首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
We employed restriction site variation in mitochondrial (mt)DNA to determine if significant phylogeographic structure occurs in the North American cyprinid fish Cyprinella lutrensis. Digestion patterns from 16 restriction endonucleases identified fifty mtDNA haplotypes among 127 individuals of Cyprinella lutrensis assayed from localities in the Gulf Coastal Plain, the Great Plains, and the Central Lowlands. Nucleotide sequence divergence among haplotypes was highly variable (mean ± SE: 2.87%± 0.08; range: 0.14–9.24%). Maximum-parsimony analysis and the neighbour joining method of tree construction revealed three major groupings (clades) of haplotypes that differed in geographic distribution. Divergence estimates between the basal clade, comprised of haplotypes primarily from the Brazos River in east Texas, and the remaining two clades, place C. lutrensis in the western Gulf Coastal Plain prior to Pleistocene glaciation. Nucleotide sequence divergence between the second clade, comprised of haplotypes from the Trinity and Calcasieu rivers in east Texas and southwestern Louisiana, respectively, and the third clade (comprised primarily of haplotypes from localities north of Texas and affected directly by Pleistocene glaciation), suggest that C. lutrensis colonized gladated regions to the north during the mid- to late Pleistocene. This hypothesis is supported by levels of intrapopulational nucleotide diversity in geographic localities outside of Texas and by geological evidence. Despite marked geographic variation in morphometries, meristics, and nuptial coloration, mtDNA variation in glaciated regions was not geographically structured, and subspecies of C. lutrensis were not identifiable by phylogenetic analysis of mtDNA.  相似文献   

3.
Male courtship acoustic signals from five Lake Malawi cichlid fish species of the Pseudotropheus zebra complex were recorded and compared. Sounds made by males of P. zebra , Pseudotropheus callainos and the undescribed species known as Pseudotropheus 'zebra gold' from Nkhata Bay, and Pseudotropheus emmiltos and Pseudotropheus faizilberi from Mphanga Rocks, differed significantly in the number of pulses and in pulse period. The largest differences in acoustic variables were found among the sympatric Mphanga Rocks species that, in contrast to the other three species, show relatively minor differences in male colour and pattern. These findings suggest that interspecific mate recognition is mediated by multimodal signals and that the mass of different sensory channels varies among sympatric species groups. This study also showed that sound peak frequency was significantly negatively correlated with male size and that sound production rate increased significantly with courtship rate.  相似文献   

4.
Allozyme variation at 42 presumptive gene lociis presented for members of the C. formosa species group. This group iscorroborated as a monophyletic assemblage whosecommon ancestor occupied pluvial Lake Palomasof the Guzman Basin. With increasingaridity during the Pleistocene this basin andassociated populations of this commonancestor were fragmented into several lineagesthat diverged independently of oneanother. The pattern of relationships andlevels of anagenetic change observed inindependent lineages for this clade are notconsistent with expectations of the mostcommon modes of speciation, Model I large-scalevicariance or Model II peripheralisolation. Rather, divergence in these fishlineages is consistent with the rarely observedModel III allopatric speciation. Consistentwith predictions of this model, thephylogenetic pattern recovered revealspolychotomous relationships (a hard polytomy)and varied rates of anagenetic change acrossexamined lineages.  相似文献   

5.
Males of the closely related African tettigoniids Acanthoplus discoidales and Acanthoplus longipes produce a long-lasting calling song and a short disturbance sound. The temporal patterns of the sounds were analysed in respect to species differences and song type differences. The calling songs of both species consist of impulses which are separated into verses of two syllables, with fewer impulses in the first syllable. A. longipes produces more impulses in each syllable than A. discoidales and has longer verse durations, verse intervals and syllable intervals. Also, the disturbance sounds, produced after mechanical stimulation, contain distinct verses of impulses. The disturbance sound of A. longipes has a higher number of impulses per verse than that of A. discoidales. The frequency spectra of the songs in both species have similar peak frequencies (around 12.5 kHz) and both species have their greatest hearing sensitivity in the range between 5 and 10 kHz. Females of A. longipes perform phonotaxis only to songs with a species-specific temporal pattern. By contrast, females of A. discoidales react positively to calling songs of both species.  相似文献   

6.
Males of the desert clicker, Ligurotettix coquilletti (Acrididae: Orthoptera) defend a femalerequired resource, the creosote bush Larrea tridentata, in desert habitats of the southwestern United States. Males signal acoustically to each other as well as to searching females. The call is produced by tegminal/femoral stridulation where one or both legs are used for sound production. Sound pressure levels, measured laterally, are influenced by the intervening tegmen between the stridulating leg and the microphone. Differences in measured sound pressure levels between sides can vary up to 7 dB. When clicks are produced multiply,these multiple clicks may be 4 dB louder than single clicks. We examine the structure of the call and the effective broadcast area of single males by monitoring acoustic ascending neurons of the ventral nerve cord in the neck. By taking the neurophysiological preparation into the field, we were able to map the broadcast area of isolated males and also of males calling within aggregations. The distance over which the signal of isolated males could be detected was 8–14 m, whereas neural representation of the calls of males within aggregation were detectable within 4–6 m. The sound spectrum of the song, although having a major lower-frequency component around 10 kHz, has extensive power in the ultrasonic range. The tuning characteristics of the ascending auditory neuron matched the overall structure of the male call. The importance of the acoustic cue, as compared to visual cues, is discussed in relation to female attraction.  相似文献   

7.
The study of animal communication systems is an important step towards gaining greater understanding of the processes influencing diversification because signals often play an important role in mate choice and can lead to reproductive isolation. Signal evolution can be influenced by a diversity of factors such as biophysical constraints on the emitter, the signalling environment, or selection to avoid heterospecific matings. Furthermore, because signals can be costly to produce, trade‐offs may exist between different types of signals. Here, we apply phylogenetic comparative analyses to study the evolution of acoustic and visual signals in Asian barbets, a clade of non‐Passerine, forest‐dependent birds. Our results suggest that evolution of acoustic and visual signals in barbets is influenced by diverse factors, such as morphology and signalling environment, suggesting a potential effect of sensory drive. We found no trade‐offs between visual and acoustic signals. Quite to the contrary, more colourful species sing significantly longer songs. Song characteristics presented distinct patterns of evolution. Song frequency diverged early on and the rate of evolution of this trait appears to be constrained by body size. On the other hand, characteristics associated with length of the song presented evidence for more recent divergence. Finally, our results indicate that there is a spatial component to the evolution of visual signals, and that visual signals are more divergent between closely related taxa than acoustic signals. Hence, visual signals in these species could play a role in speciation or reinforcement of reproductive isolation following secondary contacts.  相似文献   

8.
Fourteen individuals of the skunk clownfish Amphiprion akallopisos of different sizes and of different sexual status (non-breeder, male or female) were analysed for four acoustic features. Dominant frequency and pulse duration were highly correlated with standard length ( r = 0·97), and were not related to sex. Both the dominant frequency and pulse duration were signals conveying information related to the size of the emitter, which implies that these sound characteristics could be useful in assessing size of conspecifics.  相似文献   

9.
Natale, G.S., Alcalde, L., Herrera, R., Cajade, R., Schaefer, E.F., Marangoni, F. and Trudeau, V.L. 2011. Underwater acoustic communication in the macrophagic carnivorous larvae of Ceratophrys ornata (Anura: Ceratophryidae). —Acta Zoologica (Stockholm) 92 : 46–53. We provide the first evidence for sound production by anuran larvae. In this study, we describe the sounds, their context‐specific emission and the structures related to sound production of the carnivorous larvae of Ceratophrys ornata (Amphibia, Anura, Ceratophryidae). Tadpoles emit a brief, clear and very audible metallic‐like sound that consists of a short train of notes that occur at all stages of larval development. Tadpoles make sound only when a conspecific tadpole is preying upon it or when touched by an object. Ceratophrys ornata larvae possess the basic required anatomical structures for sound production via expulsion of atmospheric air from the lungs through the open soft‐tissue glottis. The glottis is opened and closed via the larval laryngeal muscles (constrictor laryngis and dilatator laryngis). The arytenoid cartilages appear at stage 40 and the cricoid cartilage does at stage 43. Adult laryngeal muscles differentiate from the larval ones at stage 46 together with the vocal sac formation from the adult interhyoideus muscle. We demonstrate (n = 2160 conspecific predator–prey interactions) that larval sounds occur always under predatory attack, probably serving to diminish the chances of cannibalism. These data raise the possibility that other macrophagic carnivorous anuran larvae may produce sound.  相似文献   

10.
Agonistic sounds of two pomacentrid species, Plectroglyphidodon lacrymatus and Dascyllus aruanus , were recorded in captivity. Plectroglyphidodon lacrymatus produced trains of 2–5 pops, each composed of 18–25 cycles, with an average duration of 56 ms; most energy ranged from c. 100 to 1000 Hz. Dascyllus aruanus produced pops and chirps. Pops were generally composed of a single pulse, with 2–14 peaks and an average duration of 6·7 ms. Pops contained energy >4 kHz, and peak frequency ranged from 680 to 1300 Hz. Chirps consisted of trains of 12–42 short pulses of three to six cycles, with durations varying from 0·6 to 1·27 ms; peak frequency varied from 3400 to 4100 Hz. Sound production in P. lacrymatus suggested that pomacentrids are derived from an ancestral taxon capable of sound production and that this capacity is a synapomorphy for the family. Although in the Pomacentridae, pops are typically composed of a single pulse, which is longer and higher pitched than chirps composed of a series of shorter pulses, D. aruanus chirps were higher pitched than its pops. Thus, acoustic variation in the genus Dascyllus is probably not more restricted than in the Pomacentridae.  相似文献   

11.
We investigated acoustic and visual communication concurrently in wild caught adult and captive-born, first generation offspring of the East African Rift Lake cichlid fish Tramitichromis intermedius. Only males emit sound during courtship. Sound production is always accompanied by quivering, but quiver behavior is not always accompanied by sound. This separation of quivering and sound supports the hypothesis that sound production is intentional serving a communicative role. As spawning nears, both sound production and quiver behavior increase. In terms of the ontogeny of sound production, the first observation of courtship occurs just days before the first spawning event and the first sound emission accompanies the first courtship activity. The accompaniment of quivering with sound as well as the escalation of the two behaviors with the approach of spawning follows similar patterns in wild caught and captive-born males. The tight correlation between behavior and sound production in both groups indicates their simultaneous performance plays an important role in reproduction. It is probable that the ability to produce sound and perform quiver behavior at the same time may be a measure of mate quality.  相似文献   

12.
The acoustic adaptation hypothesis is based on the assumption that senders are directionally selected to maximize transmission and minimize degradation; however, the two aims are not necessarily convergent. In complex habitats, where more effects that might potentially cause attenuation and degradation co‐occur and longer transmission must incur a higher cost, signals should attenuate faster and have shorter transmission ranges. At the same time, such signals should be more resistant to degradation in order to preserve their communicatory function. Based on a sound transmission experiment, we tested the evidence for these predictions using territorial calls of three sympatric species of rails, inhabiting habitats with increasing complexity: Corncrake Crex crex, Spotted Crake Porzana porzana and Water Rail Rallus aquaticus. In the experiment, the calls were broadcasted with similar amplitudes through a heterogeneous habitat inhabited by all three species and rerecorded at different distances up to 320 m. Despite standardized amplitudes and habitats, calls of the species living in simpler habitats had longer transmission ranges but were more susceptible to degradation than calls of the species living in more complex habitats. Our results suggest that narrow frequency bandwidth is an adaptation of species inhabiting complex habitats that helps their calls to degrade less at the cost of stronger attenuation and shorter transmission range. By contrast, wide frequency bandwidth extends the range but increases degradation and thus it is used only by species inhabiting structurally simpler habitats. This study shows that, in more complex habitats, the clarity of the message is preserved at the cost of range.  相似文献   

13.
The streaked gurnard Trigloporus lastoviza produced only one sound type, a growl, lasting up to 3 s and consisting of repeated groups of typically one to three pulses. The foraging fish followed two different strategies. In the first, the fish circled the feeding area, grasped a food item and fled, sometimes displaying aggressively to competitors. With this foraging strategy, fish usually made sounds as they circled, grasped and fled. Fish that growled while circling were more likely to grasp a food item subsequently than were silent fish. The second feeding strategy occurred when a fish had already ingested food or failed to get any. In this case, typically fish searched for food on the substratum or approached and touched other individuals that were feeding, sometimes grabbing food that was spat out during food handling by the other fish. Although payback experiments would be needed to draw firm conclusions on the communicative function of growling during competitive feeding in the streaked gurnard, the results suggest that sound production confers advantages to individuals competing for limited food resources.  相似文献   

14.
The systematics and taxonomy of North Americancyprinid fishes has historically been said tobe in a chaotic state of affairs. Much of theconfusion as to relationships of species restsin the lack of explicit phylogenetic hypothesesof species and reliance upon degree ofdistinctiveness of taxa or their overallsimilarity for generic placement. Some specieshave had more turbulent or variable taxonomichistories than others. The ornate shiner, Cyprinella ornata, is one of those species,having been placed in the genera Notropis,Codoma, and Cyprinella within the last20 years and found in current texts in any ofthese three genera. Most of the confusionregarding placement of this species has beenrelated to lack of explicit phylogenetichypotheses to formulate its classification, butto a certain degree some researchers haveignored phylogenetic studies and preferred torely upon its morphological distinctiveness orreproductive behavioral traits of questionablehomology to place it in a monotypic genus andalign it with the genera Pimephales andOpsopoeodus.I present a phylogenetic analysis based oncomplete Cytochrome b sequences fromornate shiners, other species of Cyprinella, purported relatives, and severalother species of the Shiner Clade to determinethe phylogenetic affinities of this enigmaticspecies. Molecular analysis reveals the ornateshiner to be more closely related to species ofCyprinella than to a Pimephalesplus Opsopoeodus clade as previouslydiscussed in one morphological analysis, or asargued by Page and Johnston (1990), Johnstonand Page (1992) and Page and Ceas (1989) basedon observations of spawning behaviors andhypotheses of homology between crevice-spawningand egg-clumping behaviors. This molecularanalysis is more consistent with earliermorphological phylogenetic hypotheses of Mayden(1989) wherein these two clades are notconsidered to be closely related and the ornateshiner is a member of the genus Cyprinella.  相似文献   

15.
The responses of single vibratory receptors and ascending ventral cord interneurones were studied extracellularly in Gryllus campestris L. The physiology of the vibration receptors resembled those found in tettigoniids and locusts. The frequency responses of the subgenual receptors provide two possible cues for central frequency discrimination: differences in mean tuning between groups of receptors in the different leg pairs and a range of receptors tuned to different frequencies within one subgenual organ.Most of the ascending vibratory interneurones were highly sensitive in either the low or high frequency range. Broadbanded neurones were less sensitive. The characteristic sensitivity peaks of these units are due mainly to receptor inputs from a particular leg pair, although most central neurones receive inputs from all 6 legs. Only one neurone type, TN1 received excitatory inputs from both auditory and vibratory receptors; its responses were greatly enhanced by the simultaneous presentation of both stimulus modes. The responses to sound stimuli of AN2, on the other hand, were inhibited by vibration. No other auditory interneurones investigated were influenced by inputs from vibration receptors. Central processing of vibratory information in the cricket is compared with that of tettigoniids and locusts.  相似文献   

16.
Abstract.— Bird song is a sexual trait important in mate choice and known to be shaped by environmental selection. Here we investigate the ecological factors shaping song variation across a rainforest gradient in central Africa. We show that the little greenbul ( Andropadus virens ), previously shown to vary morphologically across the gradient in fitness-related characters, also varies with respect to song characteristics. Acoustic features, including minimum and maximum frequency, and delivery rate of song notes showed significant differences between habitats. In contrast, we found dialectal variation independent of habitat in population-typical songtype sequences. This pattern is consistent with ongoing gene flow across habitats and in line with the view that song variation in the order in which songtypes are produced is not dependent on habitat characteristics in the same way physical song characteristics are. Sound transmission characteristics of the two habitats did not vary significantly, but analyses of ambient noise spectra revealed dramatic and consistent habitat-dependent differences. Matching between low ambient noise levels for low frequencies in the rainforest and lower minimal frequencies in greenbul songs in this habitat suggests that part of the song divergence may be driven by habitat-dependent ambient noise patterns. These results suggest that habitat-dependent selection may act simultaneously on traits of ecological importance and those important in prezygotic isolation, leading to an association between morphological and acoustic divergence. Such an association may promote assortative mating and may be a mechanism driving reproductive divergence across ecological gradients.  相似文献   

17.
Acoustic signals play essential roles in social communication and show a strong selection for novel morphologies leading to increased call complexity in many taxa. Among vertebrates, repeated innovations in the larynges of frogs and mammals and the syrinx of songbirds have enhanced the spectro-temporal content, and hence the diversity of vocalizations. This acoustic diversification includes nonlinear characteristics that expand frequency profiles beyond the traditional categorization of harmonic and broadband calls. Fishes have remained a notable exception to evidence for such acoustic innovations among vertebrates, despite their being the largest group of living vertebrates that also exhibit widespread evolution of sound production. Here, we combine rigorous acoustic and mathematical analyses with experimental silencing of the vocal motor system to show how a novel swim bladder mechanism in a toadfish enables it to generate calls exhibiting nonlinearities like those found among frogs, birds and mammals, including primates. By showing that fishes have evolved nonlinear acoustic signalling like all other major lineages of vocal vertebrates, these results suggest strong selection pressure favouring this mechanism to enrich the spectro-temporal content and complexity of vocal signals.  相似文献   

18.
The effect of ultrasound on the attractiveness of acoustic mating signals   总被引:1,自引:0,他引:1  
Abstract. Previous laboratory studies ( Nolen & Hoy 1986b ) have shown that the phonotactic responses of flying crickets are influenced by the relative intensities of attractive (mating signal) and repulsive (predator) stimuli. At the functional level, these results suggest that predator cues (ultrasound) can change the attractiveness of a calling song. Using extracellular recordings from cervical connectives it was shown that, like other field crickets, Gryllus rubens (south-eastern field cricket) is sensitive to ultrasound. This ultrasonic sensitivity has probably evolved in response to predation pressure from echolocating bats. Using acoustic playback under field conditions, it was tested whether the relative attractiveness of two male calling songs was influenced by the simultaneous broadcast of ultrasound. A simulated male calling song of G. rubens was broadcast at two different intensities (109 and 103 dB) from two sound traps that caught flying crickets attracted to the songs. Simulated bat ultrasound was broadcast simultaneously with the high-intensity calling song (109 dB) and the relative catch in each of the two traps was measured. The intensity of the ultrasound was varied on different nights. The relative attractiveness of the high-intensity sound trap decreased significantly as the intensity of the ultrasound broadcast with it was increased. For the lowest of the ultrasound broadcast levels, the relative attractiveness did not differ from that expected for two calling songs broadcast without ultrasound. Thus, increased levels of simulated predation risk decreased the attractiveness of the calling song associated with it. These are the first field experiments to show that predation risk in the form of simulated bat ultrasound influences the phonotactic behaviour of flying crickets.  相似文献   

19.
No information on the inheritance of the ability to produce sounds exists for fishes. In birds, which usually provide extensive post-hatching parental care, acoustic signals are learned in some species but are innate in others. Almost no fishes provide extensive post-hatching parental care and, consequently, the offspring have little opportunity to hear and learn sounds produced by the parents (usually the male in fishes); they may, however, be exposed to acoustic signals of conspecifics in the same habitat. We used a cyprinid, Codoma ornata, to test whether sound production is learned from the parents or whether it is innate. Fertilized eggs of this species were raised in isolation from adults. Upon maturity, these fish were tested for sound production in aggressive and reproductive contexts. Fish which had no contact with adults, and therefore no opportunity to hear the acoustic signals of their species, produced sounds that were similar to those produced by their parents, and they produced these in the same contexts. Significant differences were observed in dominant frequency for one context, with the smaller F1 fish having signals of higher frequency than parental fish. Since no opportunity for learning existed, this provided evidence that the ability to produce sounds is innate in this minnow species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号