共查询到20条相似文献,搜索用时 10 毫秒
1.
Over the past 25 years, discoveries of Early Cretaceous fossil flowers, often associated with pollen and sometimes with vegetative parts, have revolutionized our understanding of the morphology and diversity of early angiosperms. However, few of these fossils have been integrated into the increasingly robust phylogeny of living angiosperms based primarily on molecular data. To remedy this situation, we have used a morphological data set for living basal angiosperms (including basal eudicots and monocots) to assess the most parsimonious positions of early angiosperm fossils on cladograms of Recent plants, using constraint trees that represent the current range of hypotheses on higher-level relationships, and concentrating on Magnoliidae (the clade including Magnoliales, Laurales, Canellales, and Piperales) and eudicots. In magnoliids, our results confirm proposed relationships of Archaeanthus (latest Albian?) to Magnoliaceae, Endressinia (late Aptian) to Magnoliales (the clade comprising Degeneria, Galbulimima, Eupomatia, and Annonaceae), and Walkeripollis pollen tetrads (late Barremian?) to Winteraceae, but they indicate that Mauldinia (early Cenomanian) was sister to both Lauraceae and Hernandiaceae rather than to Lauraceae alone. Among middle Albian to early Cenomanian eudicots, we confirm relationships of Nelumbites to Nelumbo, platanoid inflorescences and Sapindopsis to Platanaceae, and Spanomera to Buxaceae. With the possible exception of Archaeanthus, these fossils are apparently not crown group members of living families but rather stem relatives of one or more families. 相似文献
2.
The new discovery of angiosperm remains in the Jehol Biota of northeastern China contributes to our understanding of the origin and early evolution of flowering plants. The earliest eudicot genus with reproductive organs, Leefructus, was recently documented from the Lower Cretaceous Yixian Formation at 125.8–123.0 Ma, and was reconsidered to be close to the extant family Ranunculaceae based on gross morphology. However, this hypothesis has not been tested using a cladistic approach. To determine the possible allies of Leefructus within extant eudicots, we constructed a 66 morphological data matrix. Molecular and morphological analyses of extant Ranunculales combined with the fossil suggest that it has an affinity with the Ranunculaceae. The earliest fossil record of the eudicots is 127–125 Ma based on tricolpate pollen grains. Thus, we suggest a hypothesis that the basal eudicots might have experienced an accelerated evolution and diversification during the latest Barremian and earliest Aptian, leading to the stem groups of at least six extant families or lineages, 10–15 Myr earlier than currently documented. Angiosperms have undergone multiple uneven pulses of radiation since their origin. Many key character innovations occurred in different stages that could have triggered those radiations in concert with various biotic and abiotic factors. 相似文献
3.
Two taxa of cupulate magnoliid fossil flowers, Cronquistiflora and Detrusandra, are described from the Late Cretaceous (Turonian, ∼90 million years before present [MYBP]) Raritan (or lower Magothy) Formation of New Jersey. The fossil taxa are represented by flowers at various stages of development, associated fragments of cup-shaped floral receptacles with attached anthers, and isolated anthers. Both taxa have laminar stamens with adaxial thecae and valvate dehiscence. Pollen is boat-shaped and foveolate in anthers associated with Cronquistiflora and spherical with reticulate ornamentation in Detrusandra. Cup-shaped receptacles are externally bracteose in both taxa. The receptacle of Cronquistiflora is broader than the campanulate one of Detrusandra. Cronquistiflora also has more carpels (∼50 in a spiral vs. ∼5 in a whorl or tight spiral). In Detrusandra the carpels are surrounded by dorsiventrally flattened structures (pistillodes?) that are remote from the attachment of the stamens near the distal rim of the receptacular cupule. Detrusandra stigmas are rounded and bilobed, while those of Cronquistiflora, although bilateral in symmetry, are somewhat peltate. The fossil taxa share prominent characters with extant cupulate magnoliids (e.g., Eupomatia, Calycanthus), but also share characters with other magnoliids including Winteraceae. These fossils represent taxa that are character mosaics relative to currently recognized families. Inclusion of these fossils in existing data matrices and ensuing phylogenetic analyses effect changes in tree topologies consistent with their mosaicism relative to modern taxa. But such analyses do not definitively demonstrate the affinities of the fossils other than illustrating that these fossils are generalized magnoliids. Additional analysis of modern and fossil magnoliids is necessary to fully appreciate the phylogenetic significance and positions of these fossil taxa. However, the results of the phylogenetic analyses do introduce the possibility that extinct taxa of Magnoliales with cupulate floral receptacles were transitional between basal angiosperms and those with tricolpate pollen. The fossils provide insights into the timing of evolution of character complexes now associated with coleopteran pollination. 相似文献
4.
The classic leaf fossil floras from the Cretaceous of the Lusitanian Basin, Portugal, which were first described more than one hundred years ago, have played an important role in the development of ideas on the early evolution of angiosperms. Insights into the nature of vegetational change in the Lusitanian Basin through the Cretaceous have also come from studies of fossil pollen and spores, but the discovery of a series of mesofossil floras containing well-preserved angiosperm reproductive structures has provided a new basis for understanding the systematic relationships and biology of angiosperms at several stratigraphic levels through the Cretaceous. In the earliest mesofossil floras from the Torres Vedras locality, which are of probable Late Barremian-Early Aptian age, angiosperms are surprisingly diverse with about 50 different taxa. In slightly later mesofossil floras, which are of probable Late Aptian-Early Albian age, the diversity of angiosperms is still more substantial with more than hundred different kinds of angiosperm reproductive structures recognized from the Famalicão locality alone. However, this early diversity is largely among angiosperm lineages that produced monoaperturate pollen (e.g., Chloranthaceae, Nymphaeales) and early diverging monocots (Alismatales). Eudicots are rare in these Early Cretaceous mesofossil floras, but already by the Late Cenomanian the vegetation of the western Iberian Peninsula is dominated by angiosperms belonging to various groups of core eudicots. The Normapolles complex is a particularly conspicuous element in both mesofossil floras and in palynological assemblages. In the Late Cretaceous mesofossil floras from Esgueira and Mira, which are of Campanian-Maastrichtian age, core eudicots are also floristically dominant and flowers show great organisational similarity to fossil flowers from other Late Cretaceous floras described from other localities in Asia, Europe and North America. 相似文献
5.
James A. Doyle 《Historical Biology》2015,27(3-4):414-429
Studies of the earliest Cretaceous angiosperms in the 1970s made only broad comparisons with living taxa, but discoveries of fossil flowers and increasingly robust molecular phylogenies of living angiosperms allow more secure recognition of extant clades. The middle to late Albian rise of tricolpate pollen and the first local dominance of angiosperm leaves mark the influx of near-basal lines of eudicots. Associated flowers indicate that palmately lobed ‘platanoids’ and Sapindopsis are both stem relatives of Platanus, while Nelumbites was related to Nelumbo (also Proteales) and Spanomera to Buxaceae. Monocots are attested by Aptian Liliacidites pollen and Acaciaephyllum leaves and Albian araceous inflorescences. Several Albian–Cenomanian fossils belong to Magnoliidae in the revised monophyletic sense, including Archaeanthus in Magnoliales and Virginianthus and Mauldinia in Laurales, while late Barremian pollen tetrads (Walkeripollis) are related to Winteraceae. In the basal ANITA grade, Nymphaeales are represented by Aptian and Albian flowers and whole plants (Monetianthus, Carpestella and Pluricarpellatia). Epidermal similarities of lower Potomac leaves to woody members of the ANITA grade are consistent with Albian flowers assignable to Austrobaileyales (Anacostia). Aptian to Cenomanian mesofossils represent both crown group Chloranthaceae (Asteropollis plant) and stem relatives of Chloranthaceae and/or Ceratophyllum (Canrightia, Zlatkocarpus, Pennipollis plant and possibly Appomattoxia). 相似文献
6.
The flowering plants--angiosperms--appeared during the Early Cretaceous period and within 10-30 Myr dominated the species composition of many floras worldwide. Emerging insights into the phylogenetics of development and discoveries of early angiosperm fossils are shedding increased light on the patterns and processes of early angiosperm evolution. However, we also need to integrate ecology, in particular how early angiosperms established a roothold in pre-existing Mesozoic plant communities. These events were critical in guiding subsequent waves of angiosperm diversification during the Aptian-Albian. Previous pictures of the early flowering plant ecology have been diverse, ranging from large tropical rainforest trees, weedy drought-adapted and colonizing shrubs, disturbance- and sun-loving rhizomatous herbs, and, more recently, aquatic herbs; however, none of these images were tethered to a robust hypothesis of angiosperm phylogeny. Here, we synthesize our current understanding of early angiosperm ecology, focusing on patterns of functional ecology, by merging recent molecular phylogenetic studies and functional studies on extant 'basal angiosperms' with the picture of early angiosperm evolution drawn by the fossil record. 相似文献
7.
Else Marie Friis Kaj Raunsgaard Pedersen Peter R. Crane 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2010,365(1539):369-382
In the second half of the nineteenth century, pioneering discoveries of rich assemblages of fossil plants from the Cretaceous resulted in considerable interest in the first appearance of angiosperms in the geological record. Darwin''s famous comment, which labelled the ‘rapid development’ of angiosperms an ‘abominable mystery’, dates from this time. Darwin and his contemporaries were puzzled by the relatively late, seemingly sudden and geographically widespread appearance of modern-looking angiosperms in Late Cretaceous floras. Today, the early diversification of angiosperms seems much less ‘rapid’. Angiosperms were clearly present in the Early Cretaceous, 20–30 Myr before they attained the level of ecological dominance reflected in some mid-Cretaceous floras, and angiosperm leaves and pollen show a distinct pattern of steadily increasing diversity and complexity through this interval. Early angiosperm fossil flowers show a similar orderly diversification and also provide detailed insights into the changing reproductive biology and phylogenetic diversity of angiosperms from the Early Cretaceous. In addition, newly discovered fossil flowers indicate considerable, previously unrecognized, cryptic diversity among the earliest angiosperms known from the fossil record. Lineages that today have an herbaceous or shrubby habit were well represented. Monocotyledons, which have previously been difficult to recognize among assemblages of early fossil angiosperms, were also diverse and prominent in many Early Cretaceous ecosystems. 相似文献
8.
雌全同株是指雌花和两性花共同发生在同一植株上的性表达形式。作为被子植物从雌雄同花(两性花)向雌雄同株异花进化的一个重要阶段,雌全同株性系统在减少昆虫对雌性的取食和伤害、提高异交率以减少近交衰退、减少雌/雄功能干扰、提高雌/雄性功能间资源分配的灵活性,以及吸引传粉者等方面具有重要的进化适应意义。根据APG III分类系统,雌全同株性系统在被子植物木兰分支(magnoliids)的短蕊花科、单子叶植物分支(monocots)的天南星科和禾本科,以及核心真双子叶植物分支(core eudicots)中的菊科、苋科、唇形科和石竹科等23科中均有报道,且以菊科植物中最多。雌全同株植物不同类群的雌花和两性花在位置、形态、大小及开花时间等性表达特征上表现出多样化,且这些特征不仅受遗传因子的调控,还受可获得资源(如营养、光照、温度和水分等条件)的制约。该文针对我国对雌全同株性系统的研究还相对较少的现状,重点对具雌全同株性系统的类群在被子植物中的分布与系统演化、性表达与环境的关系等方面进行了分析与总结,并对有关其进化适应意义的5个假说进行了介绍和评价,对今后的研究方向进行了展望,以期为推动我国对被子植物雌全同株性系统的进化式样与机制研究提供理论资料。 相似文献
9.
被子植物起源研究中几种观点的思考 总被引:1,自引:0,他引:1
对被子植物起源研究中的几种观点进行了讨论。(1)由于被子植物存在着一组共同的性状,它们不可能是从不同祖先起源的,而是有着共同的祖先。被子植物是一个单源起源的类群。现存被子植物分类系统是依据包括形态学(广义)、分子系统学、古植物学和植物地理学等的综合性状建立的,只能表示出现存类群的亲缘关系并且追溯到它们最近的祖先。人们现在还不可能建立一个包括全部已绝灭的类群和现代生存类群的谱系发生系统。因此,现存被子植物分类系统只能看作是“亲缘”系统。(2)分析了用于推测被子植物起源时间的分子、化石和地理分布证据。我们认为,要确定被子植物起源时间,植物化石是一类重要证据,但化石只能说是植物本身可保存部分和当时当地所提供的化石条件的综合反映,它们不可能就是植物类群或种的起源时间。人们还必须考虑到化石本身的演化历史。应用分子钟也是一种手段,但误差比较大。如果我们除了利用上述两种资料之外,根据植物类群的现代分布格局及其形成,把植物的演化同地球的历史和板块运动联系起来,以推断它们起源的时间,这无疑会增加其可信度。通过对56个种子植物不同演化水平的重要科属地理分布的研究结果,我们曾提出被子植物的起源时间可能要追溯到早侏罗世,甚至晚三叠世。(3)分析了基于分子证据所提出的被子植物基部类群——ANITA成员(包括无油樟科Amborellaceae、睡莲科Nymphaeaceae、八角目Illiciales、早落瓣科Trimeniaceae、木兰藤科Austrobaileyaceae)的性质,讨论了ANITA成员在现代几个被子植物分类系统中的系统位置的不同观点,评价了它们的形态学(广义)性状。指出ANITA的成员由于包含大量的祖征,是属于原始的类群。但由于它们的共有衍征很少,如花粉球形,说明它们在被子植物演化早期就分道扬镳了,沿着不同的传代线分化。因此ANITA是一个源于不同传代线的复合群。 相似文献
10.
M. von Balthazar K. Raunsgaard Pedersen E. M. Friis 《Plant Systematics and Evolution》2005,255(1-2):55-75
A charcoalified fossil flower bud of a new genus and species (Teixeiria lusitanica) is described from the Early Cretaceous of Portugal. The flower is actinomorphic and unisexually male. At the base of the
bud there are several bracts of different sizes, which are followed by sepal-like and petal-like tepals. Bracts and perianth
organs seem to be arranged spirally and to exhibit transitions between different organ categories. The androecium has numerous
stamens in two sizes, but with unclear arrangement. Pollen is small and tricolpate with a perforate tectum and a densely columellate
infratectal layer. No carpels or remains of carpels could be observed on the floral axis. Teixeiria lusitanica shows most affinities to members of Ranunculales. There are also some similarities with Berberidopsis (Berberidopsidaceae, Berberidopsidales) and members of the Saxifragales (Hamamelidaceae and Daphniphyllaceae). 相似文献
11.
Phylogeny of Early Cretaceous spatangoids (Echinodermata: Echinoidea) and taxonomic implications 总被引:1,自引:0,他引:1
Loïc Villier Didier Néraudeau Bernard Clavel Christian Neumann & Bruno David 《Palaeontology》2004,47(2):265-292
A phylogenetic analysis of 36 species provides a test for the taxonomy and the history of Early Cretaceous spatangoids. Most taxonomic units from genera to suborders are consistent with the proposed phylogenetic framework. We retain Hemiasterina, Micrasterina, Hemiasteridae, Schizasteridae, Hemiaster , Heteraster , Mecaster , and Periaster as original monophyletic groups. However, all of these clades originate without the classical apomorphies normally ascribed to them. We suggest a revision of their diagnoses and of the generic attributions of basal species. Some ill-defined, 'primitive', and paraphyletic taxa are recognised: Toxaster , Epiaster , Palhemiaster , and Toxasteridae. Even if they do not have phylogenetic meaning, they are retained here, pending a more complete revision. 相似文献
12.
13.
Eudicot flowering plants comprise roughly 70% of land plant species diversity today, but their early evolution is not well understood. Fossil evidence has been largely restricted to their distinctive tricolpate pollen grains and this has limited our understanding of the ecological strategies that characterized their primary radiation. I describe megafossils of an Early Cretaceous eudicot from the Potomac Group in Maryland and Virginia, USA that are complete enough to allow reconstruction of important life-history traits. I draw on quantitative and qualitative analysis of functional traits, phylogenetic analysis and sedimentological evidence to reconstruct the biology of this extinct species. These plants were small and locally rare but widespread, fast-growing herbs. They had complex leaves and they were colonizers of bright, wet, disturbance-prone habitats. Other early eudicot megafossils appear to be herbaceous rather than woody, suggesting that this habit was characteristic of their primary radiation. A mostly herbaceous initial diversification of eudicots could simultaneously explain the heretofore sparse megafossil record as well as their rapid diversification during the Early Cretaceous because the angiosperm capacity for fast reproduction and fast evolution is best expressed in herbs. 相似文献
14.
Peter J. Makovicky Daqing Li Ke-Qin Gao Matthew Lewin Gregory M. Erickson Mark A. Norell 《Proceedings. Biological sciences / The Royal Society》2010,277(1679):191-198
Ornithomimosaurs (ostrich-mimic dinosaurs) are a common element of some Cretaceous dinosaur assemblages of Asia and North America. Here, we describe a new species of ornithomimosaur, Beishanlong grandis, from an associated, partial postcranial skeleton from the Aptian-Albian Xinminpu Group of northern Gansu, China. Beishanlong is similar to another Aptian-Albian ornithomimosaur, Harpymimus, with which it shares a phylogenetic position as more derived than the Barremian Shenzhousaurus and as sister to a Late Cretaceous clade composed of Garudimimus and the Ornithomimidae. Beishanlong is one of the largest definitive ornithomimosaurs yet described, though histological analysis shows that the holotype individual was still growing at its death. Together with the co-eval and sympatric therizinosaur Suzhousaurus and the oviraptorosaur Gigantraptor, Beishanlong provides evidence for the parallel evolution of gigantism in separate lineages of beaked and possibly herbivorous coelurosaurs within a short time span in Central Asia. 相似文献
15.
BACKGROUND AND AIMS: At the beginning of the Late Cretaceous, angiosperms already inhabited all the environments and overtopped previously gymnosperm-dominated floras, especially in disturbed freshwater-related environments. The aim of this paper is to define what fossil plant ecology occurred during the early Cretaceous in order to follow the early spread of angiosperm taxa. METHODS: Floristic lists and localities from the Barremian to the Albian of Europe are analysed with the Wagner's Parsimony Method. KEY RESULTS: The Wagner's Parsimony Method indicates that (a) during the Barremian, matoniaceous ferns formed a savannah-like vegetation, while angiosperms composed freshwater aquatic vegetation; (b) during the Late Aptian humid phase, conifers increased, while matoniaceous ferns decreased, reflecting the closure of the vegetation; and (c) from the Albian, warmer and drier conditions induced the recovery of the matoniaceous ferns, while core angiosperms first developed in floodplains. CONCLUSIONS: During the late Early Cretaceous (Barremian-Albian), angiosperms showed a stepwise widening of their ecological range, being recorded first during the Barremian as aquatic plant mega-remains and at the Cenomanian onwards occurred in all the environments. 相似文献
16.
M. S. Zavada 《Plant Systematics and Evolution》2007,263(1-2):117-134
Studies in the 1970's reporting the occurrence of fossil pollen types in the Cretaceous, coupled with surveys of extant pollen
morphology of primitive flowering plants, laid the foundation for proposing a Lower Cretaceous origin of angiosperms. Over
the last 30 years, morphological, ultrastructural, and ontogenetic studies of both extant and fossil pollen have provided
an array of new characters, as well as greater resolution in defining character polarities. Moreover, a range of fossil pollen
types exhibiting angiosperm characters occur in low frequency within Triassic and Jurassic sediments. The pollen data provide
evidence of a pre-Cretaceous origin of angiosperms. Speciation and extinction rates were likely equal during the Triassic
and Jurassic, resulting in the paucity of angiosperm pollen types from different geographic areas in the Atlantic – South
American/African rift zone. It was not until the Lower Cretaceous that origination rates exceed extinction rates, resulting
in the subsequent diversification of angiosperms and the origin of the eudicots. 相似文献
17.
A new fossil flower, Kajanthus lusitanicus gen. et sp. nov, is described from the Early Cretaceous (late Aptian–early Albian) Chicalhão site near the village of Juncal, western Portugal, based on a single coalified specimen. The flower is small, actinomorphic, trimerous and bisexual, slightly compressed and with floral organs tightly adhering. The perianth is organised in more than two whorls. The inner two whorls consist of six bulky, apparently fleshy parts. The outer perianth whorls consist of narrow parts. There are six stamens, arranged in two whorls. The filaments are thick and anthers tetrasporangiate. The pollen sacs are protruding with extrorse dehiscence. Pollen observed in situ is tricolpate, tectate, finely punctate-perforate, compressed and more or less spherical in polar view with a diameter of about 15 µm. The gynoecium is superior and composed of three free carpels. Non-destructive virtual sectioning of the single flower using synchrotron radiation X-ray tomographic microscopy revealed the presence of several curved ovules in each carpel, arranged in two longitudinal rows on marginal placentae. The character suite of the Kajanthus flower is only found in extant Lardizabalaceae (Ranunculales), where it is particularly close to Sinofranchetia, a monotypic genus that is now endemic to China. 相似文献
18.
The Pterasteridae comprises a diversified group of extant largely deep-sea starfishes. Generic diagnoses have been based classically
on soft tissue characters and skeletal architecture. A preliminary phylogeny of sixteen extant species is here worked out
by cladistic analysis. The resulting tree suggests monophyly of extant genera and the validity of dissociated plates for identification
of genera. Fossil remains of Pterasteridae are here described for the first time. By comparison with extant species, all the
skeletal remains from the lower Upper Campanian of Belgium and from the lower Maastrichtian of Germany are tentatively assigned
to the genusPteraster. The fossil record of starfishes is poor, but the present Late Cretaceous pterasterids provide one more piece of evidence
of the high diversity of starfishes during the Mesozoic. Known Late Cretaceous and Paleogene fossils are broadly similar,
which suggests the end-Cretaceous extinction event did not cause major turnover in asteroid faunal composition. As suggested
for other starfish groups, both the fossil record of deep-sea Pterasteridae in shelf settings and tree topology imply an onshore-offshore
evolutionary trend.
相似文献
19.
Anita Dunbar 《Grana》2013,52(3):141-147
The pollen morphology of some Pentaphragma Wall, species has been studied by light- and electron microscopy. To improve the rehydration of the dried material used, compound fixatives have been applied. Intine-held vesicles and fibrillar network in gaps and spaces of the exine stain positively for protein. The pollen morphology of the genus differs strongly from that of Campanulaceae, and shows distinctive characters of its own. Hence from a palynological point of view it appears correct to place the genus in a separate family. 相似文献