首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Three protein inhibitors of serine proteinases were isolated from the crude venom of the long-nosed viper Vipera ammodytes ammodytes by ion-exchange and gel chromatography. Two of them strongly inhibit trypsin (Ki = 3.4 X 10(-10) and 5.6 X 10(-10) M), while the third one primarily inhibits chymotrypsin (Ki = 4.3 X 10(-9) M). Their Mr values are close to 7000, and pI is 9.8 in both trypsin inhibitors and 10.0 in the chymotrypsin inhibitor. The N-terminal group in the former inhibitors is blocked; arginine is the N-terminal amino acid in the latter. Besides trypsin and alpha-chymotrypsin, the trypsin inhibitors also inhibit plasmin, human plasma kallikrein and porcine pancreatic kallikrein. The chymotrypsin inhibitor inhibits trypsin and human plasma kallikrein only weakly and does not inhibit plasmin and porcine pancreatic kallikrein. According to their properties, all three inhibitors belong to the Kunitz-pancreatic trypsin inhibitor family of inhibitors.  相似文献   

2.
Kunitz-type inhibitors in human serum. Identification and characterization   总被引:1,自引:0,他引:1  
Human serum contains small amounts (approximately 0.1 mg/liter) of two protein protease inhibitors of low molecular weight (approximately 6500) and basic isoelectric point (Kunitz-type). They were purified by affinity chromatography on immobilized trypsin and ion-exchange chromatography in the fast protein liquid chromatography system. Their chemical, immunochemical, and functional properties indicate that the purified inhibitors are highly homologous with the basic pancreatic trypsin inhibitor which is widely distributed in bovids and caprids. Their inhibitory activity toward serine proteases such as plasmin and kallikrein suggests a possible regulatory role in blood clotting and fibrinolysis.  相似文献   

3.
The porcine uterus secretes a group of basic, low molecular weight protease inhibitors under the influence of progesterone, but not estrogen. One of these inhibitors (Mr approximately 14,500) which inhibits trypsin, plasmin, and chymotrypsin, but not other proteases tested, has been purified 10- to 15-fold from uterine secretions of pseudopregnant pigs using Sephadex G-100 chromatography, CM-cellulose ion exchange chromatography, and Sephadex G-50 or Bio-Gel P-10 chromatography. The inhibitor which is relatively heat- and pH-stable forms a 1:1 molar complex with trypsin which is not dissociated in sodium dodecyl sulfate except by boiling. Chymotrypsin appears to bind at the same site on the inhibitor as trypsin. The inhibitor is high in half-cysteine residues and basic amino acids, and appears not to be a glycoprotein. Antiserum has been raised against the purified inhibitor in rabbits and used to test its distribution in pigs using the immunoperoxidase-staining technique on tissue sections. The inhibitor is associated only with the glandular and surface epithelium of the uterus. Endometrial explants from pseudopregnant animals, cultured in presence of L-[3H]leucine, release the inhibitor in radioactive form indicating that it is a uterine product. The antiserum against the inhibitor cross-reacts with at least three other, basic, low molecular weights plasmin/trypsin inhibitors in porcine uterine secretions, suggesting that a family of isoinhibitors exists which may constitute up to 15% of the protein in porcine uterine secretions. The inhibitor(s) appears to coat and to be taken up by the trophoectoderm cells of the elongating blastocyst during pregnancy. It is suggested that the inhibitors may serve to protect the uterus from proteases released by the porcine trophoblast or to prevent degradation of essential macromolecules, such as uteroferrin, which have to be taken up by the conceptus.  相似文献   

4.
Two acid stable proteinase inhibitors are present in bull seminal plasma and washed ejaculated bull spermatozoa. Inhibitor I with a molecular weight of about 8700 (estimated by gel filtration) is a very strong inhibitor of bull sperm acrosin but also inhibits bovine trypsin and chymotrypsin and porcine plasmin; inhibition of porcine pancreatic and urinary kallikrein was not observed. In this respect inhibitor I resembles the well known cow colostrum trypsin inhibitor. Inhibitor II with a molecular weight near 6800 (estimated by gel filtration) inhibits bovine trypsin and chymotrypsin, porcine plasmin and pancreatic and urinary kallikrein as well as bull acrosin. The inhibition specificity of inhibitor II is thus very similar to that of the basic inhibitor from bovine organs (Kunitz-type). In view of the inhibition strength and other characteristics, however, the acid stable bull seminal inhibitors are not identical with the inhibitor from cow colostrum or bovine lung (organs).  相似文献   

5.
A new trypsin inhibitor (CPTI) has been isolated from Crotalaria paulina seeds. Purification of the inhibitor was carried out by gel filtration, ion-exchange chromatography, and subsequent reversed-phase HPLC. The presence of a single polypeptide chain, with a molecular mass of 20 kDa and isoelectric point 4.0, was detected. The trypsin inhibitor had a Ki value of 4.5 x 10(-8) M and was capable of acting on human, bovine, and porcine trypsin and weakly on bovine chymotrypsin. Amino acid analysis showed that CPTI has a high content of aspartate, glutamate, leucine, serine, and glycine, having 177 amino acid residues in its composition. These data suggest that the protein belongs to the Kunitz-type trypsin inhibitors.  相似文献   

6.
Two trypsin inhibitors (TI-1, TI-2) were isolated from guinea pig plasma and purified to homogeneity. In amino-acid composition as well as molecular masses, TI-1 (Mr 58,000) and TI-2 (Mr 57,000) are similar to each other and to human and mouse alpha 1-proteinase inhibitors, and mouse con-trapsin. The two inhibitors form equimolar complexes with proteinases. The effectiveness of the inhibitors was characterized by association rate constants under second-order rate conditions. The inhibitory action of TI-1 was rapid for bovine trypsin, porcine pancreatic elastase and guinea pig plasma kallikrein, but slow for bovine thrombin and guinea pig plasmin and not detectable for bovine chymotrypsin and porcine pancreatic kallikrein. The inhibitory action of TI-2 was rapid for trypsin and chymotrypsin, but slow for guinea pig plasma kallikrein and not detectable for other proteinases. These results show that TI-1 and TI-2 are physicochemically similar but functionally distinct from each other and from human alpha 1-proteinase inhibitor that inhibits trypsin, chymotrypsin and elastase.  相似文献   

7.
Using hemoglobin modified by pyridoxal 5'-phosphate as substrate, a trypsin inhibitor from bovine brain was purified by extraction at pH 4.5, ion-exchange chromatography on DEAE-Sephadex A-50, gel filtration on Sephadex G-100 and isoelectric focusing. On a column of Sephadex G-100 the inhibitor exhibited a molecular mass of 78 kDa. The iso-electric point of the inhibitor was 4.3-4.4. The dissociation constant (Ki) for the complex of bovine trypsin and brain inhibitor was estimated to be 3.7 X 10(-10)M as tested with a protein substrate, and 2.4 X 10(-10)M when tested with a synthetic substrate. During purification two other brain trypsin inhibitors were detected.  相似文献   

8.
The trypsin inhibitor fraction from cowpea (Vigna unguiculata) has been purified and characterized. Although the total trypsin inhibitor as purified by affinity chromatography on immobilised trypsin was shown to be heterogeneous by gel electrophoresis and isoelectric focusing as well as by function, it was relatively homogeneous in MW (ca 17 000) on gel filtration. The total trypsin inhibitor was divided into inhibitors active against trypsin only and active against trypsin and chymotrypsin by affinity chromatography on immobilised chymotrypsin. The ‘trypsin-only’ inhibitor was the major component of the total trypsin inhibitor. It was shown by isoelectric focusing and gel electrophoresis to contain several isoinhibitors. Determination of the combining weight of this inhibitor and investigation of the complexes formed with trypsin by gel filtration indicated the presence of two protease binding sites per inhibitor molecule. The chymotrypsin/trypsin inhibitor was also shown to be composed of several isoinhibitors. On the basis of gel electrophoresis and gel filtration in dissociating and non-dissociating media both inhibitors were considered to be dimeric molecules with the subunits linked by disulphide bonds; this implies that the ‘trypsin-only’ inhibitor has one binding site per subunit.  相似文献   

9.
An inhibitor of neutral proteinases was purified from porcine PMN leukocytes by gel filtration on Sephadex G-75 superfine and ion-exchange chromatography on Mono S. Thus an inhibitor preparation with a specific inhibitory activity against chymotrypsin of 10 IU/mg was obtained. In dodecyl sulfate gel electrophoresis a single protein band with an apparent molecular mass of 40 kDa was found under reducing conditions. Under non-reducing conditions the inhibitor forms higher molecular mass aggregates. On isoelectric focusing several protein bands with isoelectric points between pH 7.0 and 7.5 could be separated. The amino-acid composition of the inhibitory protein was determined. The inhibition mechanism was studied and association rate constants (kon) were measured and calculated for the reaction with chymotrypsin as well as leukocyte and pancreatic elastase. In Western blot analysis and in enzyme immunoassay studies crossreactivity between antibodies directed against porcine leukocyte neutral proteinase inhibitor and the corresponding inhibitor of bovine PMN leukocytes could be demonstrated.  相似文献   

10.
Enzymatic formation of acid-stable trypsin-plasmin inhibitors (ASTPIs) in human plasma with several proteinases, particularly SH-proteinases, was demonstrated. The maximal activity obtained with bromelain was 40 U/ml plasma, which corresponded to about a 10-fold increase as compared to the untreated control plasma (4.2 U/ml). Gel filtration revealed at least two ASTPI activity peaks of molecular weight 16,000 (main peak) and 8000 (minor peak). The main ASTPI was further purified by trypsin-Sepharose affinity chromatography, isoelectric focusing and gel filtration on Sephadex G-75 superfine. The purified inhibitor was found to be identical to the active fragment of plasma ASTPI or urinary trypsin inhibitor (UTI) formed by bromelain treatment. It had an isoelectric point (pI) of 3.7, a molecular weight of 16,000 by SDS-polyacrylamide gel electrophoresis and was a glycine- and glutamic acid-rich protein lacking histidine. The NH2-terminal amino acid sequence was H2N-(Lys)-Glu-Asp-Ser-X-Gln-Leu-Gly-Tyr-Ser-Ala-Gly-Pro-X-Met-Gly-Met-Th r-X-Arg - Tyr-Phe-Tyr-... COOH, which was homologous to the Lys22-Met36 part (or Glu23-Met36 part; 30% of the total) of the plasma ASTPI or UTI molecule (molecular weight 70,000-80,000 by gel filtration). The purified ASTPI displayed the same antigenicity as UTI and exerted strong inhibitory effects on trypsin, chymotrypsin and plasmin amidolysis, but had a much lesser effect on plasmin fibrinolysis. It also strongly inhibited non-plasmic fibrinolysis with human leukocyte proteinase and earthworm proteinase.  相似文献   

11.
A potent inhibitor of human leukocyte elastase (EC 3.4.21.37) and porcine pancreatic elastase (EC 3.4.21.36) was purified to homogeneity from human horny layers. It inhibits human leukocyte elastase and porcine pancreatic elastase in a 1:1 molar ratio and shows equilibrium dissociation constants of 6 x 10(-10) M and 1 x 10(-9) M, respectively. Inhibition of plasmin, trypsin, alpha-chymotrypsin, and cathepsin G was not observed. This inhibitor proved to be an acid stable basic peptide with an isoelectric point of 9.7. The complete amino acid sequence appears to be unique with 38% homology to the C-terminal half of antileukoprotease. The sequence shows that the inhibitor is composed of 57 amino acids and predicts a Mr of 7017. The high affinity as well as the apparent specificity for elastases suggests a functional role in preventing elastase-mediated tissue proteolysis. It is suggested that the term "elafin" be used to designate this inhibitor.  相似文献   

12.
Four protein protease inhibitors (I, II, III, IV) having low molecular weights (10 600-6500) and basic isoelectric points were isolated by affinity chromatography from bovine spleen. Inhibitor IV was identified as the basic pancreatic trypsin inhibitor (Kunitz inhibitor); the presence and distribution of components I, II and III vary in the different bovine organs. Spleen inhibitors I, II, III and IV were purified by ion-exchange chromatography; they form 1:1 complexes with trypsin and inhibit enzymatic activity of trypsin, chymotrypsin and kallikrein. Inhibitors I, II and III contain carbohydrate moieties (7-4%) covalently bound to the polypeptide chain. Specific basic pancreatic trypsin inhibitor antiserum has shown the complete identity between inhibitor IV and the basic pancreatic trypsin inhibitor, while partial cross-reactivity between the basic pancreatic trypsin inhibitor and inhibitors I, II and III can be seen from a double immunodiffusion test.  相似文献   

13.
Three proteinase inhibitors designated as I, II, and III were isolated from the excretory gland cells of the swine kidney worm, Stephanurus dentatus. The inhibitors, which were trichloroacetic acid-soluble, were purified by affinity chromatography and ion exchange chromatography. The homogeneity of each inhibitor was shown by polyacrylamide gel electrophoresis and electrofocusing. The molecular weights of the inhibitors estimated by sodium dodecyl sulfate gel electrophoresis fell within a limited range of 9300 to 9700, and the isoelectric points were 6.45, 6.20, and 5.34 for Inhibitors I, II, and III, respectively. The inhibitors formed complexes with trypsin having apparent dissociation constants (Ki) of 2.9 X 10(-11), 7.6 X 10(-11), and 6.4 X 10(-11) M, respectively. Each inhibitor inhibits the esterolytic and proteolytic activities of both trypsin and chymotrypsin. A proteinase inhibitor present in the reproductive organs, intestines, body walls, and esophagi was identical with Inhibitor II found in the excretory gland cells. Culture medium collected after 24-h incubation with adult worms contained the same three inhibitors as the excretory gland cells. These data suggest that the gland cells may secrete the inhibitors internally and externally.  相似文献   

14.
A purified preparation of trypsin inhibitor was obtained from the hemolymph of a solitary ascidian, Halocynthia roretzi, by a procedure including trypsin-Sepharose chromatography, DEAE-cellulose chromatography, and Sephadex G-50 gel filtration. The product was a mixture of two isoinhibitors, inhibitors I and II. They were separated from each other by high-performance liquid chromatography on an anion exchanger column, and showed almost identical amino acid compositions. They were also indistinguishable in terms of apparent specific inhibitory activity against bovine trypsin when the activity was assayed with the inhibitors at rather high concentrations (greater than 50 nM). A large difference was observed between them, however, in the inhibition constants, which correspond to the dissociation constants of the inhibitor-trypsin complexes; the inhibition constant of inhibitor I was 90 pM, whereas that of inhibitor II was 4.7 nM. The molecular weights of inhibitors I and II were estimated to be 6,000 and 4,500, respectively, by SDS-polyacrylamide gel electrophoresis, while an almost identical value, 9,000, was obtained for both of them by gel filtration. The molecular weight calculated from the amino acid compositions was 5,929 for both. The isoelectric points were also identical, that is about 5.0. Both of the inhibitors were heat-stable. Ascidian inhibitor I also inhibited other trypsin-like enzymes of mammalian origin, as well as those of ascidian origin.  相似文献   

15.
It was found that cyanogen bromide (BrCN) treatment of the highly purified human urinary trypsin inhibitors (H-UTI; specific activity 1,897 U/mg protein, and L-UTI; specific activity 1,850 U/mg protein) readily produced new plasmin inhibitors with almost no loss of UTI activity. Five multiple forms of chemically cleaved inhibitors (UTIB-I, UTIB-II, UTIB-III, UTIB-IV and UTIB-V) could be isolated from BrCN-treated L-UTI by isoelectric focusing and gel filtration. These inhibitors were very acid-stable and their isoelectric points (pI) were 4.5, 4.6, 4.9, 5.1 and 6.4, respectively. The molecular weights by SDS-polyacrylamide gel electrophoresis were almost the same at about 23,000 +/- 3,000. Although these inhibitors showed both anti-plasmin and anti-trypsin activities, much higher anti-plasmin/anti-trypsin activities were observed in the cleaved inhibitors than in the parent UTI. They competitively inhibited human plasmin with Ki values of 3.0-4.1 X 10(-8) mol/l (H-D-Val-Leu-Lys-pNA substrate).  相似文献   

16.
The reactive-site sequence of a proteinase inhibitor can be written as . . . -P3-P2-P1-P'1-P'2-P'3- . . . , where-P1-P'1-denotes the reactive site. Three semisynthetic homologues have been synthesized of the bovine trypsin-kallikrein inhibitor (Kunitz) with either arginine, phenylalanine or tryptophan in place of the reactive-site residue P1, lysine-15. These homologues correspond to gene products after mutation of the lysine 15 DNA codon to an arginine, phenylalanine or tryptophan DNA codon. Starting from native (virgin) inhibitor, reactive-site hydrolyzed, still active (modified) inhibitor was prepared by chemical and enzymic reactions. Modified inhibitor was then converted into inactive des-Lys15-inhibitor by reaction with carboxypeptidase B. Inactive des-Lys15-inhibitor was reactivated by enzymic replacement of the P1 residue according to Leary and Laskowski, Jr. The introduction of arginine was catalyzed by an inverse reaction with carboxypeptidase B, while phenylalanine or tryptophan were replaced by carboxypeptidase A. The reactivated semisynthetic inhibitors were trapped by complex formation with either trypsin or chymotrypsin. The enzyme - inhibitor complexes were subjected to kinetic-control dissociation, and the semisynthetic virgin inhibitors were isolated. The inhibitory properties of the semisynthetic inhibitors have been investigated against bovine trypsin and chymotrypsin and against porcine pancreatic kallikrein and plasmin. The homologues with either lysine or arginine in the P1 position are equally good inhibitors of trypsin, plasmin and kallikrein. The Arg-15-homologue is a slightly more effective kallikrein inhibitor than the Lys15-inhibitor. The semisynthetic phenylalanine and tryptophan homologues, however, are weak inhibitors of trypsin and still weaker inhibitors of kallikrein, but are excellent inhibitors of chymotrypsin. Their association constant with chymotrypsin is at least ten times higher than that of native Lys-15-inhibitor. A dramatic specificity change is observed with the phenylalanine and tryptophan homologues, which in contrast to the native inhibitor do not at all inhibit porcine plasmin. Thus, the nature of the P1 residue strongly influences the primary inhibitory specificity of the bovine inhibitor (Kunitz).  相似文献   

17.
Recently we have described a novel secreted protein (the WFIKKN protein) that consists of multiple types of protease inhibitory modules, including two tandem Kunitz-type protease inhibitor-domains. On the basis of its homologies we have suggested that the WFIKKN protein is a multivalent protease inhibitor that may control the action of different proteases. In the present work we have expressed the second Kunitz-type protease inhibitor domain of the human protein WFIKKN in Escherichia coli, purified it by affinity chromatography on trypsin-Sepharose and its structure was characterized by CD spectroscopy. The recombinant protein was found to inhibit trypsin (Ki = 9.6 nm), but chymotrypsin, elastase, plasmin, pancreatic kallikrein, lung tryptase, plasma kallikrein, thrombin, urokinase or tissue plasminogen activator were not inhibited by the recombinant protein even at 1 microm concentration. In view of the marked trypsin-specificity of the inhibitor it is suggested that its physiological target may be trypsin.  相似文献   

18.
Porcine plasmin (EC 3.4.21.7) is obtained from plasminogen activated by human urokinase. This enzyme can bind, in an equimolecular ratio, to an alpha2-macroglobulin isolated from porcine serum. The number of active sites of plasmin has been determined through a burst titration of nitroaniline during the presteady-state hydrolysis of an amide substrate (N-alpha-carbobenzoxy-L-arginine-p-nitroanilide). The kinetic constants relative to a very sensitive ester substrate (N-alpha-carbobenzoxy-L-lysine nitrophenylester) hydrolysis have been measured. The binding of plasmin to alpha2-macroglobulin results in a complete inhibition of proteolytic activity, a reduction of active sites number and a decrease of esterolytic activity towards this substrate. In the complex, the residual activity (about 60%) is protected from protein inhibitors. Absorbance difference spectra show that 1 mol of alpha2-macroglobulin binds 1 mol of plasmin and 2 mol of trypsin. When plasmin is first bound to alpha2-macroglobulin, only 1 mol of trypsin can gain access tothe second site without removing the plasmin, showing that a steric hindrance is implicated in the inhibition performed by alpha2-macroglobulin binding.  相似文献   

19.
The study of proteinase inhibitors in the midgut of the omnivorous cockroach Nauphoeta cinerea was carried out under conditions excluding their food origin. One trypsin inhibitor of molecular mass of 8.0 kDa and three subtilisin inhibitors of molecular masses of 13.0, 8.0, and 4.5 kDa were found in the protein preparations, using Sephadex G-50 fractionation. 94% of the activity of the both inhibitor types were located in the anterior midgut part. Using a high performance liquid chromatography on Mono Q column, the preparation of trypsin inhibitor was purified 120 times. Its isoelectric point was to 4.3. The inhibitor lost a part of its activity both under acidic and, especially, under alkaline conditions and was completely inactivated at pH 10. The studied inhibitors inhibited effectively activities of trypsin-like and subtilisin-like proteinases from the cockroach posterior midgut part. The possible physiological role of the proteinase inhibitors and, particularly, their participation in regulation of digestion in the midgut of N. cinerea are discussed.  相似文献   

20.
Alpha 2 acute-phase macroglobulin was isolated from plasma of turpentine-injected rats. In the method conditions known to damage the biological activities of alpha 2 macroglobulin are avoided. The procedure successively involves: rivanol precipitation, concanavalin A-Sepharose chromatography and ion-exchange chromatography on DEAE-cellulose. Proteolytic activities were minimized throughout the purification. Thus alpha 2 macroglobulin was obtained in a 20% yield and was pure by biochemical and immunological criteria. Its molecular weight appeared to be 760 000 and it consisted of four subunits (Mr 190 000). The protein has an A1cm 1% = 8.8 and an isoelectric point = 4.8. The amino acid and carbohydrate compositions were determined. Our preparations bound 1 molecule of trypsin or 1 molecule of plasmin/molecule of alpha 2 macroglobulin. Kinetic parameters for alpha 2 macroglobulin-bound trypsin and plasmin were determined and compared with those of free trypsin and plasmin using butoxycarbonyl-L-valylglycyl-L-arginine-2-naphthylamide and benzoyl-L-arginine ethylester as substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号