首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
In Aspergillus nidulans the acetamidase enzyme is inducible by omega-amino acids, sources of acetyl-coenzyme A, and benzoate. The amdR (or intA) gene is a positive-control gene involved in omega-amino acid induction only. A cis-acting mutation amdI93 located in a complex controlling region adjacent to the acetamidase structural gene was found to abolish induction by omega-amino acids but not induction by other sources of induction. As predicted, this mutation was epistatic to constitutive amdR alleles but did not affect the expression of mutations in other regulatory genes.  相似文献   

2.
3.
Growth tests and enzyme determinations strongly suggest that the acetamidase of Aspergillus nidulans is induced by a product of acetate metabolism rather than the substrate, acetamide. The cis-dominant mutation, amdI9, which is closely linked to amdS, the structural gene for the acetamidase, results in greatly increased sensitivity to induction by acetate metabolism. Propionate, L-threonine, and ethanol also result in acetamidase induction. Mutations in the facA, facB, and facC genes, which lead to low levels of acetyl-coenzyme A synthase, are epistatic to the amdI9 mutation for strong growth on acetamide medium and abolish acetamide and propionamide induction of the acetamidase and isocitrate lyase enzymes. Acetate, L-threonine, and ethanol, however, can induce these enzymes in strains containing facA and facC lesions but not in strains containing a facB lesion. The evidence suggests that acetamidase and isocitrate lyase may be induced by a similar mechanism.  相似文献   

4.
5.
6.
Aspergillus niger grows poorly on acetamide as a nitrogen or carbon source and lacks sequences detectably homologous to the amdS gene encoding the acetamidase of Aspergillus nidulans. We have taken advantage of these observations to develop a transformation system for A. niger using the amdS gene as a dominant heterologous marker for selecting transformants on the basis of acetamide utilization. Transformants varied in their ability to grow on amide media and the number of integrated copies of the amdS plasmid ranged from 1 or 2 to greater than 100. Southern analysis of transformants revealed that the multiple copies were integrated into the chromosome in tandem arrays. This result indicates that transformation of A. niger is more similar to mammalian cells than to yeast. Analysis of enzyme activity levels and RNA levels showed that most of the copies of amdS were expressed. Mitotic stabilities of transformants were found to be high. A transformant containing greater than 100 copies of the amdS gene was impaired in omega-amino acid utilization, a result that has also been found in A. nidulans. Since, in A. nidulans, omega-amino acids induce acetamidase via a characterizied regulatory gene (amdR/intA) this observation implies that titration of an analogous A. niger regulatory gene product by multiple amdS copies has occurred. Additional evidence suggested that the amdS gene is regulated in A. niger. It has also been shown that an unselected plasmid can be co-transformed with the amdS plasmid into A. niger.  相似文献   

7.
8.
9.
10.
11.
X W Wang  M J Hynes  M A Davis 《Gene》1992,122(1):147-154
We have isolated the Aspergillus oryzae homologue of the amdR regulatory gene of Aspergillus nidulans by cross hybridization. Sequence analysis and functional studies have shown that the amdR genes are highly conserved and functionally interchangeable between the two species. The homology between the two genes extends throughout most of the coding sequences, including sequences encoding the DNA-binding domain and putative activation domains. Two regions of nonconserved sequence were also identified. Studies using various amdS::lacZ fusion constructs indicate that the A. oryzae gene product binds similar sequences and responds to inducer in a similar manner to the A. nidulans protein. Inactivation of the A. oryzae gene results in the inability to grow on gamma-amino-butyric acid (GABA) as a carbon and/or nitrogen source indicating that GABA utilization is amdR-dependent in A. oryzae as it is in A. nidulans.  相似文献   

12.
The amdS gene of A. nidulans has proved extremely favourable for the isolation of mutations affecting gene regulation. Trans-acting regulatory genes involved in amdS induction by small molecular weight effectors have been identified – amdR (ω-amino acids) facB (acetate) and amdA (acetate). Another gene, the areA gene, has properties expected of a major activator gene involved in nitrogen metabolite repression of amdS. All of these regulatory genes are also involved in the control of various other functions encoded by structural genes unlinked to amdS. Mutations in the 5′-region adjacent to amdS have been isolated and allow the identification of independent cis-acting sequences which are the target sites for the regulatory genes. The involvement of these sequences in regulatory product binding has been deduced from titration studies using transformants containing multiple copies of the 5′ sequences. A combination of genetics and molecular analysis is allowing a detailed characterization of this system.  相似文献   

13.
Michael J. Hynes 《Genetics》1982,102(2):139-147
A mutant producing very high levels of the acetamidase enzyme encoded by the amdS gene has been isolated in a strain containing the amdA7 mutation, which itself causes high levels of this enzyme. Genetic analysis has shown that this mutation, designated amdI66, is adjacent to the amdS gene and is cis-dominant in its effect. The amdI66 mutation has little effect on amdS expression when present in strains not containing the amdA7 mutation. Two other amdA mutations investigated also interact with the amdI66 mutation to result in high acetamidase levels. No interaction between amdI66 and any of the other putative regulatory genes affecting amdS expression has been observed. The amdI66 mutation has been located by fine structure mapping at the extreme end of the controlling region, which has previously been defined by genetic mapping (Hynes 1979). Analysis of this region has been extended by mapping new mutations resulting in loss of amdS expression. One of these defines the most extreme site capable of mutation to loss of gene function found so far.  相似文献   

14.
15.
An amdS-lacZ fusion for studying gene regulation in Aspergillus   总被引:7,自引:0,他引:7  
M A Davis  C S Cobbett  M J Hynes 《Gene》1988,63(2):199-212
A translational fusion has been constructed between the amdS gene of Aspergillus nidulans and the lacZ gene of Escherichia coli. Sequencing across the fusion junction confirmed the generation of an in-frame fusion at amino acid 34 of amdS and a novel protein has been detected in transformants carrying the fusion plasmid. Transformants of A. nidulans and Aspergillus niger carrying the fusion plasmid were obtained by co-transformation with a second selectable plasmid. These transformants were readily identified on media containing XGal. The intensity of the reaction on XGal media was indicative of the number of copies of the fusion plasmid carried by the transformants. The growth of highly expressing strains of A. nidulans was inhibited on XGal media. The fusion plasmid was used to develop a two-step gene replacement strategy in which the resident amdS gene was replaced with the fusion gene free of vector sequences. Plate tests and in vitro assays of the beta-galactosidase enzyme confirmed that expression of the fusion gene was regulated by amdS flanking sequences and trans-acting regulatory genes.  相似文献   

16.
The acetamidase-encoding amdS gene of Aspergillus nidulans has been shown to be controlled by multiple regulatory genes. A new gene, amdX , involved in amdS regulation was identified during the characterization of a translocation affecting amdS control. The amdX gene is predicted to encode a 1150-amino-acid polypeptide which contains two Cys-2–His-2 (C2H2) zinc finger DNA-binding motifs. Insertional inactivation of amdX and the phenotypes of transformants containing multiple copies of the amdX gene show that it is an activator of amdS expression. A fusion protein containing the AmdX zinc fingers was found to bind to sequences in the 5' region of amdS which overlap binding sites for the CreA and AmdA regulatory proteins. Evidence is presented for AmdX acting at these sites in vivo .  相似文献   

17.
Mutants of Apergillus nidulans with lesions in a gene, areA (formerly called amdT), have been isolated by a variety of different selection methods. The areA mutants show a range of pleiotropic growth responses to a number of compounds as sole nitrogen sources, but are normal in utilization of carbon sources. The levels of two amidase enzymes as well as urease have been investigated in the mutants and have been shown to be affected by this gene. Most of the areA mutants have much lower amidase-specific activities when grown in ammonium-containing medium, compared with mycelium incubated in medium lacking a nitrogen source. Some of the areA mutants do not show derepression of urease upon relief of ammonium repression. The dominance relationships of areA alleles have been investigated in heterozygous diploids, and these studies lend support to the proposal that areA codes for a positively acting regulatory product. One of the new areA alleles is partially dominant to areA+ and areA102. This may be a result of negative complementation or indicate that areA has an additional negative regulatory function. Investigation of various amdR; areA double mutants has led to the conclusion that amdR and areA participate in independent regulatory circuits in the control of acetamide utilization. Studies on an amdRc; areA double mutant indicate that areA is involved in derepression of acetamidase upon relief of ammonium repression.  相似文献   

18.
19.
M. J. Hynes 《Genetics》1979,91(3):381-392
A large number of amdS mutants altered in acetamide utilization have been used to construct a fine-structure map of the amdS locus. The mutagen diepoxyoctane generated most of the deletion strains used for mapping. A minimum of 14 sites within the amdS gene were found. Biochemical analysis of amdS mutants defined the extent of the probable coding region. A new mutant, amd-205, which did not produce detectable inactive gene product, was found to be inseparable by recombination from the "up-promoter" mutation amdI18 and was located outside of the apparent amdS coding region. The cis-dominant mutation, amdI9, was also located at this end of the gene. This work, therefore, provides evidence for the separation of a eukaryotic gene into controlling and structural regions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号