首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A genomic DNA fragment encoding aminoacylase activity of the eubacterium Bacillus stearothermophilus was cloned into Escherichia coli. Transformants expressing aminoacylase activity were selected by their ability to complement E. coli mutants defective in acetylornithine deacetylase activity, the enzyme that converts N-acetylornithine to ornithine in the arginine biosynthetic pathway. The 2.3-kb cloned fragment has been entirely sequenced. Analysis of the sequence revealed two open reading frames, one of which encoded the aminoacylase. B. stearothermophilus aminoacylase, produced in E. coli, was purified to near homogeneity in three steps, one of which took advantage of the intrinsic thermostability of the enzyme. The enzyme exists as homotetramer of 43-kDa subunits as shown by cross-linking experiments. The deacetylating capacity of purified aminoacylase varies considerably depending on the nature of the amino acid residue in the substrate. The enzyme hydrolyzes N-acyl derivatives of aromatic amino acids most efficiently. Comparison of the predicted amino acid sequence of B. stearothermophilus aminoacylase with those of eubacterial acetylornithine deacylase, succinyldiaminopimelate desuccinylase, carboxypeptidase G2, and eukaryotic aminoacylase I suggests a common origin for these enzymes.  相似文献   

2.
Substitution of the essential Zn2+ ions of porcine kidney aminoacylase I (EC 3.5.1.14) by Mn2+ did not markedly affect the kinetic properties of the enzyme. Using Mn2+ as a paramagnetic probe, we were able to study the conformations of bound ligands by measuring the enhancement of ligand proton relaxation in 1H NMR. In addition, the effects of inhibitors on the paramagnetic enhancement of water proton relaxation rates were examined. The results of both approaches, in agreement with kinetic evidence, suggest that the metal center of aminoacylase I is too distant from the ligand binding site to allow direct participation of the metal in substrate binding or catalysis. We, therefore, propose that the metal ion of aminoacylase I plays a purely structural role.  相似文献   

3.
研究了阳离子去污剂-溴化+烷基三甲基铵变性时氨基酰酶的失活与构象变化.当用溴化+烷基三甲基铵滴定氨基酰化酶时,随着去污剂浓度增大,酶的活力逐渐丧失,至50mmolL时酶完全失活.用荧光发射光谱(295nm激发)的方法监测了氨基酰化酶的构象变化.发现氨基酰化酶失活先于构象变化.从这一结果看来.金属酶的活性部位构象可能也是比整个分子的构象具有较大的柔性或运动性.  相似文献   

4.
研究了阳离子去污剂-溴化+烷基三甲基铵变性时氨基酰酶的失活与构象变化.当用溴化+烷基三甲基铵滴定氨基酰化酶时,随着去污剂浓度增大,酶的活力逐渐丧失,至50mmolL时酶完全失活.用荧光发射光谱(295nm激发)的方法监测了氨基酰化酶的构象变化.发现氨基酰化酶失活先于构象变化.从这一结果看来.金属酶的活性部位构象可能也是比整个分子的构象具有较大的柔性或运动性.  相似文献   

5.
A range of cross-linked enzyme aggregates (CLEAs) was prepared from commercially available aminoacylase I. Results from three test reactions showed that aminoacylase does not possess aminolysis or alcoholysis activity, both previously ascribed to this enzyme. This result was confirmed using aminoacylase purified by chromatographic techniques, which leads us to conclude that the previously observed acylations of esters and amines is due to other enzymes present as impurities in the crude aminoacylase I.  相似文献   

6.
Glycogen phosphorylase from macroplasmodia of Physarum polycephalum was purified 76-fold to homogeneity. The native enzyme migrated as a single protein band on analytical disc gel electrophoresis coinciding with phosphorylase activity. After reduction in the presence of sodium dodecylsulfate one protein band was detectable which corresponded to an Mr of 93 000. The molecular weight of the native enzyme determined by gel sieving or gradient-polyacrylamide gel electrophoresis was 172000 and 186000, respectively. The enzyme contained about 1 mol pyridoxal 5'-phosphate and less than 0.1 mol covalently bound phosphate per mol subunit. The amino acid composition of the enzyme was determined. In the direction of phosphorolysis the kinetic data were determined by initial velocity studies, assuming a rapid equilibrium random mechanism. Glucose 1-phosphate and GDP-glucose were competitive inhibitors toward phosphate and noncompetitive to glycogen. 5'-AMP, a weak activator of the enzyme, counteracted the glucose-1-phosphate inhibition completely. Physarum phosphorylase was compared with phosphorylases from other sources on the basis of chemical and kinetic properties. No evidence for the presence of phosphorylated forms has yet been found.  相似文献   

7.
Aminoacylase 1 is a zinc-binding enzyme which hydrolyzes N-acetyl amino acids into the free amino acid and acetic acid. Deficiency of aminoacylase 1 due to mutations in the aminoacylase 1 (ACY1) gene follows an autosomal-recessive trait of inheritance and is characterized by accumulation of N-acetyl amino acids in the urine. In affected individuals neurological findings such as febrile seizures, delay of psychomotor development and moderate mental retardation have been reported. Except for one missense mutation which has been studied in Escherichia coli, mutations underlying aminoacylase 1 deficiency have not been characterized so far. This has prompted us to approach expression studies of all mutations known to occur in aminoacylase 1 deficient individuals in a human cell line (HEK293), thus providing the authentic human machinery for posttranslational modifications. Mutations were inserted using site directed mutagenesis and aminoacylase 1 enzyme activity was assessed in cells overexpressing aminoacylase 1, using mainly the natural high affinity substrate N-acetyl methionine. Overexpression of the wild type enzyme in HEK293 cells resulted in an approximately 50-fold increase of the aminoacylase 1 activity of homogenized cells. Most mutations resulted in a nearly complete loss of enzyme function. Notably, the two newly discovered mutations p.Arg378Trp, p.Arg378Gln and the mutation p.Arg393His yielded considerable residual activity of the enzyme, which is tentatively explained by their intramolecular localization and molecular characteristics. In contrast to aminoacylase 1 variants which showed no detectable aminoacylase 1 activity, aminoacylase 1 proteins with the mutations p.Arg378Trp, p.Arg378Gln and p.Arg393His were also detected in Western blot analysis. Investigations of the molecular bases of additional cases of aminoacylase 1 deficiency contribute to a better understanding of this inborn error of metabolism whose clinical significance and long-term consequences remain to be elucidated.  相似文献   

8.
The gene encoding putative aminoacylase (ORF: PH0722) in the genome sequence of a hyperthermophilic archaeon, Pyrococcus horikoshii, was cloned and overexpressed in Escherichia coli. The recombinant enzyme was determined to be thermostable aminoacylase (PhoACY), forming a homotetramer. Purified PhoACY showed the ability to release amino acid molecules from the substrates N-acetyl-L-Met, N-acetyl-L-Gln and N-acetyl-L-Leu, but had a lower hydrolytic activity towards N-acetyl-L-Phe. The kinetic parameters K(m) and k(cat) were determined to be 24.6 mm and 370 s(-1), respectively, for N-acetyl-l-Met at 90 degrees C. Purified PhoACY contained one zinc atom per subunit. EDTA treatment resulted in the loss of PhoACY activity. Enzyme activity was fully recovered by the addition of divalent metal ions (Zn(2+), Mn(2+) and Ni(2+)), and Mn(2+) addition caused an alteration in substrate specificity. Site-directed mutagenesis analysis and structural modeling of PhoACY, based on Arabidopsis thaliana indole-3-acetic acid amino acid hydrolase as a template, revealed that, amongst the amino acid residues conserved in PhoACY, His106, Glu139, Glu140 and His164 were related to the metal-binding sites critical for the expression of enzyme activity. Other residues, His198 and Arg260, were also found to be involved in the catalytic reaction, suggesting that PhoACY obeys a similar reaction mechanism to that proposed for mammalian aminoacylases.  相似文献   

9.
Aminoacylase was identified in cell extracts of the hyperthermophilic archaeon Pyrococcus furiosus by its ability to hydrolyze N-acetyl-L-methionine and was purified by multistep chromatography. The enzyme is a homotetramer (42.06 kDa per subunit) and, as purified, contains 1.0 +/- 0.48 g-atoms of zinc per subunit. Treatment of the purified enzyme with EDTA resulted in complete loss of activity. This was restored to 86% of the original value (200 U/mg) by treatment with ZnCl(2) (and to 74% by the addition of CoCl(2)). After reconstitution with ZnCl(2), the enzyme contained 2.85 +/- 0.48 g-atoms of zinc per subunit. Aminoacylase showed broad substrate specificity and hydrolyzed nonpolar N-acylated L amino acids (Met, Ala, Val, and Leu), as well as N-formyl-L-methionine. The high K(m) values for these compounds indicate that the enzyme plays a role in the metabolism of protein growth substrates rather than in the degradation of cellular proteins. Maximal aminoacylase activity with N-acetyl-L-methionine as the substrate occurred at pH 6.5 and a temperature of 100 degrees C. The N-terminal amino acid sequence of the purified aminoacylase was used to identify, in the P. furiosus genome database, a gene that encodes 383 amino acids. The gene was cloned and expressed in Escherichia coli by using two approaches. One involved the T7 lac promoter system, in which the recombinant protein was expressed as inclusion bodies. The second approach used the Trx fusion system, and this produced soluble but inactive recombinant protein. Renaturation and reconstitution experiments with Zn(2+) ions failed to produce catalytically active protein. A survey of databases showed that, in general, organisms that contain a homolog of the P. furiosus aminoacylase (> or = 50% sequence identity) utilize peptide growth substrates, whereas those that do not contain the enzyme are not known to be proteolytic, suggesting a role for the enzyme in primary catabolism.  相似文献   

10.
1. Preparations of purified pig kidney aminoacylase (N-Acylamino-acid amidohydrolase, EC 3.5.1.14) were obtained by Sephadex and DEAE-cellulose chromatography in homogeneous form as judged by polyacrylamide gel electrophoresis and immunoelectrophoresis. 2. The apparent molecular weight of the enzyme, determined by gel filtration, was about 86 000. After treatment with mercaptoethanol, performic acid or sodium dodecyl sulphate a band with an apparent molecular weight of approximately 43 000 was observed in polyacrylamide gels containing sodium dodecyl sulphate. Thus pig kidney aminoacylase seems to be composed of two subunits. 3. The amino acid composition of the enzyme was determined. Aminoacylase contains 772 amino acids, which corresponds to a molecular weight of 85 500. 12 tryptophan and 12 half-cystine residues were found. 4. Each subunit of the enzyme contains two -SH groups of different reactivity and two disulfide bonds one of which is easily cleaved by -SH compounds, the second only by performic acid oxidation. 5. Chemical modification of two -SH groups abolishes the catalytic activity of aminoacylase. Cleavage of two disulfide bonds also inactivates the enzyme. It is suggested that the enzyme has two active sites each containing an essential -SH group and disulfide bond. One active site is assumed to be part of each subunit.  相似文献   

11.
Hepatic arylsulfatase B (ASB) from normal and mucopolysaccharidosis VI (MPS VI) cats was purified over 2,800- and 1,800-fold, respectively, and their physical and kinetic properties were characterized. In contrast to the normal feline enzyme, the partially purified MPS VI residual activity had a 100-fold greater Km value and was markedly less stable to thermal, cryo-, and pH-inactivation. In addition, the MPS VI enzyme had a more negative charge as determined by its migration on polyacrylamide gel electrophoresis and its elution profile on cation exchange chromatography. Finally, the MPS VI activity had approximately half the apparent molecular weight of the normal feline enzyme, which was a homodimer, suggesting that the genetic mutation in feline MPS VI altered the subunit association as well as the kinetic and stability properties of the mutant protein.  相似文献   

12.
The addition of glucose to yeast cells activates proton efflux mediated by the plasma membrane ATPase. Accordingly, the ATPase activity of purified plasma membranes is increased up to 10-fold. The activated ATPase has a more alkaline pH optimum, better affinity for ATP and greater sensitivity to vanadate than the non-activated enzyme. All these changes are reversed by washing the cells free of glucose. This suggests two states of the ATPase which are interconverted by a covalent modification. As glucose does not affect the phosphorylation of plasma membrane polypeptides, other type of covalent modification may be involved.  相似文献   

13.
W E Karsten  L Chooback  D Liu  C C Hwang  C Lynch  P F Cook 《Biochemistry》1999,38(32):10527-10532
The NAD-malic enzyme cDNA has been subcloned into the pQE expression vector, expressed with a six-His tag, and purified. The His-tagged enzyme is purified by a combination of Ni-NTA and orange A agarose column chromatography with a yield of 45% and an estimated purity of >90%. The tag and linker have no effect on the kinetic parameters of the enzyme compared to the wild-type enzyme. Alanine-scanning site-directed mutagenesis has been carried out on all of the conserved neutral acid residues of the NAD-malic enzyme from Ascaris suum. Data obtained confirm the predicted role of D178 and D295 in metal ion binding, the likely role of D294, D361, and E440 in the NAD binding site, and the role of E58 and D272 in malate binding. Decreases in V/E(t) by 10(4)-fold and in V/K(malate)E(t) by 10(7)-fold, when D295 is changed to alanine, suggest that it is a likely candidate for the general base that accepts a proton from the malate hydroxyl in the oxidation step.  相似文献   

14.
M D Sam  J J Perona 《Biochemistry》1999,38(20):6576-6586
The rate constant for the phosphoryl transfer step in site-specific DNA cleavage by EcoRV endonuclease has been determined as a function of pH and identity of the required divalent metal ion cofactor, for both wild-type and T93A mutant enzymes. These measurements show bell-shaped pH-rate curves for each enzyme in the presence of Mg2+ as a cofactor, indicating general base catalysis for the nucleophilic attack of hydroxide ion on the scissile phosphate, and general acid catalysis for protonation of the leaving 3'-O anion. The kinetic data support a model for phosphoryl transfer based on wild-type and T93A cocrystal structures, in which the ionizations of two distinct metal-ligated waters respectively generate the attacking hydroxide ion and the proton for donation to the leaving group. The model concurs with recent observations of two metal ions bound in the active sites of the type II restriction endonucleases BamHI and BglI, suggesting the possibility of a similar catalytic mechanism functioning in many or all members of this enzyme family.  相似文献   

15.
Glycinamide ribonucleotide transformylase (GAR TFase; EC 2.1.2.2) has been purified 70-fold to apparent homogeneity from Escherichia coli harboring an expression vector encoding the purN gene product, GAR TFase. The protein is a monomer of Mr 23,241 and catalyzes a single reaction. Steady-state kinetic parameters for the enzyme have been obtained. The structural requirements for cofactor utilization have been investigated and found to parallel those of the multifunctional avian enzyme. The enzyme was inactivated with the affinity label N10-(bromoacetyl)-5,8-dideazafolate in a stoichiometric and active-site-specific manner. The ionization state of the cofactor analogue in the enzyme-cofactor complex appears to require the dissociation of the proton at N3 of the pyrimidine within the complex.  相似文献   

16.
Valyl-tRNA synthetase from Mycobacterium smegmatis has been purified over 1200-fold by conventional techniques as well as affinity chromatography on valyl-aminohexyl Sepharose columns. The purified preparation is homogeneous by electrophoretic and immunologic criteria. The enzyme is a tetramer of approximate molecular weight of 120,000, composed of a single type of subunit. The synthetase exhibited maximal activity between 35--40 degrees C and pH 6.8--7.0. The pure enzyme though stable for several months below 0 degrees C, loses activity completely at 70 degrees C, for 1 min. The enzyme showed normal Michaelis-Menten kinetic behaviour in the total aminoacylation reaction with Km values of 1.25 microM, 0.1 mM and 1.0 microM for valine, ATP and tRNA, respectively, but the kinetic response deviated from the above pattern in the partial (activation) reaction. Based on these findings, the existence of the enzyme in two molecular forms, modulated by substrate concentration has been suggested; of these, only one may be active in the total reaction, while both forms may function in the phophosphate exchange reaction.  相似文献   

17.
Ferrochelatase with an Mr of 42,700 Da and a pI of 7.35 has been purified to homogeneity from chironomidae larvae. The activity of the enzyme reached maximum at pH 7.8 and decreased with the increase of pH. The enzyme activity varied with temperature and showed maximum activity around 37°C. The purified enzyme was active towards protoporphyrin but inactive towards other porphyrins. The specific enzyme activity of ferrochelatase from chironomidae is about 10-fold higher than that of the rat. Electrophoresis of the purified fractions shows that the enzyme contains only one single polypeptide. The soluble ferrochelatase contained one mole of iron in each mole of the enzyme. The N-terminal sequence analysis of the enzyme shows a high percentage of conserved regions of the enzyme among other species. The enzyme properties are similar to those of the mammalian ferrochelatases except with slightly higher specific activity. Chironomidae ferrochelatase appeared to be more heat resistant and less susceptible than its mammalian equivalent to inhibition by lead.  相似文献   

18.
The fluorescent dihydroxyquinoline chromophore of the pyoverdine siderophore in Pseudomonas is a condensation product of D-tyrosine and l-2,4-diaminobutyrate. Both pvdH and asd (encoding aspartate beta-semialdehyde dehydrogenase) knockout mutants of Pseudomonas aeruginosa PAO1 were unable to synthesize pyoverdine under iron-limiting conditions in the absence of l-2,4-diaminobutyrate in the culture media. The pvdH gene was subcloned, and the gene product was hyperexpressed and purified from P. aeruginosa PAO1. PvdH was found to catalyze an aminotransferase reaction, interconverting aspartate beta-semialdehyde and l-2,4-diaminobutyrate. Steady-state kinetic analysis with a novel coupled assay established that the enzyme adopts a ping-pong kinetic mechanism and has the highest specificity for alpha-ketoglutarate. The specificity of the enzyme toward the smaller keto acid pyruvate is 41-fold lower. The enzyme has negligible activity toward other keto acids tested. Homologues of PvdH were present in the genomes of other Pseudomonas spp. These homologues were found in the DNA loci of the corresponding genomes that contain other pyoverdine synthesis genes. This suggests that there is a general mechanism of l-2,4-diaminobutyrate synthesis in Pseudomonas strains that produce the pyoverdine siderophore.  相似文献   

19.
The kinetic theory of the substrate reaction during irreversible change of enzyme activity previously described by Tsou (Tsou (1988),Adv. Enzymol. Relat. Areas Mol. Biol.61, 381–436] has been applied to a study of the kinetics of the course of reactivation during reconstitution of apo-aminoacylase using Mn2+ or Zn2+. The kinetic parameters for Mn2+-and Zn2+-reconstituted enzymes and the microscopic rate constants for reactivation during reconstitution were determined. The kinetic analysis suggests the presence of a second Mn2+ binding site in Mn2+-reconstituted aminoacylase.  相似文献   

20.
The kinetic theory of the substrate reaction during irreversible change of enzyme activity previously described by Tsou (Tsou (1988),Adv. Enzymol. Relat. Areas Mol. Biol.61, 381–436] has been applied to a study of the kinetics of the course of reactivation during reconstitution of apo-aminoacylase using Mn2+ or Zn2+. The kinetic parameters for Mn2+-and Zn2+-reconstituted enzymes and the microscopic rate constants for reactivation during reconstitution were determined. The kinetic analysis suggests the presence of a second Mn2+ binding site in Mn2+-reconstituted aminoacylase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号