首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to study the effect of 5'-modification of 2'-deoxynucleoside on its anti-HCV activity, several analogues were synthesized and evaluated. Among the analogues, a 5'-deoxy-5'-phenacylated analogue exhibited a good anti-HCV activity with an EC(50) of 15.1 microM. This compound is expected to operate via a type of mechanism that does not involve a generally known 5'-O-triphosphorylation process.  相似文献   

2.
We recently discovered a novel compound, identified as N3, 5-cyclo-4-(beta-D-ribofuranosyl)-vic-triazolo[4,5-b]pyridinin-5-one, with anti-hepatitis C virus (HCV) activity in vitro. The structure was confirmed by chemical synthesis from 2-hydroxy-5-nitropyridine. It showed anti-HCV activity with EC50= 19.7 microM in replicon cells. Its 3'-deoxy sugar analogue was also synthesized, but was inactive against HCV in vitro.  相似文献   

3.
An efficient enzymatic synthesis of 6-chloropurine-2'-deoxyriboside from the reaction of 6-chloropurine with 2'-deoxycytidine catalyzed by nucleoside-2'-deoxyribosyltransferase (E.C. 2.4.2.6) followed by chemical conversion into the 5'-dimethoxytrityl 3'-(2-cyanoethyl-N,N-diisopropylamino) phosphoramidite derivative is described. The phosphoramidite derivative was incorporated site-specifically into an oligonucleotide and used for the introduction of a tethered tetramethylrhodamine-cadaverine conjugate. The availability of an efficient route to 6-chloropurine-2'-deoxyriboside 5'-dimethoxytrityl 3'-(2-cyanoethyl-N,N-diisopropylamino)phosphoramidite enables the facile synthesis of oligonucleotides containing a range of functional groups tethered to deoxyadenosine residues.  相似文献   

4.
HCV infection can lead to chronic infectious hepatitis disease with serious sequelae. Interferon-alpha, or its PEGylated form, plus ribavirin is the only treatment option to combat HCV. Alternative and more effective therapy is needed due to the severe side effects and unsatisfactory curing rate of the current therapy. In this study, we found that several polyunsaturated fatty acids (PUFAs) including arachidonic acid (AA), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA) are able to exert anti-HCV activities using an HCV subgenomic RNA replicon system. The EC(50) (50% effective concentration to inhibit HCV replication) of AA was 4microM that falls in the range of physiologically relevant concentration. At 100microM, alpha-linolenic acid, gamma-linolenic, and linoleic acid only reduced HCV RNA levels slightly and saturated fatty acids including oleic acid, myristic acid, palmitic acid, and steric acid had no inhibitory activities toward HCV replication. When AA was combined with IFN-alpha, strong synergistic anti-HCV effect was observed as revealed by an isobologram analysis. It will be important to determine whether PUFAs can provide synergistic antiviral effects when given as food supplements during IFN-based anti-HCV therapy. Further elucidation of the exact anti-HCV mechanism caused by AA, DHA, and EPA may lead to the development of agents with potent activity against HCV or related viruses.  相似文献   

5.
NS5A inhibitors are a new class of direct-acting antiviral agents which display very potent anti-HCV activity in vitro and in humans. Rationally designed modifications to the central biphenyl linkage of a known NS5A series led to selection of several compounds that were synthesized and evaluated in a HCV genotype 1b replicon. The straight triphenyl linked compound 11a showed similar anti-HCV activity to the clinical compound BMS-790052 and a superior cytotoxicity profile in three different cell lines, with an EC(50) value of 26 pM and a therapeutic index of over four million in an HCV replicon assay. This triphenyl analog warrants further preclinical evaluation as an anti-HCV agent.  相似文献   

6.
Hepatitis C virus (HCV) NS5B RNA polymerase is crucial for replicating the HCV RNA genome and is an attractive target for developing anti-HCV drugs. A novel series of 2,3-diaryl-1,3-thiazolidin-4-one derivatives were evaluated for their ability to inhibit HCV NS5B. Of this series, compounds 4c, 5b, 5c and 6 emerged as more potent, displaying over 95% inhibition of NS5B RNA polymerase activity in vitro. The two most active compounds 4c and 5c exhibited an IC(50) of 31.9 microM and 32.2 microM, respectively, against HCV NS5B.  相似文献   

7.
Hepatitis C virus (HCV) infection is a main cause of chronic liver disease, leading to liver cirrhosis and hepatocellular carcinoma (HCC). The objective of our research was to develop effective agents against viral replication. Here, we have synthesized a series of anilinoquinoline derivatives. Based on a cell-based HCV replicon system, we observed that 2-(3'-nitroanilino)quinoline (18) exhibited anti-HCV activity with a 50% effective concentration (EC(50)) value of 7μM and a selective index (SI) value of 10. In addition, compound 18 possessed the inhibitory effect on HCV NS3/4A protease activity. Therefore, we concluded that the compound 18 possessed a potent activity against HCV replication and could provide as a new lead compound as anti-HCV inhibitor.  相似文献   

8.
A series of 6-hydrazinopurine 2'-methyl ribonucleosides was synthesized and tested for its inhibitory activity against the hepatitis C virus (HCV). The lack of antiviral activity of these nucleosides was associated with a poor affinity for adenosine kinase, which prompted us to synthesize several of their 5'-monophosphate prodrugs. Some of these prodrugs exhibited more than 1000-fold improvement in anti-HCV activity when compared to their parent nucleosides (EC(50) of 24 nM vs 92 microM for the parent).  相似文献   

9.
We report that the antimalarial drug artemisinin inhibits hepatitis C virus (HCV) replicon replication in a dose-dependent manner in two replicon constructs at concentrations that have no effect on the proliferation of the exponentially growing host cells. The 50% effective concentration (EC(50)) for inhibition of HCV subgenomic replicon replication in Huh 5-2 cells (luciferase assay) by artemisinin was 78+/-21 microM. Hemin, an iron donor, was recently reported to inhibit HCV replicon replication [mediated by inhibition of the viral polymerase (C. Fillebeen, A.M. Rivas-Estilla, M. Bisaillon, P. Ponka, M. Muckenthaler, M.W. Hentze, A.E. Koromilas, K. Pantopoulos, Iron inactivates the RNA polymerase NS5B and suppresses subgenomic replication of hepatitis C virus, J. Biol. Chem. 280 (2005) 9049-9057.)] at a concentration that had no adverse effect on the host cells. When combined, artemisinin and hemin resulted, over a broad concentration range, in a pronounced synergistic antiviral activity. Also at a concentration (2 microM) that alone had no effect on HCV replication, hemin still potentiated the anti-HCV activity of artemisinin.  相似文献   

10.
The synthesis of carbocyclic and phosphonocarbocyclic analogues of ribavirin, an anti-HCV inhibitor, are described. Those compounds were evaluated against HCV but also against other important viruses in order to determine their spectrum of antiviral activity. Compounds 6 and 13 displayed a moderate IC(50) against HIV-1 of 43.8 and 37 microM, respectively.  相似文献   

11.
5-Substituted 1-pyrazolol analogues of ibotenic acid have been synthesized and pharmacologically characterized on ionotropic and metabotropic glutamate receptors (iGluRs and mGluRs). The syntheses involved introduction of bromide, alkyls, phenyl and arylalkyls in the 5-position of 1-benzyloxypyrazole leading to 5-substituted (RS)-2-amino-(1-hydroxy-4-pyrazolyl)acetic acids (5a-l). The pharmacological activities of the synthesized analogues ranged from the 5-cyclopropylmethyl analogue (5f) with weak but selective affinity for NMDA receptors (IC(50)=35 microM), over the 5-n-propyl analogue (5c), which was a selective mGluR2 agonist (EC(50)=72 microM), to the 5-cyclohexylmethyl analogue (5g), which was a selective mGluR2 antagonist (K(i)=32 microM), and the 5-phenylethyl analogue (5j), which was a weak but apparently selective mGluR1 antagonist (K(i)=230 microM). This series of compounds afforded GluR ligands with a broad spectrum of pharmacological profiles, and showing potential for development of new compounds with subtype-selective activities at various GluRs.  相似文献   

12.
Nucleoside deoxyribosyltransferase-II (NdRT-II) of Lactobacillus helveticus, which catalyzes the transfer of a glycosyl residue from a donor deoxyribonucleoside to an acceptor base, has a broad specificity for the acceptor bases. Six-substituted purines were found to be substrates as acceptor bases for NdRT-II. Using this property of the enzyme, we established a practical procedure for enzymatic synthesis of 2'-deoxyguanosine (dGuo), consisting of the transglycosylation from thymidine to 6-substituted purine (2-amino-6-chloropurine; ACP) instead of natural guanine and the conversion of 2-amino-6-chloropurine-2'-deoxyriboside (ACPdR) to dGuo with bacterial adenosine deaminase. Through the successive reactions, dGuo was synthesized in high yield.  相似文献   

13.
Interferon (IFN)-alpha monotherapy, as well as the more effective combination therapy of IFN-alpha and ribavirin, are currently used for patients with chronic hepatitis C caused by hepatitis C virus (HCV) infection, although the mechanisms of the antiviral effects of these reagents on HCV remain ambiguous, and side effects such as anemia due to the administration of ribavirin present a problem for patients who are advanced in years. Using a recently developed reporter assay system in which genome-length dicistronic HCV RNA encoding Renilla luciferase gene was found to replicate efficiently, we found that mizoribine, an imidazole nucleoside, inhibited HCV RNA replication. The anti-HCV activity of mizoribine (IC50: approximately 100 microM) was similar to that of ribavirin. Using this genome-length HCV RNA replication monitor system, we were the first to demonstrate that the combination of IFN-alpha and ribavirin exhibited more effective anti-HCV activity than the use of IFN-alpha alone. Moreover, we found that the anti-HCV activity of mizoribine in co-treatment with IFN-alpha was at least equivalent to that of ribavirin. This effect was apparent in the presence of at least 5 microM mizoribine. Since mizoribine is currently used in several clinical applications and has not been associated with severe side effects, mizoribine is considered to be of potential use as a new anti-HCV reagent in combination with IFN-alpha.  相似文献   

14.
Hepatitis C virus (HCV) infection is a severe liver disease that often leads to liver cirrhosis and hepatocellular carcinoma (HCC). Current therapy is inadequate to conquer this viral disease. In this study, we identified parthenolide (1), an active component in feverfew, a popular remedy for fever and migraine, as a lead compound with an EC50 value of 2.21 microM against HCV replication in a subgenomic RNA replicon assay system. Parthenolide is able to potentiate the interferon alpha-exerted anti-HCV effect. Several commercially available sesquiterpene lactones (2-5) structurally analogous to parthenolide and a series of synthesized Michael-type adducts of parthenolide (12-18) also exhibit micromolar concentrations for anti-HCV activities. Structure-activity relationship was elucidated to reveal that the spatial arrangement of the terpenoid skeleton fused with an alpha-methylene-gamma-lactone moiety produces maximal anti-HCV activity. In addition, a strong anti-HCV potency indicates a possibility of secondary amino adducts (12-18) converting back to parthenolide or being replaced by the nucleophilic residues of proteins inside cells. This work shows that screening of natural products is a viable and fast way for identifying novel molecular diversity as potential drug leads.  相似文献   

15.
Curcumin, a major yellow pigment and active component of turmeric, has been shown to possess anti-inflammatory and anti-cancer activities. Recent studies have indicated that curcumin inhibits chloroquine-sensitive (CQ-S) and chloroquine-resistant (CQ-R) Plasmodium falciparum growth in culture with an IC(50) of approximately 3.25 microM (MIC=13.2 microM) and IC(50) 4.21 microM (MIC=14.4 microM), respectively. In order to expand their potential as anti-malarials a series of novel curcumin derivatives were synthesized and evaluated for their ability to inhibit P. falciparum growth in culture. Several curcumin analogues examined show more effective inhibition of P. falciparum growth than curcumin. The most potent curcumin compounds 3, 6, and 11 were inhibitory for CQ-S P. falciparum at IC(50) of 0.48, 0.87, 0.92 microM and CQ-R P. falciparum at IC(50) of 0.45 microM, 0.89, 0.75 microM, respectively. Pyrazole analogue of curcumin (3) exhibited sevenfold higher anti-malarial potency against CQ-S and ninefold higher anti-malarial potency against CQ-R. Curcumin analogues described here represent a novel class of highly selective P. falciparum inhibitors and promising candidates for the design of novel anti-malarial agents.  相似文献   

16.
Substituted 5-benzyl-2-phenyl-5H-imidazo[4,5-c]pyridines represent a novel class of compounds with activity against pestiviruses and the hepatitis C virus (HCV). Several series of analogues with modifications of the substituents in positions 2 and 5 were prepared. These efforts resulted in the discovery of several compounds with potent antiviral activity of which 2-(2,3-difluorophenyl)-5-[4-(trifluoromethyl)benzyl]-5H-imidazo[4,5-c]pyridine (46) was most potent against HCV (EC(50) of 0.10 microM and a selectivity index of 1080).  相似文献   

17.
Tryprostatin A is an inhibitor of breast cancer resistance protein, consequently a series of structure-activity studies on the cell cycle inhibitory effects of tryprostatin A analogues as potential antitumor antimitotic agents have been carried out. These analogues were assayed for their growth inhibition properties and their ability to perturb the cell cycle in tsFT210 cells. SAR studies resulted in the identification of the essential structural features required for cytotoxic activity. The absolute configuration L-Tyr-L-pro in the diketopiperazine ring along with the presence of the 6-methoxy substituent on the indole moiety of 1 was shown to be essential for dual inhibition of topoisomerase II and tubulin polymerization. Biological evaluation also indicated the presence of the 2-isoprenyl moiety on the indole scaffold of 1 was essential for potent inhibition of cell proliferation. Substitution of the indole N(a)-H in 1 with various alkyl or aryl groups, incorporation of various L-amino acids into the diketopiperazine ring in place of L-proline, and substitution of the 6-methoxy group in 1 with other functionality provided active analogues. The nature of the substituents present on the indole N(a)-H or the indole C-2 position influenced the mechanism of action of these analogues. Analogues 68 (IC(50)=10 microM) and 67 (IC(50)=19 microM) were 7-fold and 3.5-fold more potent, respectively, than 1 (IC(50)=68 microM) in the inhibition of the growth of tsFT210 cells. Diastereomer-2 of tryprostatin B 8 was a potent inhibitor of the growth of three human carcinoma cell lines: H520 (IC(50)=11.9 microM), MCF-7 (IC(50)=17.0 microM) and PC-3 (IC(50)=11.1 microM) and was equipotent with etoposide, a clinically used anticancer agent. Isothiocyanate analogue 71 and 6-azido analogue 72 were as potent as 1 in the tsFT210 cell proliferation and may be useful tools in labeling BCRP.  相似文献   

18.
HCV NS5B RNA-dependent RNA polymerase (NS5B) is essential for viral replication and is therefore considered a target for antiviral drug development. From our ongoing screening effort in the search for new anti-HCV agents, a novel inhibitor 1 with low microM activity against the HCV NS5B polymerase was identified. SAR analysis indicated the optimal substitution pattern required for activity, for example, carboxylic acid group at 2-position of thiophene ring. We describe the steps taken to identify and solve the bioactive conformation of derivative 6 through the use of the transferred NOE method (trNOE).  相似文献   

19.
As a surrogate for 4'-hydroxy-5'-noraristeromycin and related carbocyclic nucleosides, an efficient, enantiodivergent synthetic route to both enantiomers of 5-(6-amino-9H-purin-9-yl)-3,3-difluorocyclopentane-1,2-diol (6 and ent-6) has been developed from a common starting material ((+)-(1R,4S)-4-hydroxy-2-cyclopenten-1-yl acetate, 10). Both compounds were assayed versus a series of viruses. The only response found was for compound 6 toward vaccinia and cowpox (EC50 of 143 and 94 microM, respectively) and human cytomegalovirus (EC50 of 6.2 microM). Both compounds were non-cytotoxic. While not as active as cidofovir toward the orthopox viruses and ganciclovir toward cytomegalovirus, compound 6 offers a new structural prototype upon which to build for uncovering new agents effective against these viral types.  相似文献   

20.
Sauve AA  Schramm VL 《Biochemistry》2002,41(26):8455-8463
The soluble domain of human CD38 catalyzes the conversion of NAD(+) to cyclic ADP-ribose and to ADP-ribose via a common covalent intermediate [Sauve, A. A., Deng, H. T., Angelletti, R. H., and Schramm, V. L. (2000) J. Am. Chem. Soc. 122, 7855-7859]. Here we establish that mechanism-based inhibitors can be produced by chemical stabilization of this intermediate. The compounds nicotinamide 2'-deoxyriboside (1), 5-methylnicotinamide 2'-deoxyriboside (2), and pyridyl 2'-deoxyriboside (3) were synthesized and evaluated as inhibitors for human CD38. The nicotinamide derivatives 1 and 2 were inhibitors of the enzyme as determined by competitive behavior in CD38-catalyzed conversion of nicotinamide guanine dinucleotide (NGD(+)) to cyclic GDP-ribose. The K(i) values for competitive inhibition were 1.2 and 4.0 microM for 1 and 2, respectively. Slow-onset characteristics of reaction progress curves indicated a second higher affinity state of these two inhibitors. Inhibitor off-rates were slow with rate constants k(off) of 1.5 x 10(-5) s(-1) for 1 and 2.5 x 10(-5) s(-1) for 2. Apparent dissociation constants K(i(total)) for 1 and 2 were calculated to be 4.5 and 12.5 nM, respectively. The similar values for k(off) are consistent with the hydrolysis of common enzymatic intermediates formed by the reaction of 1 and 2 with the enzyme. Both form covalently attached deoxyribose groups to the catalytic site nucleophile. Chemical evidence for this intermediate is the ability of nicotinamide to rescue enzyme activity after inactivation by either 1 or 2. A covalent intermediate is also indicated by the ability of CD38 to catalyze base exchange, as observed by conversion of 2 to 1 in the presence of nicotinamide. The deoxynucleosides 1 and 2 demonstrate that the chemical determinants for mechanism-based inhibition of CD38 can be satisfied by nucleosides that lack the 5'-phosphate, the adenylate group, and the 2'-hydroxyl moiety. In addition, these compounds reveal the mechanism of CD38 catalysis to proceed by the formation of a covalent intermediate during normal catalytic turnover with faster substrates. The covalent 2'-deoxynucleoside inactivators of CD38 are powerful inhibitors by acting as good substrates for formation of the covalent intermediate but are poor leaving groups from the intermediate complex because hydrolytic assistance of the 2'-hydroxyl group is lacking. The removal of the adenylate nucleophile required for the cyclization reaction provides slow hydrolysis as the only exit from the covalent complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号