首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By employing RT-PCR in conjunction with 3'-RACE, a full-length cDNA encoding a novel zebrafish cytosolic sulfotransferase (SULT) was cloned and sequenced. Sequence analysis revealed that this zebrafish SULT (designated SULT1 ST5) is, at the amino acid sequence level, close to 50% identical to human and dog SULT1B1 (thyroid hormone SULT). A recombinant form of zebrafish SULT1 ST5 was expressed using the pGEX-2TK bacterial expression system and purified from transformed BL21 (DE3) cells. Purified zebrafish SULT1 ST5 migrated as a 34 kDa protein and displayed substrate specificity for thyroid hormones and their metabolites among various endogenous compounds tested. The enzyme also exhibited sulfating activities toward some xenobiotic phenolic compounds. Its pH optima were 6.0 and 9.0 with 3,3',5-triiodo-l-thyronine (l-T3) as substrate and 6.0 with beta-naphthol as substrate. Kinetic constants of the enzyme with thyroid hormones and their metabolites as substrates were determined. Quantitative evaluation of the regulatory effects of divalent metal cations on the l-T3-sulfating activity of SULT1 ST5 revealed that Fe2+, Hg2+, Co2+, Zn2+, Cu2+, Cd2+ and Pb2+ exhibited dramatic inhibitory effects, whereas Mn2+ showed a significant stimulation. Developmental stage-dependent expression experiments revealed a significant level of expression of this novel zebrafish thyroid hormone-sulfating SULT at the beginning of the hatching period during embryogenesis, which gradually increased to a high level of expression throughout the larval stage into maturity.  相似文献   

2.
Sulfotransferases (SULTs) are involved in detoxification and activation of various endogenous and exogenous compounds including important drugs and hormones. SULT1A, the phenol-SULT subfamily, is the most prominent subfamily in xenobiotic metabolism and has been found in several species, e.g., human, rat, and mouse. We have cloned a phenol-sulfating phenol SULT from dog (cSULT1A1) and expressed it in Escherichia coli for characterization. cSULT1A1 showed 85.8, 82.7, 76.3, and 73.6% identities to human P-PST, human M-PST, rat PST-1, and mouse STp1, respectively. It consists of 295 amino acids, which is in agreement with the human ortholog and sulfate substrates typical for the SULT1A family, i.e., p-nitrophenol (PNP), alpha-naphthol, and dopamine. The K(m) for PNP was found to be within the nanomolar range. It also sulfates minoxidil and beta-estradiol but not dehydroepiandrosterone. Western blot analysis indicated that this newly cloned enzyme was found to be ubiquitously expressed in canine tissues with highest expression in male and female liver.  相似文献   

3.
Sulfation of nitrotyrosine: biochemistry and functional implications   总被引:1,自引:0,他引:1  
Liu MC  Yasuda S  Idell S 《IUBMB life》2007,59(10):622-627
Nitration of tyrosine, in both protein-bound form and free amino acid form, can readily occur in cells under oxidative/nitrative stress. In addition to serving as a biomarker of oxidative/nitrative stress, elevated levels of nitrotyrosine have been shown to cause DNA damage or trigger apoptosis. An important issue is whether the human body is equipped with mechanisms to counteract the potentially harmful effects of nitrotyrosine. Sulfate conjugation, as mediated by the cytosolic sulfotransferases (SULTs), is widely used for the biotransformation and disposal of a variety of drugs and other xenobiotics, as well as endogenous thyroid/steroid hormones and catecholamine neurotransmitters. Recent studies have revealed that the sulfation of nitrotyrosine occurs in cells under oxidative/nitrative stress, and have pinpointed the SULT1A3 as the responsible SULT enzyme. In this review, we summarized the available information concerning the biochemistry of nitrotyrosine sulfation and the effects of genetic polymorphisms on the nitrotyrosine sulfating activity of SULT1A3. Functional implications of the sulfation of nitrotyrosine are discussed.  相似文献   

4.
5.
Sulfation appears to be an important pathway for the reversible inactivation of thyroid hormone during fetal development. The rat is an often used animal model to study the regulation of fetal thyroid hormone status. The present study was done to determine which sulfotransferases (SULTs) are important for iodothyronine sulfation in the rat, using radioactive T4, T3, rT3, and 3,3'-T2 as substrates, 3'-phosphoadenosine-5'-phosphosulfate (PAPS) as cofactor, and rat liver, kidney and brain cytosol, and recombinant rat SULT1A1, -1B1, -1C1, -1E1, -2A1, -2A2, and -2A3 as enzymes. Recombinant rat SULT1A1, -1E1, -2A1, -2A2, and -2A3 failed to catalyze iodothyronine sulfation. For all tissue SULTs and for rSULT1B1 and rSULT1C1, 3,3'-T2 was by far the preferred substrate. Apparent Km values for 3,3'-T2 amounted to 1.9 microM in male liver, 4.4 microM in female liver, 0.76 microM in male kidney, 0.23 microM in male brain, 7.7 microM for SULT1B1, and 0.62 microM for SULT1C1, whereas apparent Km values for PAPS showed less variation (2.0-6.9 microM). Sulfation of 3,3'-T2 was inhibited dose dependently by other iodothyronines, with similar structure-activity relationships for most enzymes except for the SULT activity in rat brain. The apparent Km values of 3,3'-T2 in liver cytosol were between those determined for SULT1B1 and -1C1, supporting the importance of these enzymes for the sulfation of iodothyronines in rat liver, with a greater contribution of SULT1C1 in male than in female rat liver. The results further suggest that rSULT1C1 also contributes to iodothyronine sulfation in rat kidney, whereas other, yet-unidentified forms appear more important for the sulfation of thyroid hormone in rat brain.  相似文献   

6.
1H NMR data of a series of thyroid hormone analogues, e.g., thyroxine (T4), 3,5,3'-triiodothyronine (T3), 3,3',5'-triiodothyronine (rT3), 3,3'-diiodothyronine (3,3'-T2), 3,5-diiodothyronine (3,5-T2), 3',5'-diiodothyronine (3',5'-T2), 3-monoidothyronine (3-T1), 3'-monoiodothyronine (3'-T1), and thyronine (TO) in dimethylsulfoxide (DMSO) have been obtained on a 300 MHz spectrometer. The chemical shift and coupling constant are determined and tabulated for each aromatic proton. The inner tyrosyl ring protons in T4, T3, and 3,5-T2 have downfield chemical shifts with respect to those of the outer phenolic ring protons. Four-bond cross-ring coupling has been observed in all the monoiodinated rings. However, this long-range coupling does not exist in T4, diiodinated on both rings, and T0, containing no iodines on the rings. There is no evidence that at 30 degrees C these iodothyronines have any motional constraint in DMSO solution. In addition to identification of the hormones, the potential use of some characteristic peaks as probes in binding studies is discussed.  相似文献   

7.
Feed additives such as ractopamine and salbutamol are pharmacologically active compounds, acting primarily as β-adrenergic agonists. This study was designed to investigate whether the sulfation of ractopamine and salbutamol may occur under the metabolic conditions and to identify the human cytosolic sulfotransferases (SULTs) that are capable of sulfating two major feed additive compounds, ractopamine and salbutamol. A metabolic labelling study showed the generation and release of [(35)S]sulfated ractopamine and salbutamol by HepG2 human hepatoma cells labelled with [(35)S]sulfate in the presence of these two compounds. A systematic analysis using 11 purified human SULTs revealed SULT1A3 as the major SULT responsible for the sulfation of ractopamine and salbutamol. The pH dependence and kinetic parameters were analyzed. Moreover, the inhibitory effects of ractopamine and salbutamol on SULT1A3-mediated dopamine sulfation were investigated. Cytosol or S9 fractions of human lung, liver, kidney and small intestine were examined to verify the presence of ractopamine-/salbutamol-sulfating activity in vivo. Of the four human organs, the small intestine displayed the highest activity towards both compounds. Collectively, these results imply that the sulfation mediated by SULT1A3 may play an important role in the metabolism and detoxification of ractopamine and salbutamol.  相似文献   

8.
Tibolone is an important therapeutic agent used in the treatment of menopausal symptoms in many countries and has beneficial effects on menopausal and postmenopausal vasomotor, bone, vaginal and mood symptoms without affecting the endometrial, breast or cardiovascular systems. The rapid metabolism of tibolone to active metabolites including 3-OH-tibolone, 3β-OH-tibolone and Δ4-tibolone may be important in its tissue-specific effects. Sulfation also has a major role in the metabolism and regulation of the tissue-specific activity of tibolone and its metabolites. The ability of seven major expressed human sulfotransferase (SULT) isoforms to sulfate tibolone and its three metabolites was examined. Expressed human SULT2A1 was capable of sulfating tibolone and all three metabolites with the highest affinity for 3-OH-tibolone. SULT1E1 conjugated both 3-OH-tibolone metabolites and tibolone itself slightly. SULT2B1b sulfated both 3-OH metabolites but not tibolone or Δ4-tibolone. SULT isoforms 1A1, 1A3, 1B1 and 1C1 did not demonstrate detectable activity. Sulfation of tibolone and its metabolites by human tissue cytosols was analyzed to determine whether the pattern of tibolone sulfation corresponded to the known expression of SULT isoforms in each tissue. The tissue-specific effects of tibolone may be regulated in part by the inactivation of tibolone and its metabolites by specific human SULT isoforms.  相似文献   

9.
The regulatory mechanism of cytosolic sulfation of T3 has been studied in rat liver. Sulfation of T3 is sexually differentiated in adult rats of Sprague-Dawley (SD), Fisher 344, and ACI strains. In SD strain, the male animals showed 4 times higher sulfating activity than did the females. The specific activity was decreased by hypophysectomy of male adult rats, but was not affected in the females. Thus, the sex-difference was abolished in the hypophysectomized condition. Supplement of human GH intermittently twice daily for 7 days, to mimic the male secretory pattern, increased T3 sulfating activity in both sexes of hypophysectomized rats, whereas continuous infusion to mimic a female secretory pattern had no appreciable effect. Cytosolic sulfation of T3 was decreased by 25 to 30% by thyroidectomy or propylthiouracil treatment of male adult rats, and was restored by the supplementation of T3 (50 micrograms/kg daily for 7 days) to thyroidectomized rats. Administration of T3 in hypophysectomized rats almost completely restored the sulfating activity in the males and increased the activity in the females. Cytosolic T3 sulfation was inhibited by the addition of known inhibitors of phenol sulfotransferase, pentachlorophenol or 2,6-dichloro-4-nitrophenol. These results indicate a role of pituitary GH in hepatic sulfation of thyroid hormones in rats. The data obtained also raise the possibility that GH may modify the effect of thyroid hormones on the pituitary by a feed-back mechanism through changing the level of a sex-dominant phenol sulfotransferase(s) in rat livers. T3 was also sulfated in hepatic cytosols of mouse, hamster, rabbit, dog, monkey, and human.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Sulfation as catalyzed by the cytosolic sulfotransferases (SULTs) is known to play an important role in the regulation and homeostasis of monoamine neurotransmitters. The current study was designed to examine the occurrence of the sulfation of 7-hydroxyserotonin and 6-hydroxydopamine by human cytosolic SULTs and to investigate the inhibitory effects of these hydroxylated derivatives on the sulfation of their unhydroxylated counterparts, serotonin and dopamine. A systematic study using 11 known human cytosolic SULTs revealed SULT1A3 as the responsible enzyme for the sulfation of 7-hydroxyserotonin and 6-hydroxydopamine. The pH-dependence and kinetic constants of SULT1A3 with 7-hydroxyserotonin or 6-hydroxydopamine as substrate were determined. The inhibitory effects of 7-hydroxyserotonin and 6-hydroxydopamine on the sulfation of serotonin and dopamine were evaluated. Kinetic analyses indicated that the mechanism underlying the inhibition by these hydroxylated monoamine derivatives is of a competitive-type. Metabolic labeling experiments showed the generation and release of [35S]sulfated 7-hydroxyserotonin and [35S]sulfated 6-hydroxydopamine when SK-N-MC human neuroblastoma cells were labeled with [35S]sulfate in the presence of 7-hydroxyserotonin or 6-hydroxydopamine. Upon transfection of the cells with siRNAs targeted at SULT1A3, diminishment of the SULT1A3 protein and concomitantly the sulfating activity toward these hydroxylated monoamines was observed. Taken together, these results indicated clearly the involvement of sulfation in the metabolism of 7-hydroxyserotonin and 6-hydroxydopamine. By serving as substrates for SULT1A3, these hydroxylated monoamines may interfere with the homeostasis of endogenous serotonin and dopamine.  相似文献   

11.
Polychlorobiphenylols (OH-PCBs) were reported as potent inhibitors of estrogen sulfotransferase, thyroid hormone and 3-hydroxybenzo(a)pyrene sulfotransferases. The aim of this study was to examine the effects of selected OH-PCBs on SULT1A1 activity in human liver cytosol, measured with 4microM 4-nitrophenol, a concentration considered to be diagnostic for selectively detecting SULT1A1. All the OH-PCBs studied inhibited the sulfonation of 4-nitrophenol in human liver cytosol. Among the eighteen OH-PCBs studied, 3'-OH-CB3 (4-chlorobiphenyl-3'-ol) was the most potent inhibitor (IC(50): 0.73+/-0.15microM, mean+/-S.D., n=3). The least potent inhibitor studied was 6'-OH-CB35 (3,3',4-trichlorobiphenyl-6'-ol) with IC(50): 49.1+/-10.8microM. The IC(50) values of the other OH-PCBs studied ranged from 0.78 to 3.76microM. Some OH-PCBs with various inhibitory potencies with human liver cytosol were selected for study with recombinant human SULT1A1 and SULT1B1. These OH-PCBs showed more potent inhibition of 4-nitrophenol sulfonation with SULT1A1 than with human liver cytosol. The IC(50) values with human liver cytosol showed a perfect linear correlation with those found with SULT1A1 (r(2)=1), but not with SULT1B1 (r(2)=0.21). The results suggested that in these human samples SULT1A1 was predominantly responsible for the sulfonation of 4-nitrophenol, with very little or no contribution from SULT1B1. The kinetics of inhibition were studied with 4'-OH-CB165, which is similar in structure to OH-PCBs found in human blood. The 4'-OH-CB165 was a mixed noncompetitive-uncompetitive inhibitor (K(i)=1.80+/-0.2microM, K(ies)=0.16+/-0.02microM). Finally, it was demonstrated that the tested OH-PCBs were themselves only slowly sulfonated by human sulfotransferases in the presence of (35)S-PAPS, as measured by the production of (35)S-labeled metabolites. Although this series of 18 OH-PCBs was too small to draw conclusions about structure-potency relationships, this work demonstrated that several OH-PCBs were potent inhibitors of 4-nitrophenol sulfonation but poor substrates in human liver cytosol, and suggested that OH-PCBs may inhibit the sulfation rate of those xenobiotics sulfated by SULT1A1.  相似文献   

12.
Regulation of thyroid, adrenocortical and other hormones secretedby the major endocrine glands in mammals is widely attributedprimarily to feedback control relationships with the pituitary,hypothalamus or both, with hepatobiliary and intestinal mechanismshaving no more than a passive or excretory role. I present anotherview of enterohepatic components in thyroid endocrine function,suggesting a functional and more pervasive role for the intestine,in a more complex hierarchical system controlling thyroid hormonelevels, effects and economy in the rat, and possibly in othermammals. A central factor is the existence of enterohepaticcycling of these hormones, or their reabsorption from intestnalpools to portal and then systemic blood. This process affectstheir dynamic behavior throughout the organism, not only hormoneeconomy, because bidirectional transport of hormone betweenblood and intestine (including large pools in luminal contents)renders all or part of the gut internal to the system regulatingthyroid hormones. We review the evidence for and possible significanceof this hypothesis, covering specific aspects of hormone levelcontrol in the rat, including the deiodination, conjugationand other metabolic pathways, particularly in liver and intestine,and the fecal and urinary excretory (sink) and hormone production(source) pathways. The modulators of enterohepatic subsystemregulation of thyroid hormones are postulated to involve thecombined effects of hormone conjugation and degradation processesin liver and their subsequent secretion in bile, coupled withthe bacterial deconjugation, the reabsorption and certain hormonestorage mechanisms of the intestine.  相似文献   

13.
Sulfation is an important pathway in the metabolism of thyroid hormones. Sulfated iodothyronines are elevated in nonthyroidal illnesses and in the normal human fetal circulation. We assayed and characterized COS-1 cell expressed recombinant human liver dehydroepiandrosterone sulfotransferase (DHEA ST or SULT2A1) and estrogen sulfotransferase (EST or SULT1E1) activities for the first time with triiodothyronine (T(3)) as the substrate. Several biochemical properties that included apparent K(m) values, thermal stabilities, and responses to the inhibitors 2, 6-dichloro-4-nitrophenol and NaCl were tested. SULT2A1, a member of the hydroxysteroid sulfotransferase family, used 3,3'-T(2) more readily than T(3) and 3,5-T(2) as substrates, but had the lowest apparent K(m) value for T(3) of any reported human SULT. SULT1E1, a member of the phenol sulfotransferase family, used 3,3'-T(2) and rT(3) more readily than T(3), and also displayed the greatest specificity for T(4) among human SULTs. SULT2A1 may contribute more to iodothyronine sulfation than previously suspected. Potential roles of both steroid sulfotransferases in the enhanced sulfation of nonthyroidal illnesses and fetal development invite further investigation.  相似文献   

14.
By searching the expressed sequence tag database, a zebrafish cDNA encoding a putative cytosolic sulfotransferase (SULT) was identified. Sequence analysis indicated that this zebrafish SULT belongs to the SULT1 cytosolic SULT gene family. The recombinant form of this novel zebrafish SULT, expressed using the pGEX-2TK expression system and purified from transformed BL21 (DE3) Escherichia coli cells, displayed sulfating activities specifically for estrone and 17beta-estradiol among various endogenous compounds tested as substrates. The enzyme also exhibited sulfating activities toward some xenobiotic phenolic compounds. This new zebrafish SULT showed dual pH optima, at 6.5 and 10-10.5, with estrone or n-propyl gallate as substrate. Kinetic constants of the sulfation of estrone, 17beta-estradiol, and n-propyl gallate were determined. Developmental stage-dependent expression experiments revealed a significant level of expression of this novel zebrafish estrogen-sulfating SULT at the beginning of the hatching period during embryogenesis, which continued throughout the larval stage onto maturity.  相似文献   

15.
The protective effects of diet, especially soya products, tea, and many fruits, against a variety of human cancers, as suggested by epidemiological studies, has focused attention on flavonoids, isoflavonoids, and other phenolic dietary compounds as chemoprotectants. Among the mechanisms suggested for their chemoprotective action, their ability to inhibit the bioactivation of carcinogens by the human cytosolic sulfotransferases (STs) and the direct effects of their sulfoconjugates are being increasingly studied. We report here a systematic study on the sulfation of representative flavonoids, isoflavonoids, anti-oxidants, and other phenolic dietary compounds by all ten known human cytosolic STs. All ten recombinant human cytosolic STs were prepared in a pure form and tested for their sulfating activities with a variety of these compounds. P-form (SULT1A1) phenol ST (PST) showed high sulfating activity with most of these compounds. M-form (SULT1A3) PST showed high activity with the flavonoids but not with the isoflavonoids. SULT1C ST #2 showed high activity with the isoflavonoids and also sulfated most of the other compounds. Possible relevance of these results to the chemoprotective effects of these dietary compounds is discussed.  相似文献   

16.
17.
18.
As a first step toward developing a zebrafish model for investigating the role of sulfation in counteracting environmental estrogenic chemicals, we have embarked on the identification and characterization of cytosolic sulfotransferases (STs) in zebrafish. By searching the zebrafish expressed sequence tag database, we have identified two cDNA clones encoding putative cytosolic STs. These two zebrafish ST cDNAs were isolated and subjected to nucleotide sequencing. Sequence data revealed that the two zebrafish STs are highly homologous, being approximately 82% identical in their amino acid sequences. Both of them display approximately 50% amino acid sequence identity to human SULT1A1, rat SULT1A1, and mouse SULT1C1 ST. These two zebrafish STs therefore appear to belong to the SULT1 cytosolic ST gene family. Recombinant zebrafish STs (designated SULT1 STs 1 and 2), expressed using the pGEX-2TK prokaryotic expression system and purified from transformed Escherichia coli cells, migrated as approximately 35 kDa proteins on SDS/PAGE. Purified zebrafish SULT1 STs 1 and 2 displayed differential sulfating activities toward a number of endogenous compounds and xenobiotics including hydroxychlorobiphenyls. Kinetic constants of the two enzymes toward two representative hydroxychlorobiphenyls, 3-chloro-4-biphenylol and 3,3',5,5'-tetrachloro-4,4'-biphenyldiol, and 3,3',5-triiodo-l-thyronine were determined. A thermostability experiment revealed the two enzymes to be relatively stable over the range 20-43 degrees C. Among 10 different divalent metal cations tested, Co2+, Zn2+, Cd2+, and Pb2+ exhibited considerable inhibitory effects, while Hg2+ and Cu2+ rendered both enzymes virtually inactive.  相似文献   

19.
Cultured monkey hepatocarcinoma cell (NCLP-6E) were used to investigate the uptake and metabolism of thyroid hormones. Intracellular accumulation was shown by the failure to acutely release hormone from cells subsequently exposed to serum proteins, and by the metabolic trnasformation of the hormones to deiodinated products and their sulfates. When hepatocarcinoma cell monolayers were studied at hormone concentrations below 10(-10) M, neither KCN nor dinitrophenol inhibited uptake. Taken together with previous findings that uptake was neither saturable nor reduced at low temperature, these results indicate that this process was not active transport. Deiodination of both the phenolic and non-phenolic rings, however, was partially inhibited by KCN but not by dinitrophenol. Sulfation of 3,3'-diiodothyronine and 3'-monoiodothyronine was strongly inhibited by both KCN and dinitrophenol. Uptake of the hormones and their metabolites was also measured in suspended hepatocarcinoma cells and compared with the uptake by normal rat hepatocytes, human fibroblasts and human lymphocytes. In these experiments 1 micrometer triidothyronine and 0.47 mM dinitrophenol were used to inhibit deiodination and sulfation, respectively. Uptake was similar in all cell types. Accumulation was highest with 3,5,3'-triiodothyronine, intermediate with other compounds having iodines in both rings, lowest with compounds iodinated in only one ring, and absent with iodothronine sulfates. These findings help to explain the relative rates of metabolism of the iodothyronines and their release from the cells.  相似文献   

20.
Abstract 2 Obligately anaerobic bacteria isolated from rat cecal flora have previously been shown to possess sulfatase activity towards 3,3'-diiodothyronine sulfate [5]. These strains have now been tested for their ability to hydrolyze the sulfate conjugates of other iodothyronines, including the thyroid hormones thyroxine and 3,3',5-triiodothyronine. In anaerobic incubations at 37°C with approximately 107 bacteria per ml, variable amounts of the conjugated substrates, ranging from 15–90%, were hydrolysed in 24 h. These results showed a potent iodothyronine sulfate hydrolysing capacity of rat intestinal microflora. The strains were characterized by carbohydrate fermentation tests. One strain belonged to the genus Lactobacillus , the other strain probably to Eubacterium or Lachnospira .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号