首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The nephrotoxic cysteine S-conjugate S-(2-chloro-1,1,2-trifluoroethyl)-L-cysteine (CTFC) is metabolized by kidney homogenates and subcellular fractions to pyruvate and a reactive thiol, which is cytotoxic and partially decomposes to yield hydrogen sulfide and thiosulfate. Although hydrogen sulfide is a potent mitochondrial poison, the mitochondrial toxicity of CTFC is not attributable to hydrogen sulfide formation, as shown by different sites of inhibition of mitochondrial respiration by CTFC and hydrogen sulfide. The efficient mitochondrial oxidation of hydrogen sulfide apparently serves to protect mitochondria against the toxic effects of hydrogen sulfide generated from CTFC.  相似文献   

3.
Polyunsaturated fatty acids such as arachidonic acid were previously shown to be toxic to HepG2 cells expressing CYP2E1 by a mechanism involving oxidative stress and lipid peroxidation. This study investigated the effects of the spin trapping agents Tempol and POBN on the arachidonic acid toxicity. Arachidonic acid caused toxicity and induced lipid peroxidation and mitochondrial membrane damage in cells overexpressing CYP2E1 but had little or no effect in control cells not expressing CYP2E1. The toxicity appeared to be both apoptotic and necrotic in nature. 4-Hydroxy-[2,2,6,6-tetramethylpiperidine-1-oxyl] (Tempol) and alpha-(4-pyridyl-1-oxide)-N-tert-butyl nitrone (POBN) protected against the decrease in cell viability and the apoptosis and necrosis. These spin traps prevented the enhanced lipid peroxidation and the loss of mitochondrial membrane potential. Tempol and POBN had little or no effect on cellular viability or on CYP2E1 activity at concentrations which were protective. It is proposed that elevated production of reactive oxygen intermediates by cells expressing CYP2E1 can cause lipid peroxidation, which subsequently damages the mitochondrial membrane leading to a loss in cell viability when the cells are enriched with arachidonic acid. Tempol and POBN, which scavenge various radical intermediates, prevent in this way the enhanced lipid peroxidation, mitochondrial dysfunction, and the cell toxicity. Since oxidative stress appears to play a key role in ethanol hepatotoxicity, it may be of interest to evaluate whether such spin trapping agents are useful candidates for the prevention or improvement of ethanol-induced liver injury.  相似文献   

4.
The new imidazole-coordinated chemotherapeutics with low epithelial toxicity (NICE) presented in this article feature innovative drugs that combine epithelial toxicity comparable with that of carboplatin with novel carrier ligands optimized for DNA interaction. Recent identification of the pivotal role of basolateral organic cation transporters (OCTs) in cisplatin nephrotoxicity by a new model system (electrical resistance breakdown assay) facilitated the search for substances with a favorable organotoxic profile. The assay uses the high transepithelial electrical resistance (TEER) of the C7-clone of Madin-Darby canine kidney (MDCK) cells and the exclusive basolateral expression of OCT2 in these cells. TEER and caspase-3 activity of MDCK-C7-cells grown on microfilter membranes were monitored in response to exposure of either the apical or basolateral plasma membrane to platinum complexes. The impact of complexes on cancer cell lines was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bomide tests. Effects of substituents on pharmacological properties of NICE were systematically investigated by introducing sterically demanding groups as well as electron-donating and electron-withdrawing groups. Derivatives of NICE showed different renal epithelial toxic profiles and effects on cancer cells. NICE were significantly less toxic than cis-or oxaliplatin. The chlorine substituted NICE had no effect on epithelial integrity but markedly cytotoxic activity against amelanotic melanoma cells. Together, side effect targeted screening for new anticancer drugs with the electrical resistance breakdown assay offers an interesting approach for identifying and investigating new compounds. NICE feature the first group of platinum-based cytostatics discovered by using this system for systematic screening of new chemotherapeutics with low renal epithelial toxicity.  相似文献   

5.
Superoxide dismutases (SOD) mimetics have been shown to be protective against cell injury caused by reactive oxygen species. The objective of this study was to investigate the effects of the manganese (III) tetrakis(N-methyl-2-pyridyl)porphyrin (MnTMPyP) on CYP2E1-dependent toxicity. The synergistic toxicity of iron and arachidonic acid has been associated with oxidative stress and lipid peroxidation in HepG2 cells that overexpress CYP2E1. Iron plus arachidonic acid caused loss of viability, increased lipid peroxidation and reactive oxygen species generation, and mitochondrial membrane injury in these cells. MnTMPyP partially protected against the decrease in cell viability, the enhanced lipid peroxidation and oxygen radical production, and the loss of mitochondrial membrane potential. The effect of MnTMPyP on arachidonic acid (absence of iron) toxicity was also evaluated. Arachidonic acid also caused toxicity, lipid peroxidation and reduction of the mitochondrial membrane potential. However, in this model, all of these alterations were actually enhanced by MnTMPyP. MnTMPyP also enhanced toxicity in CYP2E1-expressing HepG2 cells depleted of reduced glutathione (GSH). MnCl(2) had little or no effect on the toxicity by arachidonic acid, and MnTMPyP itself did not peroxidize arachidonic acid. MnTMPyP, an SOD mimetic that also scavenges hydrogen peroxide and peroxynitrite, thus showed an antioxidant and protective effect against iron plus arachidonic acid toxicity, but a pro-oxidant and cytotoxic effect against arachidonic acid toxicity in CYP2E1-expressing cells. These different actions may relate to the ability of MnTMPyP to either scavenge or produce free radicals in cells depending upon the prevailing MnTMPyP oxidation-reduction pathways. MnTMPyP and related manganese porphyrin compounds may have potential clinical utility against diseases associated with the overproduction of reactive oxygen species such as ethanol-induced liver injury but it is clear that further investigation of all the pathways of manganese porphyrin oxidation-reduction are necessary.  相似文献   

6.
Ethanol treatment causes an increase in expression of TGF-beta1 and CYP2E1 in the centrilobular area. Alcoholic liver disease is usually initiated in the centrilobular region of the liver. We hypothesized that the combination of TGF-beta1 and CYP2E1 produces increased oxidative stress and liver cell toxicity. To test this possibility, we studied the effects of TGF-beta1 on the viability of HepG2 E47 cells that express human CYP2E1, and C34 HepG2 cells, which do not express CYP2E1. E47 cells underwent greater growth inhibition and enhanced apoptosis after TGF-beta1 treatment, as compared to the C34 cells. There was an enhanced production of reactive oxygen species (ROS) and a decline in reduced glutathione (GSH) levels in the TGF-beta1-treated E47 cells and the enhanced cell death could be prevented by antioxidants. The CYP2E1 inhibitor diallyl sulfide prevented the potentiated cell death in E47 cells validating the role of CYP2E1. Mitochondrial membrane potential declined in the TGF-beta1-treated E47 cells, prior to developing toxicity, and cell death could be prevented by trifluoperazine, an inhibitor of the mitochondrial membrane permeability transition. TGF-beta1 also produced a loss of cell viability in hepatocytes from pyrazole-treated rats with elevated levels of CYP2E1, compared to control hepatocytes. In conclusion, increased toxic interactions by TGF-beta1 plus CYP2E1 can occur by a mechanism involving increased production of intracellular ROS and depletion of GSH, resulting in mitochondrial membrane damage and loss of membrane potential, followed by apoptosis. Potentiation of TGF-beta1-induced cell death by CYP2E1 may contribute to mechanisms of alcohol-induced liver disease.  相似文献   

7.
The study is devoted to the registration of local H+ gradients on the inner membrane of mitochondria under conditions of H+ pump functioning were recorded. By using a covalently linked pH probe (fluorescein isothiocyanate), a local increase in the activity of hydrogen ions on the outer face of the inner mitochondrial membrane in the presence of the respiration substrate at increased permeability of the membrane for K+ was registered. It was also found that the buffer capacity of medium affects the respiration rate of completely uncoupled mitochondria; a change in respiration rate strictly correlates with changes in local H+ gradients on the mitochondrial membrane. It was concluded that local gradients of H+ activity can control the rate of functioning of H+ pumps. It was shown that, under certain conditions, the system of H+ pumps incorporated into succinate oxidase of mitochondria functions as a nonliner system.  相似文献   

8.
目的 研究银杏叶提取物(EGb761)对H2O2所致星形胶质细胞氧化损伤的保护作用。方法 用不同浓度的EGb761预处理细胞,再加入H2O2,通过噻唑蓝(MTT)实验、线粒体跨膜电位(△ψm)及细胞色素C释放实验、DNA损伤实验及半胱氨酰天冬氨酸特异性蛋白酶-3(Caspase-3)活性测定,观察EGb761对细胞存活率、线粒体膜通透性、DNA氧化损伤及Caspase-3活性的影响。结果 EGb761能明显降低Hz02对星形胶质细胞的氧化损伤,提高细胞的存活率;维持线粒体膜的完整性,抑制跨膜电位的耗散和细胞色素C的释放;抑制Caspase-3的活化和DNA的降解。结论 EGb761具有清除活性氧,减轻H2O2所致星形胶质细胞的氧化损伤,对星形胶质细胞有保护作用。  相似文献   

9.
The chromatographic chiral resolution of two new series of racemic 4‐substituted‐1,4‐dihydropyridine derivatives was studied on a commercial Chiralpak AD‐H column. Analytes without 5,5‐dimethyl substituents ( 1–15 ) are more efficiently resolved than analytes with 5,5‐dimethyl groups ( 16–30 ). The AD‐H column discriminated between enantiomers through both hydrogen bonding attractions and π–π interactions. This interpretation is in accord with plots of the logarithm of separation factors, log(α), versus σ (Hammett–Swain substituent parameter) and σ+ (Brown substituent constant) plots. By elucidating the effects of the remote substituents on these chiral separations, it was shown that the influence of π–π interaction forces increase when steric bulk effects act to decrease the hydrogen bonding attractive forces on the AD‐H column. Chirality 24:854–859, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
Cell-penetrating peptides (CPPs) provide a promising approach for enhancing intracellular delivery of therapeutic biomacromolecules by increasing transport through membrane barriers. Here, proteolytically stable cell-penetrating peptidomimetics with α-peptide/β-peptoid backbone were studied to evaluate the effect of α-chirality in the β-peptoid residues and the presence of guanidinium groups in the α-amino acid residues on membrane interaction. The molecular properties of the peptidomimetics in solution (surface and intramolecular hydrogen bonding, aqueous diffusion rate and molecular size) were studied along with their adsorption to lipid bilayers, cellular uptake, and toxicity. The surface hydrogen bonding ability of the peptidomimetics reflected their adsorbed amounts onto lipid bilayers as well as with their cellular uptake, indicating the importance of hydrogen bonding for their membrane interaction and cellular uptake. Ellipsometry studies further demonstrated that the presence of chiral centers in the β-peptoid residues promotes a higher adsorption to anionic lipid bilayers, whereas circular dichroism results showed that α-chirality influences their overall mean residue ellipticity. The presence of guanidinium groups and α-chiral β-peptoid residues was also found to have a significant positive effect on uptake in living cells. Together, the findings provide an improved understanding on the behavior of cell-penetrating peptidomimetics in the presence of lipid bilayers and live cells.  相似文献   

11.
17beta-Estradiol (E(2)) reduces oxidative stress-induced depolarization of mitochondrial membrane potential (MMP) in cultured human lens epithelial cells (HLE-B3). The mechanism by which the nongenomic effects of E(2) contributed to the protection against mitochondrial membrane depolarization was investigated. Mitochondrial membrane integrity is regulated by phosphorylation of BAD, and it is known that phosphorylation of Ser(112) inactivates BAD and prevents its participation in the mitochondrial death pathway. We found that E(2) rapidly increased both the phosphorylation of ERK2 and Ser(112) in BAD. Ser(112) is phosphorylated by p90 ribosomal S6 kinase (RSK), a Ser/Thr kinase, which is a downstream effector of ERK1/2. Inhibition of RSK by the RSK-specific inhibitor SL0101 did not reduce the level of E(2)-induced phosphorylation of Ser(112). Silencing BAD using small interfering RNA did not alter mitochondrial membrane depolarization elicited by peroxide insult. However, under the same conditions, silencing ERK2 dramatically increased membrane depolarization compared with the control small interfering RNA. Therefore, ERK2, functioning through a BAD-independent mechanism regulates MMP in humans lens epithelial cells. We propose that estrogen-induced activation of ERK2 acts to protect cells from acute oxidative stress. Moreover, despite the fact that ERK2 plays a regulatory role in mitochondrial membrane potential, estrogen was found to block mitochondrial membrane depolarization via an ERK-independent mechanism.  相似文献   

12.
Aluminum nanoparticles (AlNPs) are among the most abundantly produced nanosized particles in the market. There is limited information about the potential harmful effects of aluminum oxide due to its particle size on human health. Considering the toxic effects of Al on brain as its target tissue, in this study, the toxicity of nanoparticles, microparticles, and ionic forms of Al on rat brain and isolated mitochondria was evaluated. Sixty male Wistar rats were divided into ten groups (six rats each), in which group I was the control, and the other groups were administered different doses of Al nanoparticles, Al microparticles (AlMP), and Al ionic forms (2, 4, and 8 mg/kg, i.p.) for 28 days. After 24 h, the animals were killed, brain tissue was separated, the mitochondrial fraction was isolated, and oxidative stress markers were measured. Also, mitochondrial function was assayed by MTT test. The results showed that all forms of Al particles induced ROS formation, lipid peroxidation, protein oxidation, glutathione depletion, mitochondrial dysfunction, and gait abnormalities in a dose-dependent manner. In addition, Al particles decreased mitochondrial membrane potential. These data indicated that oxidative stress might contribute to the toxicity effects of Al. Comparison of oxidative stress markers between all forms of Al revealed that the toxic effect of AlNP on brain tissue was substantially more than that caused by AlMP and bulk form. This study showed more neurotoxicity of AlNPs compared to other forms on brain oxidative damage that probably is due to more penetration into the brain.  相似文献   

13.
beta-(25-35) is a synthetic derivative of beta-amyloid, the peptide that is believed to cause Alzheimer's disease. As it is highly toxic and forms fibrillar aggregates typical of beta-amyloid, it is suitable as a model for testing inhibitors of aggregation and toxicity. We demonstrate that N-methylated derivatives of beta-(25-35), which in isolation are soluble and non-toxic, can prevent the aggregation and inhibit the resulting toxicity of the wild type peptide. N-Methylation can block hydrogen bonding on the outer edge of the assembling amyloid. The peptides are assayed by Congo red and thioflavin T binding, electron microscopy, and a 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) toxicity assay on PC12 cells. One peptide (Gly(25) N-methylated) has properties similar to the wild type, whereas five have varying effects on prefolded fibrils and fibril assembly. In particular, beta-(25-35) with Gly(33) N-methylated is able to completely prevent fibril assembly and to reduce the toxicity of prefolded amyloid. With Leu(34) N-methylated, the fibril morphology is altered and the toxicity reduced. We suggest that the use of N-methylated derivatives of amyloidogenic peptides and proteins could provide a general solution to the problem of amyloid deposition and toxicity.  相似文献   

14.
The current understanding of the effects of alcohol intoxication on the basic mitochondrial functions has been presented. Both, the direct toxic effect of ethanol on biological membranes and various cellular systems and the toxicity of acetaldehyde and reactive oxygen species (the products of ethanol oxidation) are discussed, with emphasis on the effect of ethanol on the basic functions of mitochondria and Ca(2+)-dependent mitochondrial permeability transition. Based on the available experimental data, it is demonstrated that acute alcohol intoxication causes a global mitochondrial dysfunction in the liver, resulting in considerable disturbance of the whole cellular metabolism. Alcohol poisoning of the liver leads to a decreased ability of cells to withstand oxidative stress, to support the synthesis of vital metabolic intermediates (e.g., methyl groups), as well as to produce urea from ammonia, due to a decreased permeability of the outer membrane and impaired exchange of substrates between the cytoplasm and the mitochondrial matrix. This review emphasizes the role of the voltage-dependent anion channels of the outer mitochondrial membrane in ethanol-mediated disturbances of basic mitochondrial functions and its consequences for the entire cell metabolism in the liver.  相似文献   

15.
Methacryloxylethyl cetyl ammonium chloride (DMAE-CB) is a polymerizable antibacterial monomer and has been proved as an effective strategy to achieve bioactive bonding with reliable bacterial inhibitory effects. However, the toxicity of DMAE-CB may hamper its wide application in clinical situations. Thus, this study was designed to investigate the toxicity of DMAE-CB and explore the possible protective effects of N-acetyl cysteine (NAC). High performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS) analysis showed that chemical binding of NAC and DMAE-CB occurred in a time dependent manner. Pre-incubation of fourty-eight hours is required for adequate reaction between DMAE-CB and NAC. DMAE-CB reduced human dental pulp cells (hDPCs) viability in a dose-dependent manner. The toxic effects of DMAE-CB were accompanied by increased reactive oxygen species (ROS) level and reduced glutathione (GSH) content. NAC alleviated DMAE-CB-induced oxidative stress. Annexin V/ Propidium Iodide (PI) staining and Hoechst 33342 staining indicated that DMAE-CB induced apoptosis. Collapsed mitochondrial membrane potential (MMP) and activation of caspase-3 were also observed after DMAE-CB treatment. NAC rescued hDPCs from DMAE-CB-induced apoptosis, accompanied by lower level of MMP loss and caspase-3 activity. This study assists to elucidate the mechanism underlying the cytotoxic effects of DMAE-CB and provides theoretical supports for the searching of effective strategies to reduce toxicity of quaternary ammonium dental monomers.  相似文献   

16.
The action of a series of tetraphenylborate ion (TPB) derivatives on yeast cells was studied by electro-rotation of the pre-treated cells. TPB derivatives in which all four phenyl groups were substituted with fluorine, chlorine or trifluoromethyl were much more toxic than the unsubstituted compound, the effect increasing dramatically with increasing size of substituents. These observations suggest that the toxicity of these hydrophobic ions is determined mainly by their size and possibly also by the chemical inductivity of their substituent groups. The order of the toxicities of these ions was in fair agreement with literature values for their translocation rates across artificial bilayers. Incubation times of 3 h were used as standard, longer incubations (up to 48 h) showed that the number of cells affected by low doses of TPB increased with the logarithm of time after the first hour of incubation. Although measurements of the percentage of cells showing co-field rotation showed that controls were not adversely affected by incubations as long as 9 h, rotation spectra showed that some cells suffer loss of internal conductivity during extended incubations. Decrease of the pH of the incubation medium, or inclusion of high concentrations of NaCl or KCl, potentiated the effects of these hydrophobic ions. The toxicity developed slowly, and the sensitivity of the assay was only very weakly dependent on the cell suspension density.  相似文献   

17.
The role played by oxidative stress in amiodarone-induced mitochondrial toxicity is debated. Dronedarone shows pharmacological properties similar to those of amiodarone but several differences in terms of toxicity. In this study, we analyzed the effects of the two drugs on liver mitochondrial function by administering an equivalent human dose to a rat model. Amiodarone increased mitochondrial H(2)O(2) synthesis, which in turn induced cardiolipin peroxidation. Moreover, amiodarone inhibited Complex I activity and uncoupled oxidative phosphorylation, leading to a reduction in the hepatic ATP content. We also observed a modification of membrane phospholipid composition after amiodarone administration. N-acetylcysteine completely prevented such effects. Although dronedarone shares with amiodarone the capacity to induce uncoupling of oxidative phosphorylation, it did not show any of the oxidative effects and did not impair mitochondrial bioenergetics. Our data provide important insights into the mechanism of mitochondrial toxicity induced by amiodarone. These results may greatly influence the clinical application and toxicity management of these two antiarrhythmic drugs.  相似文献   

18.
The current understanding of the effects of alcohol intoxication on the basic mitochondrial functions has been presented. Both, the direct toxic effect of ethanol on biological membranes and various cellular systems and the toxicity of acetaldehyde and reactive oxygen species (the products of ethanol oxidation) are discussed, with emphasis on the effect of ethanol on the basic functions of mitochondria and Ca2+-dependent mitochondrial permeability transition. Based on the available experimental data, it is demonstrated that acute alcohol intoxication causes a global mitochondrial dysfunction in the liver, resulting in considerable disturbance of the whole cellular metabolism. Alcohol poisoning of the liver leads to a decreased ability of cells to withstand oxidative stress, to support the synthesis of vital metabolic intermediates (e.g., methyl groups), as well as to produce urea from ammonia, due to a decreased permeability of the outer membrane and impaired exchange of substrates between the cytoplasm and the mitochondrial matrix. This review emphasizes the role of porin channels of the outer mitochondrial membrane in ethanol-mediated disturbances of basic mitochondrial functions and its consequences for the entire cell metabolism in the liver.  相似文献   

19.
Inhalation of Aspergillus fumigatus conidia can cause severe aspergillosis in immunosuppressed people. A. fumigatus produces a large number of secondary metabolites, some of which are airborne by conidia and whose toxicity to the respiratory tract has not been investigated. We found that spores of A. fumigatus contain five main compounds, tryptoquivaline F, fumiquinazoline C, questin, monomethylsulochrin and trypacidin. Fractionation of culture extracts using RP-HPLC and LC-MS showed that samples containing questin, monomethylsulochrin and trypacidin were toxic to the human A549 lung cell line. These compounds were purified and their structure verified using NMR in order to compare their toxicity against A549 cells. Trypacidin was the most toxic, decreasing cell viability and triggering cell lysis, both effects occurring at an IC50 close to 7 µM. Trypacidin toxicity was also observed in the same concentration range on human bronchial epithelial cells. In the first hour of exposure, trypacidin initiates the intracellular formation of nitric oxide (NO) and hydrogen peroxide (H2O2). This oxidative stress triggers necrotic cell death in the following 24 h. The apoptosis pathway, moreover, was not involved in the cell death process as trypacidin did not induce apoptotic bodies or a decrease in mitochondrial membrane potential. This is the first time that the toxicity of trypacidin to lung cells has been reported.  相似文献   

20.
Our results provide evidence that 6-hydroxydopamine induced, after auto-oxidation, toxic levels of hydrogen peroxide (H2O2) that caused bovine chromaffin cell toxicity and death. 6-Hydroxydopamine (6-OHDA) treatment markedly reduced, in a dose-response fashion, chromaffin cell viability. Cell death was accompanied by cell shrinkage, nuclear condensation and DNA degradation. Under our experimental conditions, 6-OHDA auto-oxidation formed quinones and reactive oxygen species (ROS) that mainly contributed to 6-OHDA-induced cytotoxicity in bovine chromaffin cells. Accordingly, different antioxidants, including catalase, vitamin E, Mn(IIItetrakis(4-benzoic acid)porphyrin chloride (MnTBAP) or ascorbic acid, provided protection against 6-OHDA-induced toxicity. Further evidence that 6-OHDA induces oxidative stress is provided by the fact that this compound decreased total mitochondrial reduced NAD(P)H levels. Our results also suggest that mitochondrial swelling and caspase activation do not play a direct role in 6-OHDA-induced death in bovine chromaffin cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号