首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
N Yamamoto  K Yamada  T Kurotani  K Toyama 《Neuron》1992,9(2):217-228
The formation of specific neural connections in the cerebral cortex was studied using organotypic coculture preparations composed of subcortical and cortical regions. Morphological and electrophysiological analysis indicated that several cortical efferent and afferent connections, such as the corticothalamic, thalamocortical, corticocortical, and corticotectal connections, were established in the cocultures with essentially the same laminar specificity as that found in the adult cerebral cortex, but without specificity of sensory modality. This suggests the existence of a cell-cell recognition system between cortical or subcortical neurons and their final targets. This interaction produces lamina-specific connections, but is probably insufficient for the formation of the modality-specific connections.  相似文献   

2.
During development precise thalamocortical connections are established, with reciprocal connections forming correctly in a laminar pattern as well as between the correct thalamic and cortical areas. Recent evidence suggests that both spatial and temporal cues may account for this specificity.  相似文献   

3.
Our understanding of how mammalian sensory circuits are organized and develop has long been hindered by the lack of genetic markers of neurons with discrete functions. Here, we report a transgenic mouse selectively expressing GFP in a complete mosaic of transient OFF-alpha retinal ganglion cells (tOFF-alphaRGCs). This enabled us to relate the mosaic spacing, dendritic anatomy, and electrophysiology of these RGCs to their complete map of projections in the brain. We find that tOFF-alphaRGCs project exclusively to the superior colliculus (SC) and dorsal lateral geniculate nucleus and are restricted to a specific laminar depth within each of these targets. The axons of tOFF-alphaRGC are also organized into columns in the SC. Both laminar and columnar specificity develop through axon refinement. Disruption of cholinergic retinal waves prevents the emergence of columnar- but not laminar-specific tOFF-alphaRGC connections. Our findings reveal that in a genetically identified sensory map, spontaneous activity promotes synaptic specificity by segregating axons arising from RGCs of the same subtype.  相似文献   

4.
Estimation of disruption of animal cells by laminar shear stress   总被引:1,自引:0,他引:1  
Using mechanical cell properties measured by micromanipulation, and a model of cell distortion in laminar flow fields, a method has been developed for predicting disruption of animal cells by laminar shear stresses. Predictions of the model were compared with measured losses of cell number and viability of TB/C3 murine hybridomas sheared in a cone and plate viscometer at shear rates up to 3950 s(-1), and shear stresses up to 600 Nm(-2), achieved by enhancement of viscosity with dextran. In all cases, the experimental, results and predictions were within 30%. Such excellent agreement suggests it might be possible to use micromanipulation measurements of animal cell mechanical properties to predict cell damage in more complex flow fields, such as those in bioreactors. (c) 1992 John Wiley & Sons, Inc.  相似文献   

5.
Xiao T  Staub W  Robles E  Gosse NJ  Cole GJ  Baier H 《Cell》2011,146(1):164-176
The mechanisms that generate specific neuronal connections in the brain are under intense investigation. In zebrafish, retinal ganglion cells project their axons into at least six layers within the neuropil of the midbrain tectum. Each axon elaborates a single, planar arbor in one of the target layers and forms synapses onto the dendrites of tectal neurons. We show that the laminar specificity of retinotectal connections does not depend on self-sorting interactions among RGC axons. Rather, tectum-derived Slit1, signaling through axonal Robo2, guides neurites to their target layer. Genetic and biochemical studies indicate that Slit binds to Dragnet (Col4a5), a type IV Collagen, which forms the basement membrane on the surface of the tectum. We further show that radial glial endfeet are required for the basement-membrane anchoring of Slit. We propose that Slit1 signaling, perhaps in the form of a superficial-to-deep gradient, presents laminar positional cues to ingrowing retinal axons.  相似文献   

6.
Sawatari A  Callaway EM 《Neuron》2000,25(2):459-471
In the primary visual cortex of macaque monkeys, laminar and columnar axonal specificity are correlated with functional differences between locations. We describe evidence that embedded within this anatomical framework is finer specificity of functional connections. Photostimulation-based mapping of functional input to 31 layer 3B neurons revealed that input sources to individual cells were highly diverse. Although some input differences were correlated with neuronal anatomy, no 2 neurons received excitatory input from the same cortical layers. Thus, input diversity reveals far more cell types than does anatomical diversity. This implies relatively little functional redundancy; despite trends related to laminar or columnar position, pools of neurons contributing uniquely to visual processing are likely relatively small. These results also imply that similarities in the anatomy of circuits in different cortical areas or species may not indicate similar functional connectivity.  相似文献   

7.
8.
S Tsuji 《Histochemistry》1985,83(3):213-219
Using rapid ionic fixation with molybdic or tungstic heteropolyanions (strong precipitating agents of quaternary ammonium cations such as choline and acetylcholine), acetylcholine-like cations were localized as point-like precipitates in the synaptic vesicles of resting (electrically nonstimulated) motor nerve terminals. When performed at low temperature, the same procedure revealed spot-like precipitates (presumed to be exocytotically released acetylcholine-like cations) in the synaptic cleft in the vicinity of the active zone. These precipitates were often seen in paired forms. Unlike resting motor-nerve terminals, excited terminals (electrical stimulation with occasional 4-aminopyridine pretreatment) after ionic fixation exhibited, at first, laminar precipitates both in the vicinity of the active zone inside the nerve terminals and in the synaptic space. In the vicinity of the active zone, the laminar precipitates were directed towards the synaptic membrane, while those in the synaptic space showed no orientation. Ionic fixation also revealed diffused precipitates both around the synaptic vesicles and on the axoplasmic side of the presynaptic membrane. Finally, the same fixation procedure demonstrated the presence of empty synaptic vesicles (without point-like precipitates) in close contact with the presynaptic membrane. The laminar and diffused precipitates are presumed to be two different forms of the same salts of acetylcholine-like cations that are insolubilized by ionic fixation in both the nerve terminals and the synaptic space of excited motor end-plates.  相似文献   

9.
A new cell culture system has been developed that reflects the vascular microenvironment. By means of this system the cultured cells are exposed not only to shear stress by the circulating culture medium, but also to an oxygen concentration gradient and certain critical blood components such as low-density lipoprotein (LDL) and monocytes. DNA microarray analysis was performed for human umbilical vein endothelial cells cultured in this system in the absence and presence of laminar flow at a low shear stress, 0.2 dyn/cm(2). In addition to shear stress, either an oxygen concentration gradient, or LDL (1 mg/ml), or both were applied. Many Nrf-2-regulating genes, such as heme oxygenase 1, NAD(P)H quinone oxidoreductase 1, solute carrier family 7 No. 11, and glutamate-cysteine ligase modifier subunit, were induced by laminar flow at very low shear stress regardless of the additional conditions. Certain genes were specifically affected by exposure to the oxygen gradient and/or LDL under shear stress, but the degree was very low. These results suggest that shear stress is the most critical factor affecting gene expression in endothelial cells and that Nrf-2-regulating proteins may contribute to protecting endothelial cells against other vascular stress. This system should provide highly relevant and useful information about both vascular physiology and pathology, in the latter on such urgent matters as the specific steps involved in atherogenesis.  相似文献   

10.
We have previously reported that antioxidant response element (ARE)-regulated genes, such as heme oxygenase 1 (HO-1), sequestosome 1 (SQSTM1), and NAD(P)H quinone oxidoreductase 1 (NQO1), are induced in human umbilical vein endothelial cells (HUVEC) upon exposure to laminar shear stress. In the present study, we have confirmed a critical role for NF-E2-related factor 2 (Nrf2) in the induction of gene expression in HUVEC exposed to laminar shear stress. Although the mRNA levels of Nrf2 were unchanged during exposure to shear stress, the protein levels of Nrf2 were markedly increased. Small interfering RNA (SiRNA) against Nrf2 significantly attenuated the expression of Nrf2-regulated genes such as HO-1, SQSTM1, NQO1, glutamate-cysteine ligase modifier subunit (GCLM), and ferritin heavy chain. Nrf2 was rapidly degraded in cells treated with cycloheximide under static conditions, but shear stress decreased the rate of Nrf2 degradation. Incubation with the thiol antioxidant N-acetylcysteine strongly inhibited both the Nrf2 accumulation and the expression of Nrf2-regulated genes such as HO-1, GCLM, and SQSTM1. Nitric oxide (NO) production was increased with the strength of shear stress but neither the inhibitor of endothelial NO synthase (eNOS) nor the siRNA against eNOS affected the expression of Nrf2-regulated genes. A xanthine oxidase inhibitor oxypurinol and the flavoprotein inhibitor diphenyleneiodonium, which inhibits NAD(P)H oxidase and mitochondrial respiratory chain, markedly suppressed the expression of these genes. Moreover, diphenylpyrenlphosphine, a reducing compound of lipid hydroperoxides, also significantly suppressed Nrf2-regulated gene expression. Taken together, these findings suggest that shear stress stabilizes Nrf2 protein via the lipid peroxidation elicited by xanthine oxidase and flavoprotein mediated generation of superoxide, resulting in gene induction by the Nrf2-ARE signaling pathway.  相似文献   

11.
This article reports the enhancement of thermal stability involving normal duplex and mutation-carrying DNA duplexes in microchannel laminar flow. The application of an in-house temperature-controllable microchannel-type flow cell is demonstrated for improved discrimination of mismatch base pairs such as A-G and T-G that are difficult to distinguish due to the rather small thermal destabilizations. Enhancement in thermal stability is reflected by an increased thermal melting temperature achieved in microchannel laminar flow as compared with batch reactions. To examine the kinetics and thermodynamics of duplex-coil equilibrium of DNA oligomers, denaturation-renaturation hysteresis curves were measured. The influence of microchannel laminar flow on DNA base mismatch analysis was described from the kinetic and thermodynamic perspectives. An increasing trend was observed for association rate constant as flow rate increased. In contrast, an apparent decrease in dissociation rate constant was observed with increasing flow rate. The magnitudes of the activation energies of dissociation were nearly constant for both the batch and microchannel laminar flow systems at all flow rates. In contrast, the magnitudes of activation energies of association decreased as flow rate increased. These results clearly show how microchannel laminar flow induces change in reaction rate by effecting change in activation energy. We anticipate, therefore, that this approach based on microchannel laminar flow system holds great promise for improved mismatch discrimination in DNA analyses, particularly on single-base-pair mismatch, by pronouncedly enhancing thermal stability.  相似文献   

12.
Assemblages with blades are rare in the south of Europe and most of them are dated from the isotopic stages 4 and 3. The blades are, otherwise, often produced on Levallois cores with unipolar and bipolar methods. According to the sites, the blades are more or less retouched as different kinds of tools. However, there are no specific links between this blank and the tools, and never between the artefacts and the fauna remains (activities). The hypothesis of traditions or needs among time and space are asked without answer, while the blades are present in the north of Europe and the Near East in far older periods. Several sites can be considered to describe the variability of the technical behaviour and the archaeological context of the blades in south-east France, extending to north Italy. The two sites, Abri du Maras and Baume Flandin, located in the middle Rhône valley, yield evidence of a laminar debitage linked to a Levallois method and a “direct” method. The technical choices used in the two sites are accorded to the specificity of the laminar assemblages in the southern Europe.  相似文献   

13.
Equine laminitis is a crippling condition associated with a variety of systemic diseases. Although it is apparent that the prodromal stages of laminitis involve microvascular dysfunction, little is known regarding the physiology of this vasculature. The aim of the present study was to determine the relative responses of equine laminar arteries and veins to the vasoconstrictor agonists phenylephrine (1 nM-10 microM), 5-HT (1 nM-10 microM), PGF2alpha (1 nM-100 microM), and endothelin-1 (1 pM-1 microM). We have determined that laminar veins were more sensitive, with respect to the concentration of agonist required to initiate a contractile response and to achieve EC(50), for all agonists tested. EC50 values, for veins and arteries, respectively, were 84+/-7 vs. 688+/-42 nM for phenylephrine, 35+/-6 vs. 224+/-13 nM for 5-HT, 496+/-43 nM vs. 3.0+/-0.6 microM for PGF2alpha, and 467+/-38 pM vs. 70.6+/-6.4 nM for endothelin-1. Moreover, when expressed as a percentage of the response to a depolarizing stimulus (80 mM potassium), the maximal contractile response of laminar veins exceeded that for the laminar arteries for each agonist. These results indicate that there may be a predisposition for venoconstriction within the vasculature of the equine digit. While this physiological predisposition for venoconstriction may be important in the regulation of blood flow during exercise, it also may help to explain why laminitis can result from a variety of pathological systemic conditions.  相似文献   

14.
2-Arachidonoylglycerol (2-AG) is a naturally occurring monoglyceride that activates cannabinoid receptors and meets several key requisites of an endogenous cannabinoid substance. It is present in the brain (where its levels are 170-folds higher than those of anandamide), is produced by neurons in an activity- and calcium-dependent manner, and is rapidly eliminated. The mechanism of 2-AG inactivation is not completely understood, but is thought to involve carrier-mediated transport into cells followed by enzymatic hydrolysis. We examined the possible role of the serine hydrolase, monoglyceride lipase (MGL), in brain 2-AG inactivation. We identified by homology screening a cDNA sequence encoding for a 303-amino acid protein, which conferred MGL activity upon transfection to COS-7 cells. Northern blot and in situ hybridization analyses revealed that MGL mRNA is unevenly present in the rat brain, with highest levels in regions where CB1 cannabinoid receptors are also expressed (hippocampus, cortex, anterior thalamus and cerebellum). Immunohistochemical studies in the hippocampus showed that MGL distribution has striking laminar specificity, suggesting a presynaptic localization of the enzyme. Adenovirus-mediated transfer of MGL cDNA into rat cortical neurons increased the degradation of endogenously produced 2-AG in these cells, whereas no such effect was observed on anandamide degradation. These results indicate that hydrolysis via MGL may be a primary route of 2-AG inactivation in intact neuronal cells.  相似文献   

15.
Summary In this study, we explored whether soluble tumor-cell surface-associated antigens (TAA) might be derived from autochthonous as well as allogeneic sources as immunogens for active specific immunotherapy. Using two popular cell membrane-bound antigen extraction techniques (3 M KCl and isotonic-hypotonic NaCl), we examined the immunogenic potential of such TAA and the specificity of immunologic host reactivity through a delayed-type cutaneous hypersensitivity reaction (DTH) as a guideline for their immunogenic potential in a human malignant melanoma model system. We found that either extraction technique could provide soluble TAA from both autochthonous and allogeneic sources capable of eliciting DTH. While evidence of positive DTH with autochthonous TAA reaffirms the immunogenicity of such TAA, the specificity of host reactivity against TAA derived from allogeneic sources is extremely difficult to establish, even with TAA partially purified by column chromatography in Sephadex G-200. Patients exhibited reactivity to other TAA derived from tumors of different histologies and often to more than one component isolated by column chromatography. Furthermore, when a group of melanoma patients was tested against a panel of melanoma antigens in any random combination, DTH to allogeneic TAA was seen in an unpredictable order and with inconsistent frequency. We conclude, therefore, that while autochthonous antigen immunizations may be justified, more careful studies will be necessary to define the antigenic profile of a given tumor (individual specificity vs shared specificity), establish specificity of alloantigens, and devise suitable methods for testing immunologic specificity for alloantigens, before rational immunotherapy with allogeneic tumor antigens will be feasible.  相似文献   

16.
Archetypal members of the chymotrypsin family of serine proteases, such as trypsin, chymotrypsin, and elastase, exhibit relatively broad substrate specificity. However, the successful development of efficient proteolytic cascades, such as the blood coagulation and fibrinolytic systems, required the evolution of proteases that displayed restricted specificity. Tissue-type plasminogen activator (t-PA), for example, possesses exquisitely stringent substrate specificity, and the molecular basis of this important biochemical property of t-PA remains obscure. Previous investigations of related serine proteases, which participate in the blood coagulation cascade, have focused attention on the residue that occupies position 192 (chymotrypsin numbering system), which plays a pivotal role in determining both the inhibitor and substrate specificity of these enzymes. Consequently, we created and characterized the kinetic properties of new variants of t-PA that contained point mutations at position 192. These studies demonstrated that, unlike in coagulation serine proteases, Gln-192 does not contribute significantly to the substrate or inhibitor specificity of t-PA in physiologically relevant reactions. Replacement of Gln-192 with a glutamic acid residue did, however, decrease the catalytic efficiency of mature, two-chain t-PA toward plasminogen in the absence of a fibrin co-factor.  相似文献   

17.
The brain morphology of vertebrates exhibits huge evolutionary diversity, but one of the shared morphological features unique to vertebrate brain is laminar organization of neurons. Because the Reelin signal plays important roles in the development of the laminar structures in mammalian brain, investigation of Reelin signal in lower vertebrates will give some insights into evolution of vertebrate brain morphogenesis. Although zebrafish homologues of Reelin, the ligand, and Dab1, a cytoplasmic component of the signaling pathway, have been reported, the Reelin receptor molecules of zebrafish are not reported yet. Here, we sought cDNA sequence of zebrafish homologue of the receptors, vldlr and apoer2, and examined their expression patterns by in situ hybridization. Developmental gene expression pattern of reelin, dab1, vldlr, and apoer2 in the central nervous system of zebrafish was compared, and their remarkable expression was detected in the developing laminar structures, such as the tectum and the cerebellum, and also non-laminated structures, such as the pallium. The Reelin receptors exhibited different spatial and temporal gene expression. These results suggest a possibility that duplication and subsequent functional diversity of Reelin receptors contributed to the morphological and functional evolution of vertebrate brain.  相似文献   

18.
The triplesiacean shell has long been accepted as being impunctate, and has recently (Williams 1968) been shown to be of the laminar type which characterises the non-plectambonitacean strophomenids. Examination of a specimen of the triplesiid Oxoplecia , however, shows a clear development of pseudopuncta; and what appears to be a differentiated primary layer external to the laminar shell in this specimen is confirmed from the shell of another Oxoplecia species.
The presence of rarely developed pseudopuncta within the superfamily supports the association of the Triplesiacea with the Davidsoniacea by Williams (1970), while the establishment of a primary layer in the Triplesiacea confirms his expectation based on its presence in the presumed billingsellacean ancestors.  相似文献   

19.
20.
The substrate specificity of a serum enzyme which degrades thyroliberin (less than Glu-His-Pro-NH2) into pyroglutamic acid and His-Pro-NH2 has been investigated and compared with that of the pyroglutamyl aminopeptidase from calf liver. The latter enzyme has a broad specificity, causing rapid degradation of thyroliberin, pyroglutamyl beta-naphthylamide and luliberin. In contrast, the serum enzyme causes rapid stereospecific cleavage only of the pyroglutamyl-histidine bond of thyroliberin and closely related peptides. Compounds such as less than Glu-Ala, less than Glu-His and pyroglutamyl beta-naphthylamide, which are known substrates of the pyroglutamyl aminopeptidases (such as the liver enzyme), are not substrates of the serum enzyme, and inhibit it only poorly. Pyroglutamyl-containing peptides such as luliberin and neurotensin and thyroliberin analogues such as LLD-thyroliberin, less than Glu-His-Pro-NHCH3, less than Glu-His-Pro-Gly-NH2 and less than Glu-Phe-Pro-NH2 inhibit effectively the degradation of thyroliberin by the serum enzyme, but are not hydrolyzed by this enzyme. The high specificity of the serum enzyme implies a physiological function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号