首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Fibroblast growth factors (Fgfs) have long been implicated in regulating vertebrate skeletal muscle differentiation, but their precise role(s) in vivo remain unclear. Here, we show that Fgf8 signalling in the somite is required for myod expression and terminal differentiation of a subset of fast muscle cells in the zebrafish lateral somite. In the absence of Fgf8, lateral somite cells transiently express myf5 but fail to make muscle and remain in a dermomyotome-like state characterised by pax3 and meox expression. Slow muscle fibres form and commence normal migration in the absence of Fgf8, but fail to traverse the expanded undifferentiated lateral somite. The Fgf8-independent residual population of medial fast muscle fibres is not Hedgehog dependent. However, Fgf8-independent medial fast muscle precursors are lacking in floatinghead mutants, suggesting that they require another ventral midline-derived signal. We conclude that Fgf8 drives terminal differentiation of a specific population of lateral muscle precursor cells within the early somite.  相似文献   

4.
Retinoic acid activates myogenesis in vivo through Fgf8 signalling   总被引:1,自引:0,他引:1  
Retinoic acid (RA) has been shown to regulate muscle differentiation in vitro. Here, we have investigated the role of RA signalling during embryonic myogenesis in zebrafish. We have altered RA signalling from gastrulation stages onwards by either inhibiting endogenous RA synthesis using an inhibitor of retinaldehyde dehydrogenases (DEAB) or by addition of exogenous RA. DEAB reduces expression of the myogenic markers myoD and myogenin in somites, whereas RA induces increased expression of these genes and strongly induces premature myoD expression in the presomitic mesoderm (psm). The expression dynamics of myf5 in presomitic and somitic mesoderm suggest that RA promotes muscle differentiation, a role supported by the fact that RA activates expression of fast myosin, while DEAB represses it. We identify Fgf8 as a major relay factor in RA-mediated activation of myogenesis. We show that fgf8 expression in somites and anterior psm is regulated by RA, and find that in the absence of Fgf8 signalling in the acerebellar mutant RA fails to promote myoD expression. We propose that, in the developing embryo, localised synthesis of RA by Raldh2 in the anterior psm and in somites activates fgf8 expression which in turn induces the expression of myogenic genes and fast muscle differentiation.  相似文献   

5.
6.
7.
8.
9.
Development of the heart requires recruitment of cardiovascular progenitor cells (CPCs) to the future heart-forming region. CPCs are the building blocks of the heart, and have the potential to form all the major cardiac lineages. However, little is known regarding what regulates CPC fate and behavior. Activity of GATA4, SMARCD3 and TBX5 - the `cardiac BAF' (cBAF) complex, can promote myocardial differentiation in embryonic mouse mesoderm. Here, we exploit the advantages of the zebrafish embryo to gain mechanistic understanding of cBAF activity. Overexpression of smarcd3b and gata5 in zebrafish results in an enlarged heart, whereas combinatorial loss of cBAF components inhibits cardiac differentiation. In transplantation experiments, cBAF acts cell autonomously to promote cardiac fate. Remarkably, cells overexpressing cBAF migrate to the developing heart and differentiate as cardiomyocytes, endocardium and smooth muscle. This is observed even in host embryos that lack endoderm or cardiac mesoderm. Our results reveal an evolutionarily conserved role for cBAF activity in cardiac differentiation. Importantly, they demonstrate that Smarcd3b and Gata5 can induce a primitive, CPC-like state.  相似文献   

10.
11.
12.
13.
14.
15.
Myogenic regulatory factor Myf5 plays important roles in muscle development. In zebrafish myf5, a microRNA (miR), termed miR-3906 or miR-In300, was reported to silence dickkopf-3-related gene (dkk3r or dkk3a), resulting in repression of myf5 promoter activity. However, the membrane receptor that interacts with ligand Dkk3a to control myf5 expression through signal transduction remains unknown. To address this question, we applied immunoprecipitation and LC-MS/MS to screen putative membrane receptors of Dkk3a, and Integrin α6b (Itgα6b) was finally identified. To further confirm this, we used cell surface binding assays, which showed that Dkk3a and Itgα6b were co-expressed at the cell membrane of HEK-293T cells. Cross-linking immunoprecipitation data also showed high affinity of Itgα6b for Dkk3a. We further proved that the β-propeller repeat domains of Itgα6b are key segments bound by Dkk3a. Moreover, when dkk3a and itgα6b mRNAs were co-injected into embryos, luciferase activity was up-regulated 4-fold greater than that of control embryos. In contrast, the luciferase activities of dkk3a knockdown embryos co-injected with itgα6b mRNA and itgα6b knockdown embryos co-injected with dkk3a mRNA were decreased in a manner similar to that in control embryos, respectively. Knockdown of itgα6b resulted in abnormal somite shape, fewer somitic cells, weaker or absent myf5 expression, and reduced the protein level of phosphorylated p38a in somites. These defective phenotypes of trunk muscular development were similar to those of dkk3a knockdown embryos. We demonstrated that the secreted ligand Dkk3a binds to the membrane receptor Itgα6b, which increases the protein level of phosphorylated p38a and activates myf5 promoter activity of zebrafish embryos during myogenesis.  相似文献   

16.
The expression patterns of region-specific neuroectodermal genes and fate-map analyses in zebrafish gastrulae suggest that posterior neural development is initiated by nonaxial signals, distinct from organizer-derived secreted bone morphogenetic protein (BMP) antagonists. This notion is further supported by the misexpression of a constitutively active form of zebrafish BMP type IA receptor (CA-BRIA) in the zebrafish embryos. It effectively suppressed the anterior neural marker, otx2, but not the posterior marker, hoxb1b. Furthermore, we demonstrated that the cells in the presumptive posterior neural region lose their neural fate only when CA-BRIA and Xenopus dominant-negative fibroblast growth factor (FGF) receptors (XFD) are coexpressed. The indications are that FGF signaling is involved in the formation of the posterior neural region, counteracting the BMP signaling pathway within the target cells. We then examined the functions of Fgf3 in posterior neural development. Zebrafish fgf3 is expressed in the correct place (dorsolateral margin) and at the correct time (late blastula to early gastrula stages), the same point that the most precocious posterior neural marker, hoxb1b, is first activated. Unlike other members of the FGF family, Fgf3 had little mesoderm-inducing activity. When ectopically expressed, Fgf3 expands the neural region with suppression of anterior neural fate. However, this effect was mediated by Chordino (zebrafish Chordin), because Fgf3 induces chordino expression in the epiblast and Fgf3-induced neural expansion was substantially suppressed in dino mutants with mutated chordino genes. The results obtained in the present study reveal multiple actions of the FGF signal on neural development: it antagonizes BMP signaling within posterior neural cells, induces the expression of secreted BMP antagonists, and suppresses anterior neural fate.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号