首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Elevation of intracellular 8-bromo-cyclic AMP (cAMP) can activate certain steroid receptors and enhance the ligand-dependent activation of most receptors. During ligand-independent activation of the chicken progesterone receptor (cPR(A)) with the protein kinase A (PKA) activator, 8-bromo-cAMP, we found no alteration in cPR(A) phosphorylation (W. Bai, B. G. Rowan, V. E. Allgood, B. W. O'Malley, and N. L. Weigel, J. Biol. Chem. 272:10457-10463, 1997). To determine if other receptor-associated cofactors were targets of cAMP-dependent signaling pathways, we examined the phosphorylation of steroid receptor coactivator 1 (SRC-1). We detected a 1.8-fold increase in SRC-1 phosphorylation in transfected COS-1 cells incubated with 8-bromo-cAMP. Phosphorylation was increased on two mitogen-activated protein kinase (MAPK) sites, threonine 1179 and serine 1185. PKA did not phosphorylate these sites in vitro. However, blockage of PKA activity in COS-1 cells with the PKA inhibitor (PKI) prevented the 8-bromo-cAMP-mediated phosphorylation of these sites. Incubation of COS-1 cells with 8-bromo-cAMP resulted in activation of the MAPK pathway, as determined by Western blotting with antibodies to the phosphorylated (active) form of Erk-1/2, suggesting an indirect pathway to SRC-1 phosphorylation. Mutation of threonine 1179 and serine 1185 to alanine in COS-1 cells coexpressing cPR(A) and the GRE(2)E1bCAT reporter resulted in up to a 50% decrease in coactivation during both ligand-independent activation and ligand-dependent activation. This was due, in part, to loss of functional cooperation between SRC-1 and CREB binding protein for coactivation of cPR(A). This is the first demonstration of cross talk between a signaling pathway and specific phosphorylation sites in a nuclear receptor coactivator that can regulate steroid receptor activation.  相似文献   

4.
We have constructed a nearly full length cDNA clone, pGTA/C44, complementary to the rat liver glutathione S-transferase Yb1 mRNA. The nucleotide sequence of pGTA/C44 has been determined, and the complete amino acid sequence of the Yb1 subunit has been deduced. The cDNA clone contains an open reading frame of 654 nucleotides encoding a polypeptide comprising 218 amino acids with Mr = 25,919. The NH2-terminal sequence deduced from DNA sequence analysis of pGTA/C44 is in agreement with the first 19 amino acids determined for purified glutathione S-transferase A, a Yb1 homodimer, by Frey et al. (Frey, A. B., Friedberg, T., Oesch, F., and Kreibich, G. (1983) J. Biol. Chem. 258, 11321-11325). The DNA sequence of pGTA/C44 shares significant sequence homology with a cDNA clone, pGT55, which is complementary to a mouse liver glutathione S-transferase (Pearson, W. R., Windle, J. J., Morrow, J. F., Benson, A. M., and Talalay, P. (1983) J. Biol. Chem. 258, 2052-2062). We have also determined 37 nucleotides of the 5'-untranslated region and 348 nucleotides of the 3'-untranslated region of the Yb1 mRNA. The Yb1 mRNA and subunit do not share any sequence homology with the rat liver glutathione S-transferase Ya or Yc mRNAs or their corresponding subunits. These data provide the first direct evidence that the Yb1 subunit is derived from a gene or gene family which is distinct from the Ya-Yc gene family.  相似文献   

5.
Molecular cloning and expression of human bile acid beta-glucosidase   总被引:1,自引:0,他引:1  
A novel microsomal beta-glucosidase was recently purified and characterized from human liver that catalyzes the hydrolysis of bile acid 3-O-glucosides as endogenous compounds. The primary structure of this bile acid beta-glucosidase was deduced by cDNA cloning on the basis of the amino acid sequences of peptides obtained from the purified enzyme by proteinase digestion. The isolated cDNA comprises 3639 base pairs containing 524 nucleotides of 5'-untranslated and 334 nucleotides of 3'-untranslated sequences including the poly(A) tail. The open reading frame predicts a 927-amino acid protein with a calculated M(r) of 104,648 containing one putative transmembrane domain. Data base searches revealed no homology with any known glycosyl hydrolase or other functionally identified protein. The cDNA sequence was found with significant identity in the human chromosome 9 clone RP11-112J3 of the human genome project. The recombinant enzyme was expressed in a tagged form in COS-7 cells where it displayed bile acid beta-glucosidase activity. Northern blot analysis of various human tissues revealed high levels of expression of the bile acid beta-glucosidase mRNA (3.6-kilobase message) in brain, heart, skeletal muscle, kidney, and placenta and lower levels of expression in the liver and other organs.  相似文献   

6.
7.
8.
A single gene codes for two forms of rat nucleolar protein B23 mRNA   总被引:7,自引:0,他引:7  
Protein B23 (38 kDa, pI = 5.1) is an abundant RNA-associated nucleolar phosphoprotein and putative ribosome assembly factor. A full length cDNA clone (lambda JH1) encoding a major expressed form of rat protein B23, now designated B23.1, was reported recently (Chang, J. H., Dumbar, T. S., and Olson, M. O. J. (1988) J. Biol. Chem. 263, 12824-12837). In this paper the isolation from a rat brain library and sequence of a cDNA clone (lambda JH2) coding for a second form (B23.2) of protein B23 is reported. Isoforms B23.1 and B23.2 are polypeptides of 292 and 257 amino acids, respectively. The 5'-untranslated regions of the two cDNAs and the amino-terminal 255 amino acids of the proteins are identical in the two isoforms. However, the 3'-untranslated regions of the mRNAs are completely different, and the dipeptide Gly-Gly in B23.1 (residues 256 and 257) is replaced by Ala-His in B23.2 indicating that the former is not a precursor of the latter. The finding of AGGT sequences in the 3' regions of lambda JH1 suggest the presence of intron-exon boundaries at the point where the two cDNAs begin to differ. To investigate the origin of the two isoforms, two rat genomic libraries were screened with oligonucleotide probes based on sequences from the unique regions of the two cDNAs. One of the genomic clones isolated (lambda JH125) contained a 6.5-kilobase fragment encoding the 3' end of both cDNAs. lambda JH125 contains four exons designated W, X, Y, and Z in the order indicated. Exons W and X encode 36 amino acids at the carboxyl terminus of B23.2, whereas exons W, Y, and Z encode the carboxyl-terminal 71 amino acid residues of B23.1. Exons X and Z each contain distinct 3'-untranslated sequences in which are found polyadenylation signals. These data suggest that two different mRNAs are formed by alternative splicing of separate 3' segments onto a common 5' region.  相似文献   

9.
We recently cloned and sequenced alpha 1 (VIII) collagen cDNAs and demonstrated that type VIII collagen is a short-chain collagen that contains both triple helical and carboxyl-terminal non-triple helical domains similar to those of type X collagen (Yamaguchi, N., Benya, P., van der Rest, M., and Ninomiya, Y. (1989) J. Biol. Chem. 264, 16022-16029). We report here on the structural organization of the gene encoding the rabbit alpha 1 (VIII) collagen chain. The alpha 1 (VIII) gene contains four exons, whose sizes are 69, 120, 331, and 2278 base pairs. The first and second exons encode only 5'-untranslated sequences, whereas the third exon codes for a very short (3 nucleotides) stretch of 5'-untranslated sequence, the signal peptide, and almost the entire amino-terminal non-triple helical (NC2) domain (109 1/3 codons). Interestingly, the last exon encodes the rest of the translated region, including 7 2/3 codons of the NC2 domains, the complete triple helical domain (COL1, 454 amino acid residues), the entire carboxyl-terminal non-triple helical domain (NC1, 173 amino acid residues), and the 3'-untranslated region. This exon-intron structure is in stark contrast to the multi-exon structure of the fibrillar collagen (types I, II, III, V, and XI) genes, but it is remarkably similar to that of the type X collagen gene (LuValle, P., Ninomiya, Y., Rosenblum, N. D., and Olsen, B. R. (1988) J. Biol. Chem. 263, 18278-18385). The data suggest that the alpha 1 (VIII) and the alpha 1 (X) genes belong to the same subclass within the collagen family and that they arose from a common evolutionary precursor.  相似文献   

10.
11.
A gene coding for the flavodoxin from Clostridium MP was designed, synthesized, and expressed in Escherichia coli. The sequence of the coding region was derived from the published amino acid sequence of the protein (Tanaka, M., Haniu, M., Yasunobu, K.T., and Mayhew, S. G. (1974) J. Biol. Chem. 249, 4393-4397) and was designed for optimal expression and for use of the cassette mutagenesis approach. The structural gene was subassembled in three sections, each of which was constructed by the enzymatic ligation of three complementary pairs of chemically synthesized oligodeoxyribonucleotides having short single-stranded ends complementary to that of the adjacent pair. Coligation of the three sections produced the final structural gene which consists of 420 nucleotides. The synthetic gene was cloned behind the hybrid tac promoter (Amman, E., Brosius, J., and Ptashne, M. (1983) Gene (Amst.) 25, 167-178) in the pKK223-3 vector or adjacent to the strong T7 RNA polymerase promoter in the pET-3a expression vector (Rosenberg, A.H., Lade, B. N., Chui, D-S., Lin, S-W., Dunn, J. J., and Studier, F. W. (1987) Gene (Amst.) 56, 125-135) for expression in E. coli. Upon induction with isopropyl-beta-D-thiogalactoside, the flavodoxin polypeptide was expressed from the artificial gene to levels approaching 20% of total extractable proteins using either expression system. The flavodoxin was purified from cellular extracts as the holoprotein containing bound flavin mononucleotide. The recombinant flavodoxin protein was found to have an ultraviolet/visible spectrum, amino-terminal sequence, and amino acid composition identical to the wild-type flavodoxin protein purified from Clostridium MP. This work represents the first chemical synthesis and expression in E. coli of an artificial gene coding for a bacterial flavodoxin.  相似文献   

12.
We previously characterized PP1bp134 and PP1bp175, two neuronal proteins that bind the protein phosphatase 1 catalytic subunit (PP1). Here we purify from rat brain actin-cytoskeletal extracts PP1(A) holoenzymes selectively enriched in PP1gamma(1) over PP1beta isoforms and also containing PP1bp134 and PP1bp175. PP1bp134 and PP1bp175 were identified as the synapse-localized F-actin-binding proteins spinophilin (Allen, P. B., Ouimet, C. C., and Greengard, P. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 9956-9561; Satoh, A., Nakanishi, H., Obaishi, H., Wada, M., Takahashi, K., Satoh, K., Hirao, K., Nishioka, H., Hata, Y., Mizoguchi, A., and Takai, Y. (1998) J. Biol. Chem. 273, 3470-3475) and neurabin (Nakanishi, H., Obaishi, H., Satoh, A., Wada, M., Mandai, K., Satoh, K., Nishioka, H. , Matsuura, Y., Mizoguchi, A., and Takai, Y. (1997) J. Cell Biol. 139, 951-961), respectively. Recombinant spinophilin and neurabin interacted with endogenous PP1 and also with each other when co-expressed in HEK293 cells. Spinophilin residues 427-470, or homologous neurabin residues 436-479, were sufficient to bind PP1 in gel overlay assays, and selectively bound PP1gamma(1) from a mixture of brain protein phosphatase catalytic subunits; additional N- and C-terminal sequences were required for potent inhibition of PP1. Immunoprecipitation of spinophilin or neurabin from crude brain extracts selectively coprecipitated PP1gamma(1) over PP1beta. Moreover, immunoprecipitation of PP1gamma(1) from brain extracts efficiently coprecipitated spinophilin and neurabin, whereas PP1beta immunoprecipitation did not. Thus, PP1(A) holoenzymes containing spinophilin and/or neurabin target specific neuronal PP1 isoforms, facilitating efficient regulation of synaptic phosphoproteins.  相似文献   

13.
K Fukui  F Watanabe  T Shibata  Y Miyake 《Biochemistry》1987,26(12):3612-3618
Complementary DNAs encoding D-amino acid oxidase (EC 1.4.3.3, DAO), one of the principal and characteristic enzymes of the peroxisomes of porcine kidney, have been isolated from the porcine kidney cDNA library by hybridization with synthetic oligonucleotide probes corresponding to the partial amino acid sequences. Analysis of the nucleotide sequences of two clones revealed a complete 3211-nucleotide sequence with a 5'-terminal untranslated region of 198 nucleotides, 1041 nucleotides of an open reading frame that encoded 347 amino acids, and a 3'-terminal untranslated region of 1972 nucleotides. The deduced amino acid sequence was completely identical with the reported sequence of the mature enzyme [Ronchi, S., Minchiotti, L., Galliano, M., Curti, B., Swenson, R. P., Williams, C. H. J., & Massey, V. (1982) J. Biol. Chem. 257, 8824-8834]. These results indicate that the primary translation product does not contain a signal peptide at its amino-terminal region for its translocation into peroxisomes. RNA blot hybridization analysis suggests that porcine kidney D-amino acid oxidase is encoded by three mRNAs that differ in size: 3.3, 2.7, and 1.5 kilobases. Comparison of the sequences of the two cDNA clones revealed that multiple polyadenylation signal sequences (ATTAAA and AACAAA) are present in the 3'-untranslated region, making the different mRNA species. The efficiency of 3' processing of the RNA was quite different between the two signal sequences ATTAAA and AACAAA. Southern blot analysis showed the presence of a unique gene for D-amino acid oxidase in the porcine genome.  相似文献   

14.
A 1.5-kilobase cDNA clone for human pyruvate dehydrogenase E1 was isolated from a lambda gt11 expression library by screening with polyclonal antiserum to the E1 alpha subunit of the porcine pyruvate dehydrogenase complex, a polyclonal antibody against bovine pyruvate dehydrogenase complex and a synthetic oligonucleotide based on the known amino acid sequence of the amino-terminal of the bovine pyruvate dehydrogenase-E1 alpha subunit. Nucleotide sequence analysis of the cDNA revealed a 5'-untranslated sequence of 72 nucleotides, a translated sequence of 1170 nucleotides, and a 3'-untranslated sequence of 223 nucleotides with a poly(A) tail. The cDNA structure predicts a leader sequence of 29 amino acids and a mature protein of 362 amino acids comprising an amino-terminal peptide identical to that of the bovine E1 alpha subunit and three serine phosphorylation sites whose sequence was also identical to those in the bovine E1 alpha subunit. The translated sequence for the mature protein differs substantially from that described by Dahl et al. (Dahl, H. H., Hunt, S. M., Hutchison, W. M., and Brown, G. K. (1987) J. Biol. Chem. 262, 7398-7403) by virtue of a frameslip between bases 390 and 594. This amended sequence is confirmed by the presence of additional restriction sites for the enzymes NaeI and HaeII at the beginning and end, respectively, of this section. The leader sequence is typical for mitochondrial enzymes being composed of a combination of neutral and basic residues. The amino acid composition is strikingly similar to that of the bovine protein. This cDNA clone hybridizes with a 1.8-kilobase mRNA on a Northern blot analysis of human fibroblasts, and a second minor band of 4.4 kilobases is also detected.  相似文献   

15.
The cloning of the gene for staphylococcal nuclease A in the pIN-III-OmpA secretion vector results in a hybrid protein which is processed by signal peptidase I, yielding an active form of the nuclease that is secreted across the cytoplasmic membrane (Takahara, M., Hibler, D., Barr, P. J., Gerlt, J. A., and Inouye, M. (1985) J. Biol. Chem. 260, 2670-2674). Using oligonucleotide-directed site-specific mutagenesis, we have constructed a set of mutants at the cleavage site area of the precursor hybrid protein designed to alter progressively the predicted secondary structure of the cleavage site. Our results show that processing becomes increasingly defective as the turn probability decreases. These results are consistent with the structural requirement that we found for the processing of lipoprotein by signal peptidase II (Inouye, S., Duffaud, G., and Inouye, M. (1986) J. Biol. Chem. 261, 10970-10975). We conclude that secretory precursor proteins have a distinct secondary structural requirement at their cleavage site for processing by signal peptidase I, as well as by signal peptidase II.  相似文献   

16.
B Meyhack  B Pace  N R Pace 《Biochemistry》1977,16(23):5009-5015
In vitro maturation of precursor 5S ribosomal RNA (p5A) from Bacillus subtilis effected by RNase M5 yields mature 5S RNA (m5, 116 nucleotides), and 3' precursor-specific segment (42 nucleotides), and a 5' precursor-specific segment (21 nucleotides) (Sogin, M.L., Pace, B., and Pace, N.R. (1977), J. Biol. Chem. 252, 1350). Limited digestion of p5A with RNase T2 introduces a single scission at position 60 of the molecule; m5 is cleaved at the corresponding nucleotide residue. The complementary "halves" of the molecules could be isolated from denaturing polyacrylamide gels. The isolated fragments of p5A are not substrates for RNase M5, suggesting that some recognition elements can be utilized by RNase M5 only when presented in double-helical form. In exploring the involvement of the precursor-specific segments in the RNase M5-p5A interaction, substrate molecules lacking the 3' or 5' precursor-specific segment were constructed by reannealing complementary "halves" from p5A and m5 RNA. The artificial substrate lacking the 5'-terminal precursor segment was cleaved very much more slowly than the lacking t' segment; the 5' precursor-specific segment therefore contains one or more components recognized by RNase M5 during its interaction with the p5A substrate.  相似文献   

17.
Recombinant secretory immunoglobulin A containing a bacterial epitope in domain I of the secretory component (SC) moiety can serve as a mucosal delivery vehicle triggering both mucosal and systemic responses (Corthésy, B., Kaufmann, M., Phalipon, A., Peitsch, M., Neutra, M. R., and Kraehenbuhl, J.-P. (1996) J. Biol. Chem. 271, 33670-33677). To load recombinant secretory IgA with multiple B and T epitopes and extend its biological functions, we selected, based on molecular modeling, five surface-exposed sites in domains II and III of murine SC. Loops predicted to be exposed at the surface of SC domains were replaced with the DYKDDDDK octapeptide (FLAG). Another two mutants were obtained with the FLAG inserted in between domains II and III or at the carboxyl terminus of SC. As shown by mass spectrometry, internal substitution of the FLAG into four of the mutants induced the formation of disulfide-linked homodimers. Three of the dimers and two of the monomers from SC mutants could be affinity-purified using an antibody to the FLAG, mapping them as candidates for insertion. FLAG-induced dimerization also occurred with the polymeric immunoglobulin receptor (pIgR) and might reflect the so-far nondemonstrated capacity of the receptor to oligomerize. By co-expressing in COS-7 cells and epithelial Caco-2 cells two pIgR constructs tagged at the carboxyl terminus with hexahistidine or FLAG, we provide the strongest evidence reported to date that the pIgR dimerizes noncovalently in the plasma membrane in the absence of polymeric IgA ligand. The implication of this finding is discussed in terms of IgA transport and specific antibody response at mucosal surfaces.  相似文献   

18.
The structure of mitochondria is highly dynamic and depends on the balance of fusion and fission processes. Deletion of the mitochondrial dynamin-like protein Mgm1 in yeast leads to extensive fragmentation of mitochondria and loss of mitochondrial DNA. Mgm1 and its human ortholog OPA1, associated with optic atrophy type I in humans, were proposed to be involved in fission or fusion of mitochondria or, alternatively, in remodeling of the mitochondrial inner membrane and cristae formation (Wong, E. D., Wagner, J. A., Gorsich, S. W., McCaffery, J. M., Shaw, J. M., and Nunnari, J. (2000) J. Cell Biol. 151, 341-352; Wong, E. D., Wagner, J. A., Scott, S. V., Okreglak, V., Holewinske, T. J., Cassidy-Stone, A., and Nunnari, J. (2003) J. Cell Biol. 160, 303-311; Sesaki, H., Southard, S. M., Yaffe, M. P., and Jensen, R. E. (2003) Mol. Biol. Cell, in press). Mgm1 and its orthologs exist in two forms of different lengths. To obtain new insights into their biogenesis and function, we have characterized these isoforms. The large isoform (l-Mgm1) contains an N-terminal putative transmembrane segment that is absent in the short isoform (s-Mgm1). The large isoform is an integral inner membrane protein facing the intermembrane space. Furthermore, the conversion of l-Mgm1 into s-Mgm1 was found to be dependent on Pcp1 (Mdm37/YGR101w) a recently identified component essential for wild type mitochondrial morphology. Pcp1 is a homolog of Rhomboid, a serine protease known to be involved in intercellular signaling in Drosophila melanogaster, suggesting a function of Pcp1 in the proteolytic maturation process of Mgm1. Expression of s-Mgm1 can partially complement the Deltapcp1 phenotype. Expression of both isoforms but not of either isoform alone was able to partially complement the Deltamgm1 phenotype. Therefore, processing of l-Mgm1 by Pcp1 and the presence of both isoforms of Mgm1 appear crucial for wild type mitochondrial morphology and maintenance of mitochondrial DNA.  相似文献   

19.
20.
The tetrameric form of a Desulfovibrio gigas ferredoxin, named Fd II, mediates electron transfer between cytochrome c3 and sulfite reductase. We have studied two stable oxidation states of this protein with M?ssbauer spectroscopy and electron paramagnetic resonance. We found 3 iron atoms/monomer and a spin concentration of 0.9 spins/monomer for the oxidized protein. Taken together, the EPR and M?ssbauer data demonstrate conclusively the presence of a spin-coupled structure containing 3 iron atoms and labile sulfur. The M?ssbauer data show also that this metal center is structurally similar, if not identical, with the low potential center of a ferredoxin from Azotobacter vinelandii, a novel cluster described recently (Emptage, M.H., Kent, T.A., Huynh, B.H., Rawlings, J., Orme-Johnson, W.H., and Münck, E. (1980) J. Biol. Chem. 255, 1793-1796).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号