首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M Mori  Y Ito  T Ogawa 《Carbohydrate research》1990,195(2):199-224
The mollu-series glycosphingolipids, O-alpha-D-mannopyranosyl-(1----3)-O-beta-D-mannopyranosyl-(1----4)-O-bet a-D-glucopyranosyl-(1----1)-2-N-tetracosanoyl-(4E)-sphingeni ne and O-alpha-D-mannopyranosyl-(1----3)-O-[beta-D-xylopyranosyl-(1----2])-O- beta-D-mannopyranosyl-(1----4)-O-beta-D-glucopyranosyl-(1----1)-2-N- tetracosanoyl-(4E)-sphingenine, were synthesized for the first time by using 2,3,4-tri-O-acetyl-D-xylopyranosyl trichloroacetimidate, methyl 2,3,4,6-tetra-O-acetyl-1-thio-alpha-D-mannopyranoside, benzyl O-(4,6-di-O-benzyl-beta-D-mannopyranosyl)-(1----4)-2,3,6-tri-O-benzyl-be ta-D- glucopyranoside 9, and (2S,3R,4E)-2-azido-3-O-(tert-butyldiphenylsilyl)-4-octade cene-1,3-diol 6 as the key intermediates. The hexa-O-benzyl disaccharide 9 was prepared by coupling two monosaccharide synthons, namely, 2,3-di-O-allyl-4,6-di-O-benzyl-alpha-D-mannopyranosyl bromide and benzyl 2,3,6-tri-O-benzyl-beta-D-glucopyranoside. It was demonstrated that azide 6 was highly efficient as a synthon for the ceramide part in the coupling with both glycotriaosyl and glycotetraosyl donors, particularly in the presence of trimethylsilyl triflate.  相似文献   

2.
The substrate specificity of an endo-(1----4)-beta-D-xylanase of the yeast Cryptococcus albidus was investigated using a series of methyl beta-D-xylotriosides. In addition to (1----4) linkages, the enzyme could cleave (1----3) and (1----2) linkages adjacent to a (1----4) linkage and further from the non-reducing end of the substrate. The enzyme could hydrolyse a (1----3) linkage that attached a terminal xylopyranosyl group to a (1----4)-linked xylobiosyl moiety. The enzyme did not attack alpha-D-xylosidic linkages. The rate of cleavage of (1----4) linkages was much higher than those of other linkages at 0.5mM substrate, but the rates were comparable at 20mM substrate when transglycosylation reactions also occurred that facilitated degradation of the substrates.  相似文献   

3.
The tetrasaccharide a-D-Glcp-(1----4)-a-D-Xylp-(1----4)-a-D-Xylp-(1----4)-D- Glcp (1) has been synthesized, as a substrate analogue of alpha amylase, by silver perchlorate-catalyzed glycosylation of benzyl 2,3,6-tri-O-benzyl-4-O-(2,3-di-O-benzyl-a-D-xylopyranosyl)-beta-D- glucopyranoside (30) with 2,3-di-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl-a-D- glucopyranosyl)-a-D-xylopyranosyl chloride or by methyl triflate-promoted condensation of 30 with methyl 2,3-di-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl-a-D-glucopyranosyl)-1-thio- beta-D-xylopyranoside, followed by removal of protecting groups of the resulting tetrasaccharide derivative 40.  相似文献   

4.
p-Nitrophenyl 2-O-benzyl-4,5-O-cyclohexylidene-beta-D-mannopyranoside (4) was condensed with tetra-O-benzoyl-alpha-D-mannopyranosyl bromide. The resulting, protected disaccharide was converted into p-nitrophenyl O-(2,3,4-tri-O-benzoyl-alpha-D-mannopyranosyl)-(1----3)-4-O-benzoyl-2-O- benzyl-beta-D-mannopyranoside (8), which was condensed with tetra-O-benzoyl-alpha-D-mannopyranosyl bromide to give p-nitrophenyl O-(2,3,4-tri-O-benzoyl-alpha-D-mannopyranosyl)-(1----3)-O -[2,3,4-tri-O-benzoyl-alpha-D-mannopyranosyl-(1----6)]-4-O-benzoyl-2-O -benzyl-beta-D-mannopyranoside (9) in 75% yield. Conversion of the p-nitrophenyl group followed by deprotection then yielded the title compound, whose structure was confirmed by 1H- and 13C-n.m.r. spectroscopy.  相似文献   

5.
A synthesis of alpha-D-Manp-(1----3)-[beta-D-GlcpNAc-(1----4)]-[alpha-D-Manp++ +-(1----6)]- beta-D-Manp-(1----4)-beta-D-GlcpNAc-(1----4)-[alpha-L-Fucp-( 1----6)]-D- GlcpNAc was achieved by employing benzyl O-(3,4,6-tri-O-benzyl-2-deoxy-2-phthalimido-beta-D-glucopyranosyl)-(1--- -4)-O- (2-O-benzyl-beta-D-mannopyranosyl)-(1----4)-O-(3,6-di-O-benzyl-2-deoxy-2 - phthalimido-beta-D-glucopyranosyl)-(1----4)-3-O-benzyl-2-deoxy-6-O-p- methoxyphenyl-2-phthalimido-beta-D-glucopyranoside as a key glycosyl acceptor. Highly stereoselective mannosylation was performed by taking advantage of the 2-O-acetyl group in the mannosyl donors. The alpha-L-fucopyranosyl residue was also stereoselectively introduced by copper(II)-mediated activation of methyl 2,3,4-tri-O-benzyl-1-thio-beta-L-fucopyranoside.  相似文献   

6.
E Yoon  R A Laine 《Glycobiology》1992,2(2):161-168
Development of tandem mass spectral methods for direct linkage determination in oligosaccharides requires sets of trisaccharides differing only in one structural parameter. In this case, we chose the position of linkage to the reducing-end hexose. These sets of compounds would also be useful for the development of high-resolution separation techniques geared to resolve linkage types. Conventional organic synthesis of such a set could take as long as 2-5 months for each member of the set. Each trisaccharide would require 10-20 steps of synthesis. Instead, we utilized low pH to induce a loose acceptor specificity for bovine milk galactosyltransferase (lactose synthase: EC 2.4.1.22) and by this method, within 2 weeks, generated four novel oligosaccharides for NMR and mass spectral studies. The disaccharides cellobiose (beta 1----4), laminaribiose (beta 1----3), gentiobiose (beta 1----6) and maltose (alpha 1----4) acted as acceptors for EC 2.4.1.22 under these conditions. The beta 1----2-linked disaccharide, sophorose, was not commercially available and is not included in this study. The alpha-linked disaccharides were also examined, but except for the alpha 1----4 disaccharide maltose, were very poor acceptors under a variety of conditions. From these four acceptors, the following four novel trisaccharides were synthesized in micromole amounts, suitable for studies of linkage position using low-energy collision-induced-dissociation tandem mass spectrometry (FAB-MS-CID-MS), and for NMR: Galp(beta 1----4)Glcp(beta 1----3)-Glc, Galp(beta 1----4)Glcp(beta 1----4)Glc, Galp(beta 1----4)Glcp(beta 1----6)-Glc and Galp(beta 1----4)Glcp(alpha 1----4)Glc.  相似文献   

7.
A simple and rapid method for Shiga toxin purification based on specific binding to the Gal alpha 1----4Gal beta 1----4Glc globotrioside trisaccharide covalently linked to polyacryl/polyvinyl (Fractogel) has been developed. A cell-free sonicate-filtrate of Shigella dysenteriae type 1, strain 114Sd was passed over the globotrioside-Fractogel column, and bound toxin eluted with 6 M guanidine-HCl. A yield of 36 mg pure toxin/1 sonicate-filtrate was obtained, i.e. a one step 1224-fold purification. The recovery of biologically active toxin was 87%. The toxin was purified to homogeneity as shown by native PAGE and SDS-PAGE.  相似文献   

8.
9.
Methyl 2-O-benzyl-beta-D-galactopyranoside (6) was obtained in five, good yielding steps from methyl beta-D-galactopyranoside (1). Treatment of 1 with tert-butylchlorodiphenylsilane in N,N-dimethylformamide in the presence of imidazole afforded a 6-(tert-butyldiphenylsilyl) ether, which was converted into its 3,4-O-isopropylidene derivative (3). Benzylation of 3 with benzyl bromide-silver oxide in N,N-dimethylformamide, and subsequent cleavage of its acetal and ether groups then afforded 6. On similar benzylation, followed by the same sequence of deprotection, benzyl 2-acetamido-3,6-di-O-benzyl-4-O-[6-O-(tert-butyldiphenylsilyl)-3,4 -O- isopropylidene-beta-D-galactopyranosyl]-2-deoxy-alpha-D-glucopyranoside gave the 2-O-benzyl derivative (10). Compound 10 was converted into its 4,6-O-benzylidene acetal (11). Glycosylation (catalyzed by halide-ion) of 11 with 2,3,4-tri-O-benzyl-alpha-L-fucopyranosyl bromide afforded the fully protected trisaccharide derivative (13). Cleavage of the benzylidene and then the benzyl groups of 13 furnished the title trisaccharide (16). The structure of 16 was established by 13C-n.m.r. spectroscopy.  相似文献   

10.
Total synthesis of O-beta-D-galactopyranosyl-(1----3)-O-[(5-acetamido-3,5-dideoxy- D-glycero-alpha-D-galacto-2-nonulopyranosylonic acid)-(2----6)]-O-(2-acetamido-2-deoxy-alpha-D-galactopyranosyl)-(1----3 )-L- serine was achieved by use of the key glycosyl donor O-(2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)-(1----3)-O- [methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galact o-2- nonulopyranosyl)onate-(2----6)]-4-O-acetyl-2-azido-2-deoxy-a lpha-D- galactopyranosyl trichloroacetimidate and the key glycosyl acceptor N-(benzyloxycarbonyl)-L- serine benzyl ester in a regiocontrolled way.  相似文献   

11.
12.
13.
14.
15.
We have identified a mannosidase in rat liver that releases alpha 1----2, alpha 1----3 and alpha 1----6 linked manose residues from oligosaccharide substrates, MannGlcNAc where n = 4-9. The end product of the reaction is Man alpha 1----3[Man alpha 1----6]Man beta 1----4GlcNAc. The mannosidase has been purified to homogeneity from a rat liver microsomal fraction, after solubilization into the aqueous phase of Triton X-114, by anion-exchange, hydrophobic and hydroxyapatite chromatography followed by chromatofocusing. The purified enzyme is a dimer of a 110-kDa subunit, has a pH optimum between 6.1 and 6.5 and a Km of 65 microM and 110 microM for the Man5GlcNAc-oligosaccharide or Man9GlcNAc-oligosaccharide substrates, respectively. Enzyme activity is inhibited by EDTA, by Zn2+ and Cu2+, and to lesser extent by Fe2+ and is stabilized by Co2+. The pattern of release of mannose residues from a Man6GlcNAc substrate shows an ordered hydrolysis of the alpha 1----2 linked residue followed by hydrolysis of alpha 1----3 and alpha 1----6 linked residues. The purified enzyme shows no activity against p-nitrophenyl-alpha-mannoside nor the hybrid GlcNAc Man5GlcNAc oligosaccharide. The enzyme activity is inhibited by swainsonine and 1-deoxymannojirimycin at concentrations 50-500-fold higher than required for complete inhibition of Golgi-mannosidase II and mannosidase I, respectively. The data indicate strongly that the enzyme has novel activity and is distinct from previously described mannosidases.  相似文献   

16.
M Kadkhodaei  H Wu  D A Brant 《Biopolymers》1991,31(13):1581-1592
The conformational dynamics of alpha-(1----4)- and alpha-(1----6)-glucan homooligomers in the nanosecond time domain have been compared by measuring the 13C-nmr longitudinal relaxation times T1 for carbons of the terminal and interior sugar residues. Measurements are reported on monomeric glucose and on oligomers containing up to ten glucose residues at room temperature in aqueous solution at concentrations of 3 and 20 g/dL. The carbons of terminal residues display longer relaxation times than do those of interior residues, presumably as a consequence of a greater degree of conformational mobility of the chain ends. The T1s of the reducing terminal residues of all oligomers are significantly longer than those of the corresponding nonreducing termini, a phenomenon that we associate tentatively with the anomeric equilibrium at the reducing end. Carbons of the reducing terminal residues in the beta-anomeric form relax more slowly than their alpha-anomeric counterparts. At 20 g/dL the mean T1s for carbons of the terminal and interior residues attain asymptotic behavior with increasing chain length at a chain length of about six residues, and carbons of the alpha-(1----4)-linked maltooligomers relax significantly more slowly than those of the corresponding alpha-(1----6)-linked isomaltooligomers. The T1s of both glucan series increase with decreasing concentration. This concentration dependence disappears below 3 g/dL, where the T1s of the two series of homoligomers are no longer distinguishable. This suggests that in dilute aqueous solution at room temperature viscous damping effects predominate over contributions to the T1-sensitive conformational dynamics from structural differences in the glycosidic linkage region. At 3 g/dL the approach to long chain-length asymptotic behavior is more protracted than at 20 g/dL, and the T1s of carbons of interior oligomeric residues appear to match the corresponding high-polymer behavior at a chain length of eight and greater.  相似文献   

17.
Sequential tritylation, benzoylation, and detritylation of p-nitrophenyl beta-D-galactopyranoside gave p-nitrophenyl 2,3,4-tri-O-benzoyl-beta-D-galactopyranoside (2). Reaction of 2 with 2,3,4,6-tetra-O-benzoyl-alpha-D-galactopyranosyl bromide gave p-nitrophenyl O-(2,3,4,6-tetra-O-benzoyl-beta-D-galactopyranosyl)-(1----6) -2,3,4-tri-O-benzoyl-beta-D-galactopyranoside (4) in 94% yield. Deprotection with sodium methoxide then gave the crystalline p-nitrophenyl O-(beta-D-galactopyranosyl)-(1----6)-beta-D-galactopyranoside (5). Condensation of 2 with 2,3,4-tri-O-benzoyl-6-O-bromoacetyl-alpha-D-galactopyranosyl bromide (3) readily yielded the protected disaccharide p-nitrophenyl O-(2,3,4-tri-O-benzoyl-6-O-bromoacetyl-beta-D-galactopyranosyl)-(1----6) -2,3,4-tri-O-benzoyl-beta-D-galactopyranoside (6) from which the bromoacetyl groups could be selectively removed. Condensation of the resulting material with tetra-O-benzoyl-alpha-D-galactopyranosyl bromide then yielded p-nitrophenyl O-(2,3,4,6-tetra-O-benzoyl-beta-D-galactopyranosyl)-(1----6)-O-(2,3,4 -tri-O-benzoyl-beta-D-galactopyranosyl)-(1----6)-2,3,4-tri-O-benzoyl-bet a-D -galactopyranoside, (8), which was converted into the crystalline trisaccharide p-nitrophenyl O-(beta-D-galactopyranosyl)-(1----6)-O-beta-D-galactopyranosyl)-(1----6) -beta -D-galactopyranoside (9) by treatment with sodium methoxide. Preliminary experiments on the interaction of p-(bromoacetamido)phenyl and p-isothiocyanatophenyl glycoside derivatives of some of these galacto-saccharides with monoclonal anti-(1----6)-beta-D-galactopyranan antibodies have been conducted.  相似文献   

18.
Enzymic hydrolysis of pullulan, followed by acetylation and chromatography, gave acetylated alpha-D-Glcp-(1----6)-alpha-D-Glcp-(1----4)-alpha-D-Glcp-(1----4)-D-Glcp which, with 2-bromoethanol and boron trifluoride etherate in dichloromethane, gave the 2-bromoethyl glycoside. The reactions of the glycoside with methyl 3- mercaptopropionate , methyl 11- mercaptoundecanoate , and octadecanethiol are described, and also its hydrogenolysis to give an ethyl glycoside. The mercaptopropionate -derived, spacer-arm glycoside has been coupled to bovine serum albumin and keyhole limpet haemocyanin.  相似文献   

19.
20.
Insoluble, light-sensitive polymers linked to maltose, maltotriose, a glycogen-branch point trisaccharide, and panose were synthesized and served in a comparative study as acceptors in the glycogen synthase (UDP-D-glucose:glycogen 4-alpha-D-glucosyltransferase, EC 2.4.1.11) reaction. The highest transfer rate was observed with the maltotrio polymer. Extending the acceptor linearly with (1----4)-linked alpha-D-glucopyranosyl residues improved the transfer, whereas (1----6)-linked alpha-D-glucopyranosyl branches decreased it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号