首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Folic acid pulses induced developmental processes in agip 71, a morphogenetic mutant of Dictyostelium discoideum, strain Ax-2. Cells that had received folic acid pulses were able to form EDTA-stable cell aggregates and to complete full differentiation to fruiting bodies. In these cells no autonomous periodic activities were observed by light scattering. Folic acid pulses elicited increases in the concentrations of cyclic GMP and cyclic AMP. In undifferentiated cells, folic acid caused a rapid increase in the level of cyclic GMP without a significant change in the level of cyclic AMP. In an advanced developmental state folic acid caused an increase in cyclic AMP in addition to two successsive peaks of cyclic GMP. Experiments performed with the parent strain, Ax-2, also showed that during the development towards aggregation competence, cells acquired the ability to produce a cyclic AMP peak in response to folic acid.  相似文献   

2.
The induction of aggregative phase functions and the acceleration of the onset of aggregation competence by nanomolar pulses of cyclic AMP can be mimicked by exposing developing cells to a high extracellular concentration of either cyclic AMP or cyclic GMP (5 × 10?4M) during the first 1–2 hr of development. Pulses of cyclic AMP have previously been shown to result in oscillations of intracellular cyclic AMP concentration; we show that high extracellular concentrations of cyclic AMP and cyclic GMP cause intracellular cyclic AMP levels to increase. We describe a mutant, HM11, which has elevated levels of intracellular cyclic AMP from the beginning of development and which begins to accumulate cell-associated phosphodiesterase, an aggregative phase enzyme, within an hour of starvation. Our data suggest that the expression of aggregative phase functions is controlled by an elevation of intracellular cyclic AMP which may be either continuous or periodic.  相似文献   

3.
Adenosine 3',5'-monophosphate (cyclic AMP) mediates cell aggregation in Dictyostelium discoideum. Cell aggregation is enhanced by pulses of cyclic AMP. Application of pulses of cyclic AMP to cells that were starved only for 1 h (postvegetative cells) induces enzyme activity. One of the enzymes induced by cyclic AMP pulses is phosphodiesterase. We pulsed postvegetative cells with a set of cyclic AMP derivatives that were selected according to certain conformational and physical-chemical properties, and we measured their effect on the induction of phosphodiesterase activity. The cyclic nucleotide specificity for chemotaxis in the aggregative phase was similar to the specificity for phosphodiesterase induction in the postvegetative phase. The shape of the dose-response curves shows a paradox: the activity of a derivative, when applied at receptor-saturating concentrations, is inversely related to its affinity. These results can be explained by the assumption that the response of the chemoreceptor to different cyclic AMP derivatives is proportional to the frequency of associations (rate receptor) and not to the proportion of occupied receptors (occupation receptor). The characteristics of rate receptors and occupation receptors during chemosensory transduction will be discussed.  相似文献   

4.
An aggregateless mutant (HT41), isolated from D. discoideum NP14, was examined for the parameters involved in cell aggregation. HT41 cells were induced to express some of these parameters by cyclic AMP pulses. Spontaneous oscillations in light scattering were not observed in the suspension of the mutant cells. A pulse of cyclic AMP caused a monophasic decrease in light scattering, which was similar to the response of pre-aggregation cells of the wild-type. When cyclic AMP pulses were applied on a cell layer, HT41 cells aggregated without forming the streams. These results suggest that HT41 is a mutant defective in signal emission and relay.  相似文献   

5.
Mutants of Dictyostelium discoideum that developed huge aggregation streams in expanding clones were investigated using optical and biochemical techniques. Representatives of the six complementation groups previously identified (stmA-stmF) were found to be similar to the parental wild-type strain XP55 in both the extent and timing of their ability to initiate and relay chemotactic signals and in the formation of cyclic AMP receptors and phosphodiesterases. The mutants differed from the wild-type in producing an abnormal chemotactic (movement) response visible using both dark-field optics with synchronously aggregating amoebae on solid substrata and light scattering techniques with oxygenated cell suspensions. Mutants of complementation group stmF showed chemotactic movement responses lasting up to 520 s, rather than 100 s as seen in the parental and other strains. Measurements of cyclic GMP formed intracellularly in response to chemotactic pulses of cyclic AMP in stmF mutants showed that abnormally high concentrations of this nucleotide were formed within 10 s and were not rapidly degraded. A causal correlation between defective cyclic GMP metabolism and the altered chemotactic response is suggested, and a model is proposed that accounts for the formation of huge aggregation streams in clones of these mutants.U  相似文献   

6.
The amoebae Dictyostelium discoideum aggregate after starvation in a wavelike manner in response to periodic pulses of cyclic AMP (cAMP) secreted by cells which behave as aggregation centers. In addition to autonomous oscillations, the cAMP signaling system that controls aggregation is also capable of excitable behavior, which consists in the transient amplification of suprathreshold pulses of extracellular cAMP. Since the first theoretical model for slime mold aggregation proposed by Keller and Segel in 1970, many theoretical studies have addressed various aspects of the mechanism and function of cAMP signaling in Dictyostelium. This paper presents a brief overview of these developments as well as some reminiscences of the author's collaboration with Lee Segel in modeling the dynamics of cAMP relay and oscillations. Considered in turn are models for cAMP signaling in Dictyostelium, the developmental path followed by the cAMP signaling system after starvation, the frequency encoding of cAMP signals, and the origin of concentric or spiral waves of cAMP.  相似文献   

7.
We are studying cell differentiation in Dictyostelium discoideum by examining the regulation of genes that are preferentially expressed in different cell types. A system has been established in which prestalk- and prespore-cell-specific genes are expressed in single cells in response to culture conditions. We confirm our previous results showing that cyclic AMP induces prestalk genes and now show that it is also required for prespore gene induction. The expression of both classes of genes is additionally dependent on the presence of a factor(s) secreted by developing cells which we call conditioned medium factor(s). An assay for conditioned medium factor(s) shows that it is detectable within 2.5 h after the onset of development. Conditioned medium factor(s) also promotes the expression of genes induced early in development, but has no detectable effect on the expression of actin genes and a gene expressed maximally in vegetative cells. In the presence of conditioned medium factor(s), exogenous cyclic AMP at the onset of starvation fails to induce the prespore and prestalk genes. The addition of cyclic AMP between 2 and 12 h of starvation results in rapid prestalk gene expression, whereas prespore genes are induced at an invarient time (approximately 18 h after the onset of starvation). These data suggest that cyclic AMP and conditioned medium factor(s) are sufficient for prestalk gene induction, whereas an additional parameter(s) is involved in the control of prespore gene induction. In contrast to several previous studies, we show that multicellularity is not essential for the expression of either prespore or prestalk genes. These data indicate that prespore and prestalk genes have cell-type-specific as well as shared regulatory factors.  相似文献   

8.
In cells of the cellular slime mold Polysphondylium violaceum an attractant, which is released during the aggregation stage, causes a transient rise of the cyclic GMP concentration. Cells of this organism develop in shaken suspensions after they have finished growth. Cell development is not accompanied by an increase in the EDTA stability of cell adhesion. Both the developmental regulation and the specificity of chemotactic responses is reflected in the light scattering patterns recorded in cell suspensions: Folic acid causes a strong response in early preaggregation cells and the Polysphondylium attractant does the same in aggregation competent cells, whereas cyclic AMP is inactive in both stages.  相似文献   

9.
Transformants that expressed either the wild-type rasG gene, an activated rasG-G12T gene, or a dominant negative rasG-S17N gene, all under the control of the folate-repressible discoidin (dis1gamma) promoter, were isolated. All three transformants expressed high levels of Ras protein which were reduced by growth in the presence of folate. All three transformants grew slowly, and the reduction in growth rate correlated with the amount of RasG protein produced, suggesting that RasG is important in regulating cell growth. The pVEII-rasG transformant containing the wild-type rasG gene developed normally despite the presence of high levels of RasG throughout development. This result indicates that the down regulation of rasG that normally occurs during aggregation of wild-type strains is not essential for the differentiation process. Dictyostelium transformants expressing the dominant negative rasG-S17N gene also differentiated normally. Dictyostelium transformants that overexpressed the activated rasG-G12T gene did not aggregate. The defect occurred very early in development, since the expression of car1 and pde, genes that are normally induced soon after the initiation of development, was repressed. However, when the transformant cells were pulsed with cyclic AMP, expression of both genes returned to wild-type levels. The transformants exhibited chemotaxis to cyclic AMP, and development was synergized by mixing with wild-type cells. Furthermore, cells that were pulsed with cyclic AMP for 4 h before being induced to differentiate by plating on filters produced small, but otherwise normal, fruiting bodies. These results suggest that the rasG-G12T transformants are defective in cyclic AMP production and that RasG - GTP blocks development by interfering with the initial generation of cyclic AMP pulses.  相似文献   

10.
We have studied the variations of endogenous cyclic AMP levels in thyroid cells cultured over a period of 7 days in several conditions: in the presence of thyroid-stimulating hormone or dibutyryl cyclin AMP which both promote the aggregation of isolated cell into follicles, and in their absence when cells develop as a typical monolayer. In follicle-forming cells, the cyclic AMP level was found to rise during the first day of culture, then to fall rapidly. In monolayer-forming cells, the cyclic AMP content slightly increases attaining the same level as found in other cells at the fourth day, which remains stable till the seventh day. We have investigated the response of these cells to the acute effect of thyroid-stimulating hormone: only cells cultured in the presence of dibutyryl cyclic AMP retain the capability of increasing their cycli AMP concentration whereas monolayer-forming cells do not preserve this quality of thyroid cells.  相似文献   

11.
A microcinematographic analysis of the behaviour and movements of cells and cell masses in mated cultures (NC4 X VI2) of Dictyostelium discoideum indicates that a chemotactic process directs cell aggregation during macrocyst development. Zygote giant cells form before aggregation begins and act as the aggregation centres. Young multicellular macrocyst stages are sources of cyclic AMP, and amoebae from macrocyst cultures orient chemotactically to cyclic AMP. The data, coupled with other characteristics such as pulsatile streaming, suggest that the aggregation process leading to macrycyst development is the same as that occurring during fruit construction. Other aspects of sexual development are also discussed. Based upon these data, we propose a model for the sequence of events leading to macrocyst development in D. discoideum.  相似文献   

12.
By means of a K+-sensitive electrode, the extracellular K+ concentration was monitored in cell suspensions of Dictyostelium discoideum. In aggregative cells the attractant cyclic AMP induced a transient release of K+. The response was detectable within 6-12 s and peaked at 30-40 s. The apparent rate of release amounted to 7 X 10(8)K+ ions per cell per min. Adenosine and 5' AMP, which are chemotactically inactive, did not elicit measurable K+ responses. The cyclic AMP-induced release of K+ depended on the state of differentiation of the cells. In undifferentiated cells cyclic AMP did not cause a measurable K+ release, whereas folic acid, a potent attractant at this cell stage, induced a weak but significant K+ response. The cyclic AMP-induced K+ release in aggregative cells was inhibited by K+-channel blockers such as quinine and tetraethylammonium. In suspensions of differentiated cells free running oscillations of the extracellular K+ concentration were observed. K+ oscillations were related to cyclic AMP oscillations and oscillations of the light-scattering properties of cells. Cells continuously released NH4+; however, cyclic AMP did not induce a measurable change of NH4+ release.  相似文献   

13.
Acetyl glyceryl ether phosphorylcholine induces human neutrophil aggregation. Incubation of neutrophils with either prostaglandin I2, or the cyclic AMP-dependent phosphodiesterase inhibitor, RO 20-1724 before the addition of PAF-acether attenuates subsequent aggregation. Paradoxically, a small elevation in cyclic AMP is observed coincident with the initiation of PAF-acether-stimulated aggregation. The elevation in cyclic AMP in response to PAF-acether is amplified by RO 20-1724, and the magnitude of the response is dependent upon the concentration of PAF-acether. The elevation in cyclic AMP is not due to prostaglandins, because indomethacin actually enhances the elevation in cyclic AMP induced by PAF-acether. The involvement of the neutrophil 5-lipoxygenase, and subsequent leukotriene B4 synthesis, is suggested by the observation that 5-lipoxygenase inhibitors limit both the elevation in cyclic AMP induced by PAF-acether, and the indomethacin enhancement. This indirect evidence is supported by the fact that leukotriene B4 itself elevates neutrophil cyclic AMP levels in intact cells, and stimulates the adenylate cyclase in broken cell preparations. Although the elevation in cyclic AMP induced by either PAF-acether or leukotriene B4 is coincident with the onset of neutrophil aggregation, it is not obligatory for aggregation. The adenylate cyclase inhibitor 2′,5′-dideoxyadenosine blocks the PAF-acether-stimulated increase in cyclic AMP, and actually enhances aggregation. It is suggested that the increase in cyclic AMP observed after the addition of PAF-acether is due to concomitant leukotriene B4 synthesis, and is not obligatory for neutrophil aggregation, but is actually part of a feed-back regulatory system through which PAF-acether and leukotriene B4 can limit their own activity in neutrophils.  相似文献   

14.
Caffeine is a teratogen that causes limb and palate malformations in rodents. Since the ability to raise cyclic nucleotide levels is a known biological action of caffeine, cyclic AMP levels were measured in CD-1 mouse embryonic forelimb from whole embryo culture and embryonic limb and palate cells grown in primary culture following treatment with various concentrations of caffeine (0, 1, 3, or 10 mM). In forelimb buds from whole embryo culture, a dose-dependent response was observed. Caffeine at 1 mM concentration stimulated cyclic AMP levels to 151% of control value at 60 min. Even greater stimulation of cyclic AMP occurred at higher caffeine concentrations. A dose-dependent response was seen in both limb and palate cell culture. In limb cell culture, all caffeine concentrations significantly stimulated cyclic AMP after 10 min compared to control. In palate cell culture, there was a twofold increase in cyclic AMP at the 1-mM caffeine concentration. At higher caffeine concentrations, cyclic AMP was significantly increased after 60 min. In addition, stimulation of cyclic AMP in cultured limb and palate cells by isoproterenol, a beta-adrenergic agonist, was used as a positive control. Isoproterenol stimulated a 2.5-fold greater response in the palate cells than in the limb bud cells at isoproterenol levels of 10(-5) or 10(-4) M. The increase of cyclic AMP may be influential in the process of abnormal limb or palate development.  相似文献   

15.
Acetyl glyceryl ether phosphorylcholine induces human neutrophil aggregation. Incubation of neutrophils with either prostaglandin I2, or the cyclic AMP-dependent phosphodiesterase inhibitor, RO 20-1724 before the addition of PAF-acether attenuates subsequent aggregation. Paradoxically, a small elevation in cyclic AMP is observed coincident with the initiation of PAF-acether-stimulated aggregation. The elevation in cyclic AMP in response to PAF-acether is amplified by RO 20-1724, and the magnitude of the response is dependent upon the concentration of PAF-acether. The elevation in cyclic AMP is not due to prostaglandins, because indomethacin actually enhances the elevation in cyclic AMP induced by PAF-acether. The involvement of the neutrophil 5-lipoxygenase, and subsequent leukotriene B4 synthesis, is suggested by the observation that 5-lipoxygenase inhibitors limit both the elevation in cyclic AMP induced by PAF-acether, and the indomethacin enhancement. This indirect evidence is supported by the fact that leukotriene B4 itself elevates neutrophil cyclic AMP levels in intact cells, and stimulates the adenylate cyclase in broken cell preparations. Although the elevation in cyclic AMP induced by either PAF-acether or leukotriene B4 is coincident with the onset of neutrophil aggregation, it is not obligatory for aggregation. The adenylate cyclase inhibitor 2',5'-dideoxyadenosine blocks the PAF-acether-stimulated increase in cyclic AMP, and actually enhances aggregation. It is suggested that the increase in cyclic AMP observed after the addition of PAF-acether is due to concomitant leukotriene B4 synthesis, and is not obligatory for neutrophil aggregation, but is actually part of a feed-back regulatory system through which PAF-acether and leukotriene B4 can limit their own activity in neutrophils.  相似文献   

16.
In cell homogenates of Dictyostelium discoideum, strain AX-2, four major soluble protein kinases (ATP:protein phosphotransferase, EC 2.7.1.37) and one membrane-associated protein kinase activity were identified. The enzymes showed high affinity for casein. One of the enzymes was purified by affinity chromatography on casein-coated Sepharose. The soluble high molecular weight enzymes phosphorylated histones, whereas the low molecular weight enzymes did not. The same protein kinase species were present in vegetative and aggregation-competent cells. Their specific activity, however, changed during the development to aggregation competence. None of the enzymes was stimulated by cyclic AMP or cyclic GMP, regardless of their origin from vegetative or aggregation-competent cells.  相似文献   

17.
We used a Ca++-sensitive electrode to measure changes in extracellular Ca++ concentration in cell suspensions of Dictyostelium discoideum during differentiation and attractant stimulation. The cells maintained an external level of 3-8 microM Ca++ until the beginning of aggregation and then started to take up Ca++. The attractants, folic acid, cyclic AMP, and cyclic GMP, induced a transient uptake of Ca++ by the cells. The response was detectable within 6 s and peaked at 30 s. Half-maximal uptake occurred at 5 nM cyclic AMP or 0.2 microM folic acid, respectively. The apparent rate of uptake amounted to 2 X 10(7) Ca++ per cell per min. Following uptake, Ca++ was released by the cells with a rate of 5 X 10(6) ions per cell per min. Specificity studies indicated that the induced uptake of Ca++ was mediated by cell surface receptors. The amount of accumulated Ca++ remained constant as long as a constant stimulus was provided. No apparent adaptation occurred. The cyclic AMP-induced uptake of Ca++ increased during differentiation and was dependent on the external Ca++ concentration. Saturation was found above 10 microM external Ca++. The time course and magnitude of the attractant-induced uptake of external Ca++ agree with a role of Ca++ during contraction. During development the extracellular Ca++ level oscillated with a period of 6-11 min. The change of the extracellular Ca++ concentration during one cycle would correspond to a 30-fold change of the cellular free Ca++ concentration.  相似文献   

18.
1. Kinetics of membrane-bound cyclic AMP phosphodiesterase of the cellular slime mold, Dictyostelium discoideum, were studied under two conditions: in the 27 000 times g sediment of cell homogenates (particle-bound phosphodiesterase) and in cell suspensions using external cyclic AMP as a substrate (cell-bound phosphodiesterase). Both methods revealed non-Michaelian kinetics with interaction coefficients less than 1. 2. The membrane-bound phosphodiesterase has a specificity different from that of the cyclic AMP receptor, also present at the cell surface. 3. The membrane-bound enzyme was solubilized by lithium 3, 5-diiodosalicylate and partially purified. In this state the non-linear kinetics were still retained; however, the enzyme was not inhibited by the D. discoideum inhibitor, unlike the cell-bound phosphodiesterase in vivo. This indicates that both enzymes share an inhibitor binding site and that this site is cryptic in the cell-bound state. 4. Production of periodic cyclic AMP pulses by centers, and their relay by other cells, is believed to occur during aggregation. It is suggested that the cell-bound enzyme determines a "time window" significantly smaller than the period of pulsing, and optimizes stimulation of the cyclic AMP receptors in chemotaxis and signal relaying.  相似文献   

19.
DdrasG gene expression during the early development of Dictyostelium discoideum has been examined in detail. The amount of DdrasG-specific mRNA increased approximately twofold during the first 2 to 3 h of development and then declined rapidly, reaching negligible levels by the aggregation stage. The increase in mRNA levels that occurred during the first 2 to 3 h of development also occurred during differentiation in cell suspensions and was enhanced when cells were shaken rapidly. This initial increase was unaffected by cell density. When cells were set up to differentiate on filters, the addition of a glucose-amino acid mixture slightly delayed differentiation and had a similar effect on the expression of the gene. The decline in DdrasG expression during development did not occur when cells were treated with cycloheximide, suggesting that the expression of a developmentally regulated gene product is essential for the reduction of DdrasG gene mRNA. There was no decrease in DdrasG mRNA level during differentiation in shake suspension, but the decrease did occur upon application of pulses of cyclic AMP to shaking cultures. The application of a continuously high level of cyclic AMP delayed the increase in expression of the gene and did not result in the subsequent decline. These results suggest that the induction of a functional cyclic AMP relay system is important in reducing DdrasG gene mRNA levels.  相似文献   

20.
Retinoic acid receptor (RAR) α and γ mRNAs were constitutively expressed in B16 melanoma cells with or without retinoic acid (RA) treatment. RARβ mRNA, however, was significantly expressed only after exposure to RA. Induction of RARβ by RA occurred within 1 h and was not inhibited by cycloheximide (i.e., did not require new protein synthesis). All three RAR mRNA levels were dramatically decreased with 8-bromo-cyclic AMP treatment and could not be rescued by addition of RA. Analysis of RARγ revealed that this decrease occurred within 1 h of exposure to 8-bromo-cyclic AMP and was not blocked by simultaneous treatment with cycloheximide. The stability of RARγ mRNA was not altered by cyclic AMP treatment. Nuclear extracts from 8-bromo-cyclic AMP-treated cells showed a large decrease in protein binding to a retinoic acid response element (RARE) oligonucleotide compared to control cells. This correlated with a marked reduction of RA-stimulated RARE-reporter gene activity in transfected cells which were treated with cyclic AMP. Pretreatment of B16 cells with cyclic AMP prior to RA addition dramatically reduced induction of PKCα, an early marker of RA-induced cell differentiation. Thus, cyclic AMP can antagonize the action of RA most likely via its ability to inhibit RAR expression. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号