首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
In some plant species, including Arabidopsis, fertilization induces the epidermal cells of the outer ovule integument to differentiate into a specialized seed coat cell type with a unique morphology and containing large quantities of polysaccharide mucilage (pectin). Such seed coat mucilage cells are necessary for neither viability nor germination under normal laboratory conditions. Thus, the Arabidopsis seed coat offers a unique system with which to use genetics to identify genes controlling cell morphogenesis and complex polysaccharide biosynthesis and secretion. As a first step in the application of this system, we have used microscopy to investigate the structure and differentiation of Arabidopsis seed coat mucilage cells, including cell morphogenesis and the synthesis, secretion, and extrusion of mucilage. During seed coat development in Arabidopsis, the epidermal cells of the outer ovule integument grow and differentiate into cells that produce large quantities of mucilage between the primary cell wall and plasma membrane. Concurrent with mucilage production, the cytoplasm is shaped into a column in the center of the cell. Following mucilage secretion the cytoplasmic column is surrounded by a secondary cell wall to form a structure known as the columella. Thus, differentiation of the seed coat mucilage cells involves a highly regulated series of events including growth, morphogenesis, mucilage biosynthesis and secretion, and secondary cell wall synthesis.  相似文献   

2.
During Arabidopsis seed development large quantities of mucilage, composed of pectins, are deposited into the apoplast underneath the outer wall of the seed coat. Upon imbibition of mature seeds, the stored mucilage expands through hydration and breaks the outer cell wall that encapsulates the whole seed. Mutant seeds carrying loss-of-function alleles of AtSBT1.7 that encodes one of 56 Arabidopsis thaliana subtilisin-like serine proteases (subtilases) do not release mucilage upon hydration. Microscopic analysis of the mutant seed coat revealed no visible structural differences compared with wild-type seeds. Weakening of the outer primary wall using cation chelators triggered mucilage release from the seed coats of mutants. However, in contrast to mature wild-type seeds, the mutant's outer cell walls did not rupture at the radial walls of the seed coat epidermal cells, but instead opened at the chalazal end of the seed, and were released in one piece. In atsbt1.7, the total rhamnose and galacturonic acid contents, representing the backbone of mucilage, remained unchanged compared with wild-type seeds. Thus, extrusion and solubility, but not the initial deposition of mucilage, are affected in atsbt1.7 mutants. AtSBT1.7 is localized in the developing seed coat, indicating a role in testa development or maturation. The altered mode of rupture of the outer seed coat wall and mucilage release indicate that AtSBT1.7 triggers the accumulation, and/or activation, of cell wall modifying enzymes necessary either for the loosening of the outer primary cell wall, or to facilitate swelling of the mucilage, as indicated by elevated pectin methylesterase activity in developing atsbt1.7 mutant seeds.  相似文献   

3.
Arabidopsis (Arabidopsis thaliana) epidermal seed coat cells follow a complex developmental program where, following fertilization, cells of the ovule outer integument differentiate into a unique cell type. Two hallmarks of these cells are the production of a doughnut-shaped apoplastic pocket filled with pectinaceous mucilage and the columella, a thick secondary cell wall. Cellulose is thought to be a key component of both these secondary cell wall processes. Here, we investigated the role of cellulose synthase (CESA) subunits CESA2, CESA5, and CESA9 in the seed coat epidermis. We characterized the roles of these CESA proteins in the seed coat by analyzing cell wall composition and morphology in cesa mutant lines. Mutations in any one of these three genes resulted in lower cellulose content, a loss of cell shape uniformity, and reduced radial wall integrity. In addition, we found that attachment of the mucilage halo to the parent seed following extrusion is maintained by cellulose-based connections requiring CESA5. Hence, we show that cellulose fulfills an adhesion role between the extracellular mucilage matrix and the parent cell in seed coat epidermal cells. We propose that mucilage remains attached to the seed coat through interactions between components in the seed mucilage and cellulose. Our data suggest that CESA2 and CESA9 serve in radial wall reinforcement, as does CESA5, but CESA5 also functions in mucilage biosynthesis. These data suggest unique roles for different CESA subunits in one cell type and illustrate a complex role for cellulose biosynthesis in plant developmental biology.  相似文献   

4.
Plant cells have a rigid cell wall that constrains internal turgor pressure yet extends in a regulated and organized manner to allow the cell to acquire shape. The primary load-bearing macromolecule of a plant cell wall is cellulose, which forms crystalline microfibrils that are organized with respect to a cell''s function and shape requirements. A primary cell wall is deposited during expansion whereas secondary cell wall is synthesized post expansion during differentiation. A complex form of asymmetrical cellular differentiation occurs in Arabidopsis seed coat epidermal cells, where we have recently shown that two secondary cell wall processes occur that utilize different cellulose synthase (CESA) proteins. One process is to produce pectinaceous mucilage that expands upon hydration and the other is a radial wall thickening that reinforced the epidermal cell structure. Our data illustrate polarized specialization of CESA5 in facilitating mucilage attachment to the parent seed and CESA2, CESA5 and CESA9 in radial cell wall thickening and formation of the columella. Herein, we present a model for the complexity of cellulose biosynthesis in this highly differentiated cell type with further evidence supporting each cellulosic secondary cell wall process.  相似文献   

5.
长豇豆的胚珠具内外两层珠被,内珠被在种子发育早期退化消失,种皮仅由外珠被发育而成。外珠被的外表皮细胞径向伸长,外壁和经向壁增厚,形成约占成熟种皮厚度一半的栅栏层;亚表皮细胞发育为骨状石细胞层。第三层细胞类似于亚表皮层但细胞壁增厚不明显,其内方的多层薄壁细胞形成海绵组织。种脐具两层栅栏细胞,外栅栏层及其以外部分由珠柄组织发育而成管胞群。本文还对脐缝和管胞群的作用以及豆科种子的吸水机制进行了讨论。  相似文献   

6.
Summary In the seed coat ofGasteria verrucosa the deposition of phytomelan takes place during seed development in three stages. Phytomelan is a black cell wall material which is chemically very inert. First the radial walls and part of the transverse cell wall of the outer epidermis of the outer integument become thickened by exocytosis of dictyosome vesicles. Callose is deposited at the tangential plasma membrane against those walls. After the callose deposition about two thirds of the original cell volume is filled with callose. During the second stage the callose is broken down, probably into glucose monomers or small polymers. At the same time cellulose is deposited at the outer tangential plasma membrane, forming a wall between the dissolving callose and the plasma membrane. In the third phase small granules appear in the solution of dissolved callose. which grow out and finally fuse to form a block of phytomelan, consisting of spherical 15-nm units. Remarkable is the function of the callose: it determines the size of the phytomelan block, and it probably functions as carbohydrate source for the phytomelan synthesis and/or for the cellulose inner layer. In this study transmission electron microscopy and cryo scanning electron microscopy are used to study the three developmental stages of the formation of the phytomelan layer.  相似文献   

7.
Arabidopsis seed coat development using light and transmission electron microscopy revealed major morphological changes associated with the transition of the integuments into the mature seed coat. By the use of a metachromatic staining procedure, cytological events such as the production of phenolic compounds and acidic polysaccharides were followed. Immediately after fertilization, the cells of the inner epidermis of the inner integument became vacuolated and subsequently accumulated pigment within them. This pigment started to disappear from the cytoplasm at the torpedo stage of the embryo, as it became green. During the torpedo stage, mucilage began to accumulate in the cells of the external epidermis of the outer integument. Furthermore, starch grains accumulated against the central part of the inner periclinal wall of these cells, resulting in the formation of small pyramidal domes that persisted until seed maturity. At the maturation stage, when the embryo became dormant and colourless, a new pigment accumulation was observed in an amorphous layer derived from remnants of crushed integument layers. This second pigment layer was responsible for the brown seed colour. These results show that seed coat formation may proceed in a coordinated way with the developmental phases of embryogenesis. Received 25 May 1999/ Accepted in revised form 10 February 2000  相似文献   

8.
The aim of this study was to describe the anatomy and ontogeny of Pterodon emarginatus seed using the usual techniques. The ovules are campilotropous, crassinucelate, and bitegmic. The following processes occur during integument development: anticlinal divisions and phenolic compound accumulations in the exotesta, whose cells become palisade; predominantly periclinal divisions and cell expansion in the mesotesta, where the rapheal bundle differentiates; differentiation of the hourglass-cell layer adjacent to the palisade; fusion of outer and inner integuments, which remain individualized structures only at the micropylar end; and intense pectin impregnation in the mesotesta thicker walls with lignification restricted to the xylem. At the hilar pole, the Faboideae seed characteristic structure develops, with double palisade layer, subhilar parenchyma, and tracheid bar. The younger nucellus shows thicker pectic cell walls and is consumed during seed formation. The endosperm is nuclear and, after cellularization, shows peripheral cells with dense lipid content; the seeds are albuminous. The axial embryo shows fleshy cotyledons, which accumulate lipid and protein reserves; starch is rare. Although the seed structure is characteristic of the Fabaceae, the inner integument coalesces into the outer integument without being reabsorbed.  相似文献   

9.
Carpospore differentiation in Faucheocolax attenuata Setch. can be separated into three developmental stages. Immediately after cleaving from the multinucleate gonimoblast cell, young carpospores are embedded within confluent mucilage produced by gonimoblast cells. These carpospores contain a large nucleus, few starch grains, concentric lamellae, as well as proplastids with a peripheral thylakoid and occasionally some internal (photosynthetic) thylakoids. Proplastids also contain concentric lamellar bodies. Mucilage with a reticulate fibrous substructure is formed within cytoplasmic concentric membranes, thus giving rise to mucilage sacs. Subsequently, these mucilage sacs release their contents, forming an initial reticulate deposition of carpospore wall material. Dictyosome vesicles with large, single dark-staining granules also contribute to wall formation and may create a separating layer between the mucilage and carpospore wall. During the latter stages of young carpospores, starch is polymerized in the perinuclear cytoplasmic area and is in close contact with endoplasmic reticulum. Intermediate-aged carpospores continue their starch polymerization. Dictyosomes deposit more wall material, in addition to forming fibrous vacuoles. Proplastids form thylakoids from concentric lamellar bodies. Mature carpospores are surrounded by a two-layered carpospore wall. Cytoplasmic constituents include large floridean starch granules, peripheral fibrous vacuoles, mature chloroplasts and curved dictyosomes that produce cored vesicles which in turn are transformed into adhesive vesicles. Pit connections remain intact between carpospores but begin to degenerate. This degeneration appears to be mediated by microtubules.  相似文献   

10.
Seed coat development in Arabidopsis thaliana involves a complex pathway where cells of the outer integument differentiate into a highly specialized cell type after fertilization. One aspect of this developmental process involves the secretion of a large amount of pectinaceous mucilage into the apoplast. When the mature seed coat is exposed to water, this mucilage expands to break the primary cell wall and encapsulate the seed. The mucilage-modified2 (mum2) mutant is characterized by a failure to extrude mucilage on hydration, although mucilage is produced as normal during development. The defect in mum2 appears to reside in the mucilage itself, as mucilage fails to expand even when the barrier of the primary cell wall is removed. We have cloned the MUM2 gene and expressed recombinant MUM2 protein, which has beta-galactosidase activity. Biochemical analysis of the mum2 mucilage reveals alterations in pectins that are consistent with a defect in beta-galactosidase activity, and we have demonstrated that MUM2 is localized to the cell wall. We propose that MUM2 is involved in modifying mucilage to allow it to expand upon hydration, establishing a link between the galactosyl side-chain structure of pectin and its physical properties.  相似文献   

11.
In Arabidopsis, fertilization induces the epidermal cells of the outer ovule integument to differentiate into a specialized seed coat cell type producing extracellular pectinaceous mucilage and a volcano-shaped secondary cell wall. Differentiation involves a regulated series of cytological events including growth, cytoplasmic rearrangement, mucilage synthesis, and secondary cell wall production. We have tested the potential of Arabidopsis seed coat epidermal cells as a model system for the genetic analysis of these processes. A screen for mutants defective in seed mucilage identified five novel genes (MUCILAGE-MODIFIED [MUM]1–5). The seed coat development of these mutants, and that of three previously identified ones (TRANSPARENT TESTA GLABRA1, GLABRA2, and APETALA2) were characterized. Our results show that the genes identified define several events in seed coat differentiation. Although APETALA2 is needed for differentiation of both outer layers of the seed coat, TRANSPARENT TESTA GLABRA1, GLABRA2, and MUM4 are required for complete mucilage synthesis and cytoplasmic rearrangement. MUM3 and MUM5 may be involved in the regulation of mucilage composition, whereas MUM1 and MUM2 appear to play novel roles in post-synthesis cell wall modifications necessary for mucilage extrusion.  相似文献   

12.
Seed coat development of Harpagophytum procumbens (Devil's Claw) and the possible role of the mature seed coat in seed dormancy were studied by light microscopy (LM), transmission electron microscopy (TEM) and environmental scanning electron microscopy (ESEM). Very young ovules of H. procumbens have a single thick integument consisting of densely packed thin-walled parenchyma cells that are uniform in shape and size. During later developmental stages the parenchyma cells differentiate into 4 different zones. Zone 1 is the multi-layered inner epidermis of the single integument that eventually develops into a tough impenetrable covering that tightly encloses the embryo. The inner epidermis is delineated on the inside by a few layers of collapsed remnant endosperm cell wall layers and on the outside by remnant cell wall layers of zone 2, also called the middle layer. Together with the inner epidermis these remnant cell wall layers from collapsed cells may contribute towards seed coat impermeability. Zone 2 underneath the inner epidermis consists of large thin-walled parenchyma cells. Zone 3 is the sub-epidermal layers underneath the outer epidermis referred to as a hypodermis and zone 4 is the single outer seed coat epidermal layer. Both zones 3 and 4 develop unusual secondary wall thickenings. The primary cell walls of the outer epidermis and hypodermis disintegrated during the final stages of seed maturation, leaving only a scaffold of these secondary cell wall thickenings. In the mature seed coat the outer fibrillar seed coat consists of the outer epidermis and hypodermis and separates easily to reveal the dense, smooth inner epidermis of the seed coat. Outer epidermal and hypodermal wall thickenings develop over primary pit fields and arise from the deposition of secondary cell wall material in the form of alternative electron dense and electron lucent layers. ESEM studies showed that the outer epidermal and hypodermal seed coat layers are exceptionally hygroscopic. At 100% relative humidity within the ESEM chamber, drops of water readily condense on the seed surface and react in various ways with the seed coat components, resulting in the swelling and expansion of the wall thickenings. The flexible fibrous outer seed coat epidermis and hypodermis may enhance soil seed contact and retention of water, while the inner seed coat epidermis maintains structural and perhaps chemical seed dormancy due to the possible presence of inhibitors.  相似文献   

13.
InMalaxis saprophyta, anther wall development corresponds to the Monocotyledonous type. The uninucleate tapetum is of secretory type and the endothecium develops U- and V-shaped thickenings on the inner tangential and radial walls. Cytokinesis is simultaneous; tetrahedral, isobilateral and T-shaped tetrads are formed which are compactly aggregated in pollinia. At anthesis the microspore tetrads are 2-celled. The ovule is anatropous, bitegmic and both integuments are dermal in origin. A single hypodermal cell develops directly into a megaspore mother cell. Embryo sac development is predominantly monosporic and less often bisporic. Irrespective of the type of development, the mature embryo sac is 6-nucleate. Although double fertilization occurs, the primary endosperm nucleus degenerates. Embryogeny is of the Onagrad type. The mature embryo lacks differentiation into cotyledon, plumule and radicle. The reticulate seed coat is formed entirely by the outer layer of outer integument. There are three sterile and three fertile valves in the ovary. Although initially parenchymatous, the entire three sterile valves in the ovary and the upper half of the three fertile valves become sclerified after fertilization. The embryological characters support the disputed systematic position ofMalaxis within subtribeMalaxidinae ofEpidendreae.  相似文献   

14.
Development of ovule and seed in Rapateaceae   总被引:1,自引:0,他引:1  
VENTURELLI, M. & BOUMAN, F., 1988. Development of ovule and seed in Rapateaceae. The structure of the ovules and/or seeds of twelve species of Rapateaceae were studied, some additional embryological characters also being recorded. The ovules are always anatropous, bitegmic and crassinucellate, but they differ in the shape, size and in thickness of the outer integument. In Rapateaceae the outer integument is initiated subdermally. The seed coat of the Rapateaceae shows two mechanical layers: an endotesta with silica present as bodies or as incrustations in cell walls, in conjunction with an exotegmen with a jigsaw cell pattern complicated by a labyrinth-like sculpturing of the outer cell walls. The innermost layer of the inner integument is tanniniferous. Large hilar scars with tracheidal plates on the corresponding fruit wall and a persistent obturator are recorded in Rapateaceae. On the basis of embryological characters the family fits well into the Commelinales. Testa structure most closely resembles that of the Commelinaceae. The differences in ovule and seed structure agree with the currently accepted tribal classification.  相似文献   

15.
TOMLINSON, P. B., TAKASO, T. & RATTENBURY, J. A., 1989. Cone and ovule ontogeny in Phyllocladus (Podocarpaceae). Cones are borne directly on phylloclades, usually in the position of basal segments or as segment appendages. Each cone consists of a series of spirally arranged bracts, of which the middle bracts each subtend a single, sessile ovule. There is no ovuliferous scale. Ovules arise as ovoid outgrowths; integument development involves periclinal divisions of hypodermal cells with the integument becoming bilobed and extended laterally. The mature ovule is flask-shaped. The integument includes an extensive middle region bounded by an inner and outer epidermis; the outer hypodermis is differentiated as two contrasted cell layers. An aril differentiates late by periclinal divisions of the outer hypodermal cells at the base of the ovule. The three outermost layers of the integument become differentiated in the mature seed as an epidermis, with thick, cutinized outer tangential walls, an outer hypodermal tanniniferous layer and a sclerotic inner layer. Each ovule is vascularized by two strands that diverge from the axial bundles delimiting the gap left by the departing bract trace.  相似文献   

16.
A study of the reproductive processes of Adesmia securigerifolia from bud to mature seed was carried out by means of field observations and the paraffin technique. Observations revealed the following new contributions to the study of legume embryology: 1) after fertilization, a small nucellar haustorium, or micropylar nucellar beak, was observed for the first time, originating from two obliterating nucellar cells that extended outwards. Their globose distal end comes in contact with the internal carpel wall, while the wedge shaped base stretches into the micropyle; a suspensor consisting of five or more cells - the two basal cells are large and falcate and fit into the micropylar pore - coexists with the undivided polar nuclei thus showing that endosperm formation begins after zygote division; 2) at the young embryo stage, a sac- shaped nuclear haustorium, formed by the endosperm, adjoins the outer integument and is not connected to the chalaza, or any vascular element; at the hilar level, a nucellar projection is formed in connection with the haustorial coenocytic endosperm. This projection persists up to the mature seed stage when it starts to degenerate, after performing another linking with the embryo nutrition system; 3) at the mature seed stage, the seed coat evolving from the outer integument has a single macrosclereid layer, though inclusions in the cell vacuoles simulate the presence of more layers and/or transverse walls. The lens, a hypodermal layer of osteosclereids (hour-glass cells), and the astrosclereids are also described.  相似文献   

17.
抱茎独行菜(Lepidium perfoliatum L.)为十字花科具典型粘液繁殖体植物,为探究该植物中种皮粘液质基因(MUCILAGE-MODIFIED4,MUM4,该基因在拟南芥中编码NDP-L-鼠李糖合成酶)的功能,通过生物信息学分析设计引物克隆得到抱茎独行菜MUM4基因,命名为LpMUM4。同源比对分析结果表明,LpMUM4与拟南芥AtMUM4基因具有很高的一致性。qRT-PCR结果表明,该基因在抱茎独行菜各组织中均有表达,在角果和根中的表达量最高,且其表达量随角果的发育表现出渐强的趋势。免疫组织化学定位分析表明,LpMUM4基因于角果发育的早期阶段在内珠被和外珠被都有表达,而在外珠被的表皮和亚表皮中表达量更高,至角果发育的最后阶段,其表达集中于表皮和亚表皮层,这可能与抱茎独行菜的外珠被发育成种皮及粘液质的生成有关。将LpMUM4基因转化拟南芥,该基因的过表达对位于粘液质合成途径中的上游基因AtTTG1具有显著的抑制作用。表型比对观察显示,转基因拟南芥与其野生型植株形态无显著差异,这可能是因为抱茎独行菜种皮的发育和粘液质的形成是一个多基因调控的复杂过程,某一基因的过表达或许不会引起明显的表型变化。  相似文献   

18.
19.
Summary The location of materials containing terminal fucose residues on the surface of axenic and field grown roots of corn has been determined.Binding patterns of FITC-labelled,Lotus purpureus Moench lectin indicate the presence of the fucose residues in the cell walls and mucilage of the peripheral region of the root cap. During development, fucose residues also appear in the outer periclinal walls and overlying mucilage of columnar epidermal cells. Surface material rich in these residues persists between the mature root hairs but is not found on their surface. Fucose-rich mucilage is present on the exposed surface of aerial roots and at the point where they enter the soil. No lectin binding residues are indicated elsewhere in the roots.  相似文献   

20.
In order to determine the involvement of glucose-6-phosphatasein mucilage secretion by root cap cells, we have cytochemicallylocalized the enzyme in columella and peripheral cells of rootcaps of Zea mays. Glucose-6-phosphatase is associated with theplasmalemma and cell wall of columella cells. As columella cellsdifferentiate into peripheral cells and begin to produce andsecrete mucilage, glucose-6-phosphatase staining intensifiesand becomes associated with the mucilage and, to a lesser extent,the cell wall. Cells being sloughed from the cap are characterizedby glucose-6-phosphatase staining being associated with thevacuole and plasmalemma. These changes in enzyme localizationduring cellular differentiation in root caps suggest that glucose-6-phosphataseis involved in the production and/or secretion of mucilage byperipheral cells of Z. mays. Zea mays, corn, glucose-6-phosphatase, columella cell, peripheral cell, mucilage, secretion, cytochemistry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号