首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Over the past 25 years, discoveries of Early Cretaceous fossil flowers, often associated with pollen and sometimes with vegetative parts, have revolutionized our understanding of the morphology and diversity of early angiosperms. However, few of these fossils have been integrated into the increasingly robust phylogeny of living angiosperms based primarily on molecular data. To remedy this situation, we have used a morphological data set for living basal angiosperms (including basal eudicots and monocots) to assess the most parsimonious positions of early angiosperm fossils on cladograms of Recent plants, using constraint trees that represent the current range of hypotheses on higher-level relationships, and concentrating on Magnoliidae (the clade including Magnoliales, Laurales, Canellales, and Piperales) and eudicots. In magnoliids, our results confirm proposed relationships of Archaeanthus (latest Albian?) to Magnoliaceae, Endressinia (late Aptian) to Magnoliales (the clade comprising Degeneria, Galbulimima, Eupomatia, and Annonaceae), and Walkeripollis pollen tetrads (late Barremian?) to Winteraceae, but they indicate that Mauldinia (early Cenomanian) was sister to both Lauraceae and Hernandiaceae rather than to Lauraceae alone. Among middle Albian to early Cenomanian eudicots, we confirm relationships of Nelumbites to Nelumbo, platanoid inflorescences and Sapindopsis to Platanaceae, and Spanomera to Buxaceae. With the possible exception of Archaeanthus, these fossils are apparently not crown group members of living families but rather stem relatives of one or more families.  相似文献   

2.
Studies of the earliest Cretaceous angiosperms in the 1970s made only broad comparisons with living taxa, but discoveries of fossil flowers and increasingly robust molecular phylogenies of living angiosperms allow more secure recognition of extant clades. The middle to late Albian rise of tricolpate pollen and the first local dominance of angiosperm leaves mark the influx of near-basal lines of eudicots. Associated flowers indicate that palmately lobed ‘platanoids’ and Sapindopsis are both stem relatives of Platanus, while Nelumbites was related to Nelumbo (also Proteales) and Spanomera to Buxaceae. Monocots are attested by Aptian Liliacidites pollen and Acaciaephyllum leaves and Albian araceous inflorescences. Several Albian–Cenomanian fossils belong to Magnoliidae in the revised monophyletic sense, including Archaeanthus in Magnoliales and Virginianthus and Mauldinia in Laurales, while late Barremian pollen tetrads (Walkeripollis) are related to Winteraceae. In the basal ANITA grade, Nymphaeales are represented by Aptian and Albian flowers and whole plants (Monetianthus, Carpestella and Pluricarpellatia). Epidermal similarities of lower Potomac leaves to woody members of the ANITA grade are consistent with Albian flowers assignable to Austrobaileyales (Anacostia). Aptian to Cenomanian mesofossils represent both crown group Chloranthaceae (Asteropollis plant) and stem relatives of Chloranthaceae and/or Ceratophyllum (Canrightia, Zlatkocarpus, Pennipollis plant and possibly Appomattoxia).  相似文献   

3.
The angiosperms, one of five groups of extant seed plants, are the largest group of land plants. Despite their relatively recent origin, this clade is extremely diverse morphologically and ecologically. However, angiosperms are clearly united by several synapomorphies. During the past 10 years, higher-level relationships of the angiosperms have been resolved. For example, most analyses are consistent in identifying Amborella, Nymphaeaceae, and Austrobaileyales as the basalmost branches of the angiosperm tree. Other basal lineages include Chloranthaceae, magnoliids, and monocots. Approximately three quarters of all angiosperm species belong to the eudicot clade, which is strongly supported by molecular data but united morphologically by a single synapomorphy-triaperturate pollen. Major clades of eudicots include Ranunculales, which are sister to all other eudicots, and a clade of core eudicots, the largest members of which are Saxifragales, Caryophyllales, rosids, and asterids. Despite rapid progress in resolving angiosperm relationships, several significant problems remain: (1) relationships among the monocots, Chloranthaceae, magnoliids, and eudicots, (2) branching order among basal eudicots, (3) relationships among the major clades of core eudicots, (4) relationships within rosids, (5) relationships of the many lineages of parasitic plants, and (6) integration of fossils with extant taxa into a comprehensive tree of angiosperm phylogeny.  相似文献   

4.
The classic leaf fossil floras from the Cretaceous of the Lusitanian Basin, Portugal, which were first described more than one hundred years ago, have played an important role in the development of ideas on the early evolution of angiosperms. Insights into the nature of vegetational change in the Lusitanian Basin through the Cretaceous have also come from studies of fossil pollen and spores, but the discovery of a series of mesofossil floras containing well-preserved angiosperm reproductive structures has provided a new basis for understanding the systematic relationships and biology of angiosperms at several stratigraphic levels through the Cretaceous. In the earliest mesofossil floras from the Torres Vedras locality, which are of probable Late Barremian-Early Aptian age, angiosperms are surprisingly diverse with about 50 different taxa. In slightly later mesofossil floras, which are of probable Late Aptian-Early Albian age, the diversity of angiosperms is still more substantial with more than hundred different kinds of angiosperm reproductive structures recognized from the Famalicão locality alone. However, this early diversity is largely among angiosperm lineages that produced monoaperturate pollen (e.g., Chloranthaceae, Nymphaeales) and early diverging monocots (Alismatales). Eudicots are rare in these Early Cretaceous mesofossil floras, but already by the Late Cenomanian the vegetation of the western Iberian Peninsula is dominated by angiosperms belonging to various groups of core eudicots. The Normapolles complex is a particularly conspicuous element in both mesofossil floras and in palynological assemblages. In the Late Cretaceous mesofossil floras from Esgueira and Mira, which are of Campanian-Maastrichtian age, core eudicots are also floristically dominant and flowers show great organisational similarity to fossil flowers from other Late Cretaceous floras described from other localities in Asia, Europe and North America.  相似文献   

5.
A phylogenetic analysis of a combined data set for 560 angiosperms and seven outgroups based on three genes, 18S rDNA (1855 bp), rbcL (1428 bp), and atpB (1450 bp) representing a total of 4733 bp is presented. Parsimony analysis was expedited by use of a new computer program, the RATCHET. Parsimony jackknifing was performed to assess the support of clades. The combination of three data sets for numerous species has resulted in the most highly resolved and strongly supported topology yet obtained for angiosperms. In contrast to previous analyses based on single genes, much of the spine of the tree and most of the larger clades receive jackknife support 250%. Some of the noneudicots form a grade followed by a strongly supported eudicot clade. The early‐branching angiosperms are Amborellaceae, Nymphaeaceae, and a clade of Austrobaileyaceae, Illiciaceae, and Schi‐sandraceae. The remaining noneudicots, except Ceratophyllaceae, form a weakly supported core eumagnoliid clade comprising six well‐supported subclades: Chloranthaceae, monocots, WinteraceaeICanellaceae, Piperales, Laurales, and Magnoliales. Ceratophyllaceae are sister to the eudicots. Within the well‐supported eudicot clade, the early‐diverging eudicots (e.g. Proteales, Ranunculales, Trochodendraceae, Sabiaceae) form a grade, followed by the core eudicots, the monophyly of which is also strongly supported. The core eudicots comprise six well‐supported subclades: (1) Berberidopsidaceae/Aextoxicaceae; (2) Myrothamnaceae/ Gunneraceae; (3) Saxifragales, which are the sister to Vitaceae (including Leea) plus a strongly supported eurosid clade; (4) Santalales; (5) Caryophyllales, to which Dilleniaceae are sister; and (6) an asterid clade. The relationships among these six subclades of core eudicots do not receive strong support. This large data set has also helped place a number of enigmatic angiosperm families, including Podostemaceae, Aphloiaceae, and Ixerbaceae. This analysis further illustrates the tractability of large data sets and supports a recent, phylogenetically based, ordinal‐level reclassification of the angiosperms based largely, but not exclusively, on molecular (DNA sequence) data.  相似文献   

6.
基于两个叶绿体基因(matK和rbcL)和一个核糖体基因(18S rDNA)的序列分析,对代表了基部被子植物和单子叶植物主要谱系分支的86科126属151种被子植物(单子叶植物58科86属101种)进行了系统演化关系分析。研究结果表明由胡椒目Piperales、樟目Laurales、木兰目Magnoliales和林仙目Canellales构成的真木兰类复合群是单子叶植物的姐妹群。单子叶植物的单系性在3个序列联合分析中得到98%的强烈自展支持。联合分析鉴定出9个单子叶植物主要谱系(广义泽泻目Alismatales、薯蓣目Dioscorcales、露兜树目Pandanales、天门冬目Asparagalcs、百合目Liliales、棕榈目Arecales、禾本目Poales、姜目Zingiberales、鸭跖草目Commelinales)和6个其他被子植物主要谱系(睡莲目Nymphaeales、真双子叶植物、木兰目、樟目、胡椒目、林仙目)。在单子叶植物内,菖蒲目Acorales(菖蒲属Acorus)是单子叶植物最早分化的一个谱系,广义泽泻目(包括天南星科Araceae和岩菖蒲科Toficldiaccae)紧随其后分化出来,二者依次和其余单子叶植物类群构成姐妹群关系。无叶莲科Petrosaviaceac紧随广义的泽泻目之后分化出来,无叶莲科和剩余的单子叶植物类群形成姐妹群关系,并得到了较高的支持率。继无叶莲科之后分化的类群形成两个大的分支:一支是由露兜树目和薯蓣目构成,二者形成姐妹群关系:另一支是由天门冬目、百合目和鸭跖草类复合群组成,三者之间的关系在单个序列分析和联合分析中不稳定,需要进一步扩大取样范围来确定。在鸭跖草类复合群分支内,鸭跖草目和姜目的姐妹群关系在3个序列联合分析和2个序列联合分析的严格一致树中均得到强烈的自展支持,获得的支持率均是100%。但是,对于棕榈目和禾本目在鸭跖草类中的系统位置以及它们和鸭跖草目-姜目之间的关系,有待进一步解决。值得注意的是,无叶莲科与其他单子叶植物类群(除菖蒲目和泽泻目外)的系统关系在本文中获得较高的自展支持率,薯蓣目和天门冬目的单系性在序列联合分析中都得到了较好的自展支持,而这些在以往的研究中通常支持率较低。鉴于菖蒲科和无叶莲科独特的系统演化位置,本文支持将其分别独立成菖蒲目和无叶莲目Petrosavialcs的分类学界定。  相似文献   

7.
Palynomorphs are reported for the first time from the Nishihiro Formation (Wakayama Prefecture, Outer Zone of southwest Japan). The Nishihiro Formation consists of brackish to shallow marine deposits, dated as late Barremian to Aptian from geological correlations. Spores prevail in the assemblage, representing Filicopsida (mainly Cyatheaceae and Anemiaceae), Marchantiopsida and Lycopsida. The pollen assemblage is dominated by Coniferales, whereas Gnetales and Bennettitales/Cycadales are only rarely observed. Moreover, we report angiosperm pollen grains of the genus Retimonocolpites for the first time in the Early Cretaceous sediments of Japan. Pollen grains of the Retimonocolpites Group are typical of early angiosperms and commonly found in assemblages from the early to mid-Cretaceous of all paleofloristic provinces. Until this paper, the oldest angiosperm fossils in Japan were represented by a single seed and a wood reported from the Albian of Hokkaido. The oldest reliable angiosperm pollen grains were reported in Hokkaido from the Cenomanian, and in Honshu from the Coniacian. Thus, Retimonocolpites pollen grains reported in the present study represent the oldest record of angiosperms in Japan. They indicate an appearance of the angiosperms in Japan older than thought until now, which is consistent with that proposed elsewhere in eastern Asia.  相似文献   

8.
Early cretaceous fossil evidence for angiosperm evolution   总被引:1,自引:0,他引:1  
Morphological, stratigraphic, and sedimentological analyses of Early Cretaceous pollen and leaf sequences, especially from the Potomac Group of the eastern United States, support the concept of a Cretaceous adaptive radiation of the angiosperms and suggest pathways of their initial ecological and systematic diversification. The oldest acceptable records of angiosperms are rare monosulcate pollen grains with columellar exine structure from probable Barremian strata of England, equatorial Africa, and the Potomac Group, and small, simple, pinnately veined leaves with several orders of reticulate venation from the Neocomian of Siberia and the basal Potomac Group. The relatively low diversity and generalized character of these fossils and the subsequent coherent pattern of morphological diversification are consistent with a monophyletic origin of the angiosperms not long before the Barremian. PatuxentArundel floras (Barremian-early Albian?) of the Potomac Group include some pollen and leaves with monocotyledonous features as well as dicotyledonous forms. Patuxent angiosperm pollen is strictly monosulcate and has exine sculpture indicative of insect pollination. Rare Patuxent-Arundel angiosperm leaves are generally small, have disorganized venation, and are largely restricted to sandy stream margin lithofacies; the largest are comparable to and may include ancestors of woody Magnoliidae adapted to understory conditions. Patapsco floras (middle to late Albian?) contain rapidly diversifying tricolpate pollen and several new complexes of locally abundant angiosperm leaves. Ovate-cordate and peltate leaves in clayey pond lithofacies may includeancestors of aquatic Nymphaeales and Nelumbonales. Pinnatifid and later pinnately compound leaves with increasingly regular venation which are abundant just above rapid changes in sedimentation are interpreted as early successional “weed trees” transitional to but more primitive than the modern subclass Rosidae. Apparently related palmately lobed, palinactinodromous leaves which develop rigidly percurrent tertiary venation and become abundant in uppermost Potomac stream margin deposits (latest Albian-early Cenomanian?) are interpreted as riparian trees ancestral to the order Hamamelidales. Comparisons of dated pollen floras of other regions indicate that one major subgroup of angiosperms, tricolpate-producing dicots (i.e., excluding Magnoliidae of Takhtajan) originated in the Aptian of Africa-South America at a time of increasing aridity and migrated poleward into Laurasia and Australasia. However, the earlier (Barremian) monosulcate phase of the angiosperm record is represented equally in Africa-South America and Laurasia before marked climatic differentiation between the two areas. These trends are considered consistent with the hypothesis that the angiosperms originated as small-leafed shrubs of seasonally arid environments, and underwent secondary expansion of leaf area and radiated into consecutively later successional stages and aquatic habitats after entering mesic regions as riparian “weeds,” as opposed to the concept that they arose as trees of mesic forest environments.  相似文献   

9.
《Palaeoworld》2008,17(2):142-152
The important question of early angiosperm growth habit (i.e., trees, shrubs or herbs?) remains unanswered. Various theories have been based on data from both living and fossil plants. The Early Cretaceous fossil wood record, however, was seldom used to investigate early angiosperm habit. We set up a database for the Early Cretaceous and Cenomanian of Europe, as this area has the most complete and stratigraphically well-constrained record. The database has 170 entries, based on a bibliographical survey and on the examination of more than 600 new fossil wood specimens from a wide range of palaeoenvironments. In our record the woody characteristic in angiosperms appeared during the Albian, whereas most of the angiosperm's early evolution took place earlier, during the earliest Cretaceous. From the European fossil wood record for the Early Cretaceous and Cenomanian, the global extension and dominance of angiosperms in the Cenomanian is concomitant with a sharp increase in heteroxylous wood diversity. It appears that small stature and weak wood limited the angiosperm ecological radiation for some time.  相似文献   

10.
A recent innovation in paleobotanical studies of the Cretaceous has been the use of bulk sediment disaggregation and sieving techniques. This approach has identified numerous Cretaceous floras that contain well-preserved plant fossil debris (“mesofloras”), and many of these have yielded abundant fossil angiosperm flowers, as well as angiosperm fruits, seeds and dispersed stamens. On the Atlantic Coastal Plain of eastern North America recent research has identified a new series of fossil floras of Campanian age from central Georgia. These form part of a rich sequence of mesofloras that range in age from early Aptian (or perhaps late Barremian) to Campanian. Detailed studies of fossil flowers from these floras have clarified the systematic relationships of Cretaceous angiosperms and identified source plants of several characteristic dispersed angiosperm pollen grains. Taxa referable to extant angiosperm families appear suddenly in the Albian and Cenomanian, and the number of extant angiosperm families that can be recognized increases rapidly through the Late Cretaceous. Based on the record of Cretaceous fossil flowers, “modernization” of angiosperm lineages occurred much earlier than had been inferred previously from studies of dispersed fossil pollen. Major extinct monophyletic “higher” taxa of Cretaceous angiosperms have not yet been recognized.  相似文献   

11.
An angiosperm phylogeny was reconstructed in a maximum likelihood analysis of sequences of four mitochondrial genes, atpl, matR, had5, and rps3, from 380 species that represent 376 genera and 296 families of seed plants. It is largely congruent with the phylogeny of angiosperms reconstructed from chloroplast genes atpB, matK, and rbcL, and nuclear 18S rDNA. The basalmost lineage consists of Amborella and Nymphaeales (including Hydatellaceae). Austrobaileyales follow this clade and are sister to the mesangiosperms, which include Chloranthaceae, Ceratophyllum, magnoliids, monocots, and eudicots. With the exception of Chloranthaceae being sister to Ceratophyllum, relationships among these five lineages are not well supported. In eudicots, Ranunculales, Sabiales, Proteales, Trochodendrales, Buxales, Gunnerales, Saxifragales, Vitales, Berberidopsidales, and Dilleniales form a basal grade of lines that diverged before the diversification of rosids and asterids. Within rosids, the COM (Celastrales-Oxalidales-Malpighiales) clade is sister to malvids (or rosid Ⅱ), instead of to the nitrogen-fixing clade as found in all previous large-scale molecular analyses of angiosperms. Santalales and Caryophyllales are members of an expanded asterid clade. This study shows that the mitochondrial genes are informative markers for resolving relationships among genera, families, or higher rank taxa across angiosperms. The low substitution rates and low homoplasy levels of the mitochondrial genes relative to the chloroplast genes, as found in this study, make them particularly useful for reconstructing ancient phylogenetic relationships. A mitochondrial gene-based angiosperm phylogeny provides an independent and essential reference for comparison with hypotheses of angiosperm phylogeny based on chloroplast genes, nuclear genes, and non-molecular data to reconstruct the underlying organismal phylogeny.  相似文献   

12.
In basal angiosperms (including ANITA grade, magnoliids, Choranthaceae, Ceratophyllaceae) almost all bisexual flowers are dichogamous (with male and female functions more or less separated in time), and nearly 100 per cent of those are protogynous (with female function before male function). Movements of floral parts and differential early abscission of stamens in the male phase are variously associated with protogyny. Evolution of synchronous dichogamy based on the day/night rhythm and anthesis lasting 2 days is common. In a few clades in Magnoliales and Laurales heterodichogamy has also evolved. Beetles, flies and thrips are the major pollinators, with various degrees of specialization up to large beetles and special flies in some large-flowered Nymphaeaceae, Magnoliaceae, Annonaceae and Aristolochiaceae. Unusual structural specializations are involved in floral biological adaptations (calyptras, inner staminodes, synandria and food bodies, and secretory structures on tepals, stamens and staminodes). Numerous specializations that are common in monocots and eudicots are absent in basal angiosperms. Several families are poorly known in their floral biology.  相似文献   

13.
 In molecular analyses Didymelaceae together with Buxaceae form a fairly well-supported clade among families near the base of eudicots. Only little is known, however, about the flowers and inflorescences of Didymelaceae. In this study, the structure of the female flowers and inflorescences of Didymeles integrifolia was studied. Flowers are unicarpellate and orientation of the carpel is slightly deflected abaxially as in Proteaceae. Otherwise, Didymelaceae share many features of the gynoecium with Buxaceae and some other basal eudicots: the carpels are ascidiate in the lower half; anthetic carpels are completely closed by postgenital fusion; stigma is double-crested and widely decurrent; stigmatic papillae are unicellular and pear-shaped; the pollen tube transmitting tract is extensive and prominently differentiated; fruits are fleshy drupes with persistent stigma and style. However, the exceedingly elongate base of the integuments of Didymelaceae is an unusual feature among basal eudicots and even angiosperms. Received October 31, 2002; accepted December 17, 2002 Published online: March 31, 2003  相似文献   

14.

Background  

The magnoliids with four orders, 19 families, and 8,500 species represent one of the largest clades of early diverging angiosperms. Although several recent angiosperm phylogenetic analyses supported the monophyly of magnoliids and suggested relationships among the orders, the limited number of genes examined resulted in only weak support, and these issues remain controversial. Furthermore, considerable incongruence resulted in phylogenetic reconstructions supporting three different sets of relationships among magnoliids and the two large angiosperm clades, monocots and eudicots. We sequenced the plastid genomes of three magnoliids, Drimys (Canellales), Liriodendron (Magnoliales), and Piper (Piperales), and used these data in combination with 32 other angiosperm plastid genomes to assess phylogenetic relationships among magnoliids and to examine patterns of variation of GC content.  相似文献   

15.
Sequences from 14 slowly evolving chloroplast genes (including three highly conserved introns) were obtained for representative basal angiosperm and seed-plant taxa, using novel primers described here. These data were combined with published sequences from atpB, rbcL, and newly obtained sequences from ndhF. Combined data from these 17 genes permit sturdy, well-resolved inference of major aspects of basal angiosperm relationships, demonstrating that the new primers are valuable tools for sorting out the deepest events in flowering plant phylogeny. Sequences from the inverted repeat (IR) proved to be particularly reliable (low homoplasy, high retention index). Representatives of Cabomba and Illicium were the first two successive branches of the angiosperms in an initial sampling of 19 exemplar taxa. This result was strongly supported by bootstrap analysis and by two small insertion/deletion events in the slowly evolving introns. Several paleoherb groups (representatives of Piperales) formed a strongly supported clade with taxa representing core woody magnoliids (Laurales, Magnoliales, and Winteraceae). The monophyly of the sampled eudicots and monocots was also well supported. Analyses of three major partitions of the data showed many of the same clades and supported the rooting seen with all the data combined. While Amborella trichopoda was supported as the sister group of the remaining angiosperms when we added Amborella and Nymphaea odorata to the analysis, a strongly conflicting rooting was observed when Amborella alone was added.  相似文献   

16.
We have determined the complete chloroplast genome sequences of four early-diverging lineages of angiosperms, Buxus (Buxaceae), Chloranthus (Chloranthaceae), Dioscorea (Dioscoreaceae), and Illicium (Schisandraceae), to examine the organization and evolution of plastid genomes and to estimate phylogenetic relationships among angiosperms. For the most part, the organization of these plastid genomes is quite similar to the ancestral angiosperm plastid genome with a few notable exceptions. Dioscorea has lost one protein-coding gene, rps16; this gene loss has also happened independently in four other land plant lineages, liverworts, conifers, Populus, and legumes. There has also been a small expansion of the inverted repeat (IR) in Dioscorea that has duplicated trnH-GUG. This event has also occurred multiple times in angiosperms, including in monocots, and in the two basal angiosperms Nuphar and Drimys. The Illicium chloroplast genome is unusual by having a 10 kb contraction of the IR. The four taxa sequenced represent key groups in resolving phylogenetic relationships among angiosperms. Illicium is one of the basal angiosperms in the Austrobaileyales, Chloranthus (Chloranthales) remains unplaced in angiosperm classifications, and Buxus and Dioscorea are early-diverging eudicots and monocots, respectively. We have used sequences for 61 shared protein-coding genes from these four genomes and combined them with sequences from 35 other genomes to estimate phylogenetic relationships using parsimony, likelihood, and Bayesian methods. There is strong congruence among the trees generated by the three methods, and most nodes have high levels of support. The results indicate that Amborella alone is sister to the remaining angiosperms; the Nymphaeales represent the next-diverging clade followed by Illicium; Chloranthus is sister to the magnoliids and together this group is sister to a large clade that includes eudicots and monocots; and Dioscorea represents an early-diverging lineage of monocots just internal to Acorus.  相似文献   

17.
木兰藤科系统位置评述   总被引:3,自引:0,他引:3  
木兰藤科(Austrobaileyaceae)含1属2种,是系统学上最孤立的科之一。其花粉类似于最古老的被子植物化石之一:晚白垩世的棒纹粉。最新的分子系统发育研究结果表明,木兰藤科是现存被子植物的基部类群之一,其对于被子植物的起源与早期进化的研究具有重要价值。被子植物(有花植物)的起源和辐射一直是植物学家关注的热点。有关木兰藤科的系统位置一直存在争议。本文对该科系统位置的研究历史与现状进行评述。  相似文献   

18.
Abstract The family Lauraceae is a major component of tropical and subtropical forests worldwide, and includes some commercially important timber trees and medicinal plants. However, phylogenetic relationships within Lauraceae have long been problematic due to low sequence divergence in commonly used markers, even between morphologically distinct taxa within the family. Here we present phylogenetic analyses of 43 newly generated Lauraceae plastomes together with 77 plastomes obtained from GenBank, representing 24 genera of Lauraceae and 17 related families of angiosperms, plus nine barcodes from 19 additional species in 18 genera of Lauraceae, in order to reconstruct highly supported relationships for the Lauraceae. Our phylogeny supports the relationships: sisterhood of the Lauraceae and a clade containing Hernandiaceae and Monimiaceae, with Atherospermataceae and Gomortegaceae being the next sister groups, followed by Calycanthaceae. Our results highlight a monophyletic Lauraceae, with nine well‐supported clades as follows: Hypodaphnis clade, BeilschmiediaCryptocarya clade, Cassytha clade, Neocinnamomum clade, Caryodaphnopsis clade, ChlorocardiumMezilaurus clade, MachilusPersea clade, CinnamomumOcotea clade, and LaurusNeolitsea clade. The topology recovered here is consistent with the patterns of plastome structural evolution and morphological synapomorphies reported previously. More specifically, flower sex, living type, inflorescence type, ovary position, anther locus number, leaf arrangement, leaf venation, lateral vein number, tree height, and inflorescence location all represent morphological synapomorphies of different lineages. Our findings have taxonomic implications and two new tribes, Caryodaphnopsideae and Neocinnamomeae, are described, and the composition of four other tribes is updated. The phylogeny recovered here provides a robust phylogenetic framework through which to address the evolutionary history of the Magnoliids, the third‐largest group of Mesangiospermae.  相似文献   

19.
The matK gene has been among the most useful loci for resolving plant phylogenetic relationships at different evolutionary time-scales, but much less is known about the phylogenetic utility of the flanking trnK intron, especially for deep level phylogenetics. We compared the relative performance of matK and trnK intron regions for resolving the relationships of the early diverging eudicots (angiosperms). The two regions display similar nucleotide compositions and distributions of rate variation among sites. The trnK intron sequences also provide similar levels of phylogenetic information per-site as matK. Combining the trnK intron sequences with matK increases overall bootstrap support for the early diverging eudicots compared to analyses of matK alone. MP, ML and Bayesian analyses provide strong support for eudicots, the sister group relationship of Ranunculales to remaining eudicots, and a Buxales+Trochodendraceae+core eudicots clade. matK and the trnK intron support conflicting positions for Buxales and Trochodendrales in relation to the core eudicots.  相似文献   

20.
CLADISTICS OF THE MAGNOLIIDAE   总被引:8,自引:0,他引:8  
Abstract A cladistic resolution is presented for the origin of the angiosperms based on a parsimony analysis of 49 taxa of Magnoliidae. Hamamelidae and Alismatidae, with gymnospermous outgroup comparisons for the polarization of 104 characters. The Magnoliidae is recognized as a paraphyletic assemblage of nine orders: Calycanthales, Magnoliales, Laurales, Illiciales, Lactoridales. Ranunculales, Aristolochiales, Piperales and Nymphaeales. The Calycanthaceae and Idiospermaceae are segregated as the new order Calycanthales, which is hypothesized to be the archetype for angiosperms. Excluding Winteraceae and Lactoridaceae, the Magnoliales is monophyletic. The Austrobaileyaceae is a first branch of Magnoliales, rather than lauralean. Excluding Amborellaceae and Calycanthales, the Laurales is monophyletic. The Chloranthaceae is a first branch of Laurales, rather than piperalean. The Amborellaceae and Winteraceae are early branches of Illiciales. The Lactoridaceae is isolated as the Lactoridales. Including Papaveraceae, the Ranunculales is monophyletic, with Lardizabalaceae as a first branch. The Ranunculales is more closely related to the Hamamelidae, forming the clade Tricolpates. The Aristolochiales, Piperales and Nymphaeales are successively more closely related to the Alismatidae, forming the clade Paleoherbs. The Nelumbonaceae are nymphaealean Paleoherbs, rather than Tricolpates. The Lactoridaceae is not a Paleoherb. These results support many aspects of the strobilar-flower hypothesis for the origin of the angiosperms, as well as the plesiomorphic character states of woody shrubs with simple, pinnatelyveined leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号