共查询到20条相似文献,搜索用时 0 毫秒
1.
Ashkinadze Dzmitry Kadavath Harindranath Riek Roland Güntert Peter 《Journal of biomolecular NMR》2022,76(1-2):39-47
Journal of Biomolecular NMR - Recent advances in the field of protein structure determination using liquid-state NMR enable the elucidation of multi-state protein conformations that can provide... 相似文献
2.
3.
Read RJ Adams PD Arendall WB Brunger AT Emsley P Joosten RP Kleywegt GJ Krissinel EB Lütteke T Otwinowski Z Perrakis A Richardson JS Sheffler WH Smith JL Tickle IJ Vriend G Zwart PH 《Structure (London, England : 1993)》2011,19(10):1395-1412
This report presents the conclusions of the X-ray Validation Task Force of the worldwide Protein Data Bank (PDB). The PDB has expanded massively since current criteria for validation of deposited structures were adopted, allowing a much more sophisticated understanding of all the components of macromolecular crystals. The size of the PDB creates new opportunities to validate structures by comparison with the existing database, and the now-mandatory deposition of structure factors creates new opportunities to validate the underlying diffraction data. These developments highlighted the need for a new assessment of validation criteria. The Task Force recommends that a small set of validation data be presented in an easily understood format, relative to both the full PDB and the applicable resolution class, with greater detail available to interested users. Most importantly, we recommend that referees and editors judging the quality of structural experiments have access to a concise summary of well-established quality indicators. 相似文献
4.
An overview of the structures of protein-DNA complexes 总被引:1,自引:0,他引:1
On the basis of a structural analysis of 240 protein-DNA complexes contained in the Protein Data Bank (PDB), we have classified the DNA-binding proteins involved into eight different structural/functional groups, which are further classified into 54 structural families. Here we present this classification and review the functions, structures and binding interactions of these protein-DNA complexes. 相似文献
5.
6.
Keifer PA 《Current opinion in biotechnology》1999,10(1):34-41
Recent developments in NMR spectroscopy verify that NMR continues to be an exciting area of research. These advances can be placed into three general categories: new hardware; new techniques; and novel applications. The hardware developments include many advances in the area of flow NMR and some new probe designs. The new techniques include several ways to edit the NMR spectra of mixtures without using chromatographic separation. These new NMR tools are now allowing us to analyze complex mixtures, combinatorial-chemistry libraries, bound drugs, unstable compounds, very small samples, and heterogeneous samples. 相似文献
7.
8.
The new developments of the FLUKA Positron-Emission-Tomography (PET) tools are detailed. FLUKA is a fully integrated Monte Carlo (MC) particle transport code, used for an extended range of applications, including Medical Physics. Recently, it provided the medical community with dedicated simulation tools for clinical applications, including the PET simulation package. PET is a well-established imaging technique in nuclear medicine, and a promising method for clinical in vivo treatment verification in hadrontherapy. The application of clinically established PET scanners to new irradiation environments such as hadrontherapy requires further experimental and theoretical research to which MC simulations could be applied. The FLUKA PET tools, besides featuring PET scanner models in its library, allow the configuration of new PET prototypes via the FLUKA Graphical User Interface (GUI) Flair. Both the beam time structure and scan time can be specified by the user, reproducing PET acquisitions in time, in a particle therapy scenario. Furthermore, different scoring routines allow the analysis of single and coincident events, and identification of parent isotopes generating annihilation events. Two reconstruction codes are currently supported: the Filtered Back–Projection (FBP) and Maximum–Likelihood Expectation Maximization (MLEM), the latter embedded in the tools. Compatibility with other reconstruction frameworks is also possible. The FLUKA PET tools package has been successfully tested for different detectors and scenarios, including conventional functional PET applications and in beam PET, either using radioactive sources, or simulating hadron beam irradiations. The results obtained so far confirm the FLUKA PET tools suitability to perform PET simulations in R&D environment. 相似文献
9.
We describe Vivaldi (VIsualization and VALidation DIsplay; http://pdbe.org/vivaldi ), a web‐based service for the analysis, visualization, and validation of NMR structures in the Protein Data Bank (PDB). Vivaldi provides access to model coordinates and several types of experimental NMR data using interactive visualization tools, augmented with structural annotations and model‐validation information. The service presents information about the modeled NMR ensemble, validation of experimental chemical shifts, residual dipolar couplings, distance and dihedral angle constraints, as well as validation scores based on empirical knowledge and databases. Vivaldi was designed for both expert NMR spectroscopists and casual non‐expert users who wish to obtain a better grasp of the information content and quality of NMR structures in the public archive. © Proteins 2013. © 2012 Wiley Periodicals, Inc. 相似文献
10.
We present an improved version of our Protein Peeling web server dedicated to the analysis of protein structure architecture through the identification of protein units produced by an iterative splitting algorithm. New features include identification of structural domains, detection of unstructured terminal elements and evaluation of the stability of protein unit structures. AVAILABILITY: The website is free and open to all users with no login requirements at http://www.dsimb.inserm.fr/dsimb-tools/peeling3. 相似文献
11.
The classical procedure for nuclear magnetic resonance structure calculation allocates empirical distance ranges and uses historical values for weighting factors. However, Bayesian analysis suggests that there are more optimal choices for potential shape (bounds-free log-harmonic shape) and restraints weights. We compare the classical protocol with the Bayesian approach for more than 300 protein structures. We analyze the conformation similarity to the corresponding X-ray crystal structure, the distribution of the conformations around their average, and independent validation criteria. On average, the log-harmonic potential reduces the difference to the X-ray crystal structure. If the log-harmonic potential is used, the constant weighting tightens the distribution around the average conformation, with respect to the distributions obtained with Bayesian weighting. Conversely, the structure quality is improved by the Bayesian weighting over the classical procedure, whereas constant weighting worsens some criteria. The quality improvement obtained with the log-harmonic potential coupled to Bayesian weighting validates this approach on a representative set of protein structures. 相似文献
12.
Aptamers as tools for target validation 总被引:2,自引:0,他引:2
Synthetic nucleic acid ligands, called aptamers, bind to protein targets with high specificity and affinity. They are very potent inhibitors of protein function and their application can greatly enhance the process of target validation and drug development. An important benefit of this technology is the recent development of rapidly identifying these sophisticated ligands for almost any target molecule in multi-parallel, automated workstations. The aptamer technology is thus well-suited to addressing the growing demand for high-throughput analysis and functional validation of potential drug targets. Numerous examples have shown the potency of aptamers in inhibiting the function of proteins in cell culture and in vivo models. The technology is complementary to genetic knockout or siRNA approaches as it provides highly valuable information at the proteomic level. In addition, the aptamer technology has recently been extended to developing aptamer drugs and identifying functionally equivalent small molecule leads. 相似文献
13.
14.
Refinement of the NMR structures for acyl carrier protein with scalar coupling data 总被引:10,自引:0,他引:10
Structure determination of small proteins using NMR data is most commonly pursued by combining NOE derived distance constraints with inherent constraints based on chemical bonding. Ideally, one would make use of a variety of experimental observations, not just distance constraints. Here, coupling constant constraints have been added to molecular mechanics and molecular dynamics protocols for structure determination in the form of a psuedoenergy function that is minimized in a search for an optimum molecular conformation. Application is made to refinement of a structure for a 77 amino acid protein involved in fatty acid synthesis, Escherichia coli acyl carrier protein (ACP). 54 3JHN alpha coupling constants, 12 coupling constants for stereospecifically assigned side chain protons, and 450 NOE distance constraints were used to calculate the 3-D structure of ACP. A three-step protocol for a molecular dynamics calculation is described, in analogy to the protocol previously used in molecular mechanics calculations. The structures calculated with the molecular mechanics approach and the molecular dynamics approach using a rigid model for the protein show similar molecular energies and similar agreement with experimental distance and coupling constant constraints. The molecular dynamics approach shows some advantage in overcoming local minimum problems, but only when a two-state averaging model for the protein was used, did molecular energies drop significantly. 相似文献
15.
16.
17.
Inter-residue pair contacts have been analyzed in detail for the four pairs of protein structures determined both by X-ray analysis (X-ray) and nuclear magnetic resonance (NMR). At contact distances < or = 4.0 angstroms in the four NMR structures the overall number of pair contacts are less by 4-9% and pair contacts are in average shorter by 0.02-0.16 angstroms than those in corresponding X-ray structures. In each of four structure pairs 83-94% of common pair contacts are formed by the same residues in both structures and rest 6-17% ones are longer own pair contacts formed by the different residues in the NMR and X-ray structures. The amount of the longer own contacts is higher in the X-ray structure of the pair. In the each NMR structure there are three types of common pair contacts, which are shorter, longer or equal length in comparison with identical pair contacts in the X-ray structure of the same protein. The methodological different shortened common pair contacts predominate in the known distant dependence of the inter-residue contact densities of the 60-61 pair of the NMR/X-ray structure. Among four pairs analyzed the contact shortening proceeds upon the energy minimization of the crambin NMR structure and upon the resolving by the program X-PLOR with decreased atom van der Waals radius of the NMR structures of ubiquitin, hen lysozyme and monomeric hemoglobin. An extent of the NMR contact shortening decreased as the amount of NMR information upon the calculation of the NMR structures increased. Among 60-61 pairs of NMR/X-ray structures the main difference between alpha-helical and beta-structural proteins on the inter-residue distant dependence of the average contact densities arises from the strong alpha/beta difference in the local backbone geometry. 相似文献
18.
A study is presented of the conformational characteristics of NMR-derived protein structures in the Protein Data Bank compared to X-ray structures. Both ensemble and energy-minimized average structures are analyzed. We have addressed the problem using the methods developed for crystal structures by examining the distribution of ?, Ψ, and χ angles as indicators of global conformational irregularity. All these features in NMR structures occur to varying degrees in multiple conformational states. Some measures of local geometry are very tightly constrained by the methods used to generate the structure, e.g., proline ? angles, α-helix ?, Ψ angles, ω angles, and Cα chirality. The more lightly restrained torsion angles do show increasead clustering as the number of overall experimental observations increases. ?, Ψ, and χ1 angle conformational heterogeneity is strongly correlated with accessibility but shows additional differences which reflect the differing number of observations possible in NMR for the various side chains (e.g., many for Trp, few for Ser). In general, we find that the core is defined to a notional resolution of 2.0 to 2.3 Å. Of real interest is the behavior of surface residues and in particular the side chains where multiple rotameric states in different structures can vary from 10% to 88%. Later generation structures show a much tighter definition which correlates with increasing use of J-coupling information, stereospecific assignments, and heteronumclear techniques. A suite of programs is being developed to address the special needs of NMR-derived structures which will take into account the existence of increased mobility in solution. © 1993 Wiley-Liss, Inc. 相似文献
19.
20.
《Structure (London, England : 1993)》2021,29(12):1430-1439.e2