PABPN1 controls the processivity of polyadenylation and the length of poly(A) tails during de novo synthesis. This regulation is less well-detailed in yeast. We have recently demonstrated that Nab2p is necessary and sufficient for the regulation of polyadenylation and that the Pab1p/PAN complex may act at a later stage in mRNA metabolism. Here, we show that the presence of both Pab1p and Nab2p in reconstituted pre-mRNA 3′-end processing reactions has no stimulating nor inhibitory effect on poly(A) tail regulation. Importantly, the poly(A)-binding proteins are essential to protect the mature mRNA from being subjected to a second round of processing. We have determined which domains of Nab2p are important to control polyadenylation and found that the RGG-box work in conjunction with the two last essential CCCH-type zinc finger domains. Finally, we have tried to delineate the mechanism by which Nab2p performs its regulation function during polyadenylation: it likely forms a complex with poly(A) tails different from a simple linear deposit of proteins as it has been observed with Pab1p.  相似文献   

7.
8.
We developed a method, termed an H-blot, by which the poly(A) tract of any specific mRNA may be detected by RNA filter hybridization after its removal from the body of the mRNA by a RNase H-catalyzed endonucleolytic cleavage in the 3' untranslated region. Using this method, we studied the modulation of the length of the poly(A) tract of rat vasopressin mRNA in vivo during changes in the levels of this mRNA resulting from a physiologic stimulus, osmotic stress. The poly(A) tract of hypothalamic vasopressin mRNA in hydrated rats was, quite remarkably, approximately 250 nucleotides in length, in contrast to that of somatostatin mRNA, which was approximately 30 nucleotides long. Vasopressin mRNA poly(A) tail length increased progressively from approximately 250 to approximately 400 nucleotides with the application of the hyperosmotic stimulus and declined to base line after its removal; somatostatin mRNA poly(A) tail length did not change during osmotic stress. The poly(A) tract length of total hypothalamic mRNA was between 35 and 140 nucleotides and also did not change with osmotic stress. Modulation of poly(A) tract length of specific mRNAs during stimulation of gene expression may provide an additional level of genetic regulation.  相似文献   

9.
10.
Transient translational silencing by reversible mRNA deadenylation.   总被引:26,自引:0,他引:26  
  相似文献   

11.
A series of overlapping recombinant clones, which cover the vitellogenin gene, has been isolated from a phage-lambda linked chicken gene library. The DNA of the overlapping clones spans 28 kb of contiguous DNA sequences in the chicken genome. Electron microscopic analysis of hybrids between vitellogenin mRNA and the genomic clones indicates that the chicken vitellogenin gene has a length of approximately 22 kb, about 3.8 times the size of the mRNA. The mRNA sequence is interrupted by at least 33 intervening sequences (introns). Comparison with the vitellogenin gene A2 from Xenopus laevis (Wahli et al., 1980, Cell 20: 107-117) indicates conservation of the number and length of the exons during evolution. Heteroduplex analysis reveals a short stretch of sequence homology between the genes from chicken and frog.  相似文献   

12.
Dominski Z  Marzluff WF 《Gene》1999,239(1):1-14
All metazoan messenger RNAs, with the exception of the replication-dependent histone mRNAs, terminate at the 3' end with a poly(A) tail. Replication-dependent histone mRNAs end instead in a conserved 26-nucleotide sequence that contains a 16-nucleotide stem-loop. Formation of the 3' end of histone mRNA occurs by endonucleolytic cleavage of pre-mRNA releasing the mature mRNA from the chromatin template. Cleavage requires several trans-acting factors, including a protein, the stem-loop binding protein (SLBP), which binds the 26-nucleotide sequence; and a small nuclear RNP, U7 snRNP. There are probably additional factors also required for cleavage. One of the functions of the SLBP is to stabilize binding of the U7 snRNP to the histone pre-mRNA. In the nucleus, both U7 snRNP and SLBP are present in coiled bodies, structures that are associated with histone genes and may play a direct role in histone pre-mRNA processing in vivo. One of the major regulatory events in the cell cycle is regulation of histone pre-mRNA processing, which is at least partially mediated by cell-cycle regulation of the levels of the SLBP protein.  相似文献   

13.
Recent studies of mRNA export factors have provided additional evidence for a mechanistic link between mRNA 3'-end formation and nuclear export. Here, we identify Nab2p as a nuclear poly(A)-binding protein required for both poly(A) tail length control and nuclear export of mRNA. Loss of NAB2 expression leads to hyperadenylation and nuclear accumulation of poly(A)(+) RNA but, in contrast to mRNA export mutants, these defects can be uncoupled in a nab2 mutant strain. Previous studies have implicated the cytoplasmic poly(A) tail-binding protein Pab1p in poly(A) tail length control during polyadenylation. Although cells are viable in the absence of NAB2 expression when PAB1 is overexpressed, Pab1p fails to resolve the nab2Delta hyperadenylation defect even when Pab1p is tagged with a nuclear localization sequence and targeted to the nucleus. These results indicate that Nab2p is essential for poly(A) tail length control in vivo, and we demonstrate that Nab2p activates polyadenylation, while inhibiting hyperadenylation, in the absence of Pab1p in vitro. We propose that Nab2p provides an important link between the termination of mRNA polyadenylation and nuclear export.  相似文献   

14.
The poly(A)-limiting element (PLE) is a conserved sequence that restricts the length of the poly(A) tail to <20 nt. This study compared the translation of PLE-containing short poly(A) mRNA expressed in cells with translation in vitro of mRNAs with varying length poly(A) tails. In transfected cells, PLE-containing mRNA had a <20-nt poly(A) and accumulated to a level 20% higher than a matching control without a PLE. It was translated as well as the matching control mRNA with long poly(A) and showed equivalent binding to polysomes. Translation in a HeLa cell cytoplasmic extract was used to examine the impact of the PLE in the context of varying length poly(A) tails. Here the overall translation of +PLE mRNA was less than control mRNA with the same length poly(A), and the PLE did not overcome the effect of a short poly(A) tail. Because poly(A)-binding protein (PABP) is a dominant effector of poly(A)-dependent translation we reasoned excess PABP in our extract might overwhelm PLE regulation of translation. This was confirmed by experiments where PABP was inactivated with poly(rA) or Paip2, and the effect of both treatments was reversed by addition of recombinant PABP. These data indicate that the PLE functionally substitutes for bound PABP to stimulate translation of short poly(A) mRNA.  相似文献   

15.
The regional pattern of CD52 expression in the rat epididymis was followed by Northern analyses and carbohydrate-labelling of glycoconjugates on Western blots. CD52 mRNA showed a novel aspect of regionalization, namely region-dependent length differences in its poly(A) tail. ‘Short’ CD52 mRNA molecules were present in all parts of this organ and also in the seminal vesicles. Additionally, the cauda epididymidis contained mRNA molecules with an extended poly(A) tail. Their appearance coincided with the occurance of the principal Mr ≈ 26 kDa glycopeptide in the cauda region, representing the CD52 product. CD52 expression seemed to be regulated or modulated synergistically by androgens, temperature, and (an) unknown testicular factor(s), depending on the poly(A) tail length of its mRNA. Androgens alone exerted an effect only on molecules with ‘short’ poly(A) tails. They were down-regulated in castrated animals, and restored to normal levels upon testosterone supplementation. However, ‘long’ CD52 mRNA molecules were not affected. Only if combined with the exposure of the epididymis to the elevated temperature of the abdomen, castration of animals resulted in a complete loss of the CD52 mRNA, including the ‘long’ cauda species. Loss of ‘long’ CD52 mRNA molecules was also observed when the abdominal location was combined with efferent duct ligation. This combination of treatments, however, did not affect ‘short’ CD52 mRNA levels. Loss of the ‘long’ CD52 mRNA molecules by any treatment coincided with a loss of the principal Mr ≈ 26 kDa glycopeptide from caudal protein extracts. Mol. Reprod. Dev. 48:433–441, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

16.
17.
The poly(A) tail plays an important role in translation initiation. We report the identification of a mechanism that operates in mammalian somatic cells, and couples mRNA poly(A) tail length with its translation state. The regulation of human ferritin L-chain mRNA by iron-responsive elements (IREs) and iron regulatory proteins (IRPs) is subject to this mechanism: translational repression imposed by IRP binding to the IRE of ferritin L-chain mRNA induces poly(A) tail shortening. For the accumulation of mRNAs with short poly(A) tails, IRP binding to an IRE per se is not sufficient, but must cause translational repression. Interestingly, puromycin and verrucarin (general translation inhibitors that dissociate mRNAs from ribosomes) mimick the negative effect of the specific translational repressor proteins on poly(A) tail length, whereas cycloheximide and anisomycin (general translation inhibitors that maintain the association between mRNAs and ribosomes) preserve long poly(A) tails. Thus, the ribosome association of the mRNA appears to represent the critical determinant. These findings identify a novel mechanism of regulated polyadenylation as a consequence of translational control. They reveal differences in poly(A) tail metabolism between polysomal and mRNP-associated mRNAs. A possible role of this mechanism in the maintenance of translational repression is discussed.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号