首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
The baker's yeast Saccharomyces cerevisiae is generally classified as a non-xylose-utilizing organism. We found that S. cerevisiae can grow on D-xylose when only the endogenous genes GRE3 (YHR104w), coding for a nonspecific aldose reductase, and XYL2 (YLR070c, ScXYL2), coding for a xylitol dehydrogenase (XDH), are overexpressed under endogenous promoters. In nontransformed S. cerevisiae strains, XDH activity was significantly higher in the presence of xylose, but xylose reductase (XR) activity was not affected by the choice of carbon source. The expression of SOR1, encoding a sorbitol dehydrogenase, was elevated in the presence of xylose as were the genes encoding transketolase and transaldolase. An S. cerevisiae strain carrying the XR and XDH enzymes from the xylose-utilizing yeast Pichia stipitis grew more quickly and accumulated less xylitol than did the strain overexpressing the endogenous enzymes. Overexpression of the GRE3 and ScXYL2 genes in the S. cerevisiae CEN.PK2 strain resulted in a growth rate of 0.01 g of cell dry mass liter(-1) h(-1) and a xylitol yield of 55% when xylose was the main carbon source.  相似文献   

2.
To determine whether Saccharomyces cerevisiae can serve as a host for efficient carotenoid and especially beta-carotene production, carotenogenic genes from the carotenoid-producing yeast Xanthophyllomyces dendrorhous were introduced and overexpressed in S. cerevisiae. Because overexpression of these genes from an episomal expression vector resulted in unstable strains, the genes were integrated into genomic DNA to yield stable, carotenoid-producing S. cerevisiae cells. Furthermore, carotenoid production levels were higher in strains containing integrated carotenogenic genes. Overexpression of crtYB (which encodes a bifunctional phytoene synthase and lycopene cyclase) and crtI (phytoene desaturase) from X. dendrorhous was sufficient to enable carotenoid production. Carotenoid production levels were increased by additional overexpression of a homologous geranylgeranyl diphosphate (GGPP) synthase from S. cerevisiae that is encoded by BTS1. Combined overexpression of crtE (heterologous GGPP synthase) from X. dendrorhous with crtYB and crtI and introduction of an additional copy of a truncated 3-hydroxy-3-methylglutaryl-coenzyme A reductase gene (tHMG1) into carotenoid-producing cells resulted in a successive increase in carotenoid production levels. The strains mentioned produced high levels of intermediates of the carotenogenic pathway and comparable low levels of the preferred end product beta-carotene, as determined by high-performance liquid chromatography. We finally succeeded in constructing an S. cerevisiae strain capable of producing high levels of beta-carotene, up to 5.9 mg/g (dry weight), which was accomplished by the introduction of an additional copy of crtI and tHMG1 into carotenoid-producing yeast cells. This transformant is promising for further development toward the biotechnological production of beta-carotene by S. cerevisiae.  相似文献   

3.
The development of a yeast that converts raw starch to ethanol in one step (called consolidated bioprocessing) could yield large cost reductions in the bioethanol industry. The aim of this study was to develop an efficient amylolytic Saccharomyces cerevisiae strain suitable for industrial bioethanol production. A native and codon-optimized variant of the Aspergillus awamori glucoamylase gene were expressed in the S. cerevisiae Y294 laboratory strain. Codon optimization resulted to be effective and the synthetic sequence sGAI was then δ-integrated into a S. cerevisiae strain with promising industrial fermentative traits. The mitotically stable recombinant strains showed high enzymatic capabilities both on soluble and raw starch (2425 and 1140 nkat/g dry cell weight, respectively). On raw corn starch, the engineered yeasts exhibited improved fermentative performance with an ethanol yield of 0.42 (g/g), corresponding to 75?% of the theoretical maximum yield.  相似文献   

4.
Aluminum (Al) toxicity is a major constraint for crop production in acid soils, although crop cultivars vary in their tolerance to Al. We have investigated the potential role of citrate in mediating Al tolerance in Al-sensitive yeast (Saccharomyces cerevisiae; MMYO11) and canola (Brassica napus cv Westar). Yeast disruption mutants defective in genes encoding tricarboxylic acid cycle enzymes, both upstream (citrate synthase [CS]) and downstream (aconitase [ACO] and isocitrate dehydrogenase [IDH]) of citrate, showed altered levels of Al tolerance. A triple mutant of CS (Deltacit123) showed lower levels of citrate accumulation and reduced Al tolerance, whereas Deltaaco1- and Deltaidh12-deficient mutants showed higher accumulation of citrate and increased levels of Al tolerance. Overexpression of a mitochondrial CS (CIT1) in MMYO11 resulted in a 2- to 3-fold increase in citrate levels, and the transformants showed enhanced Al tolerance. A gene for Arabidopsis mitochondrial CS was overexpressed in canola using an Agrobacterium tumefaciens-mediated system. Increased levels of CS gene expression and enhanced CS activity were observed in transgenic lines compared with the wild type. Root growth experiments revealed that transgenic lines have enhanced levels of Al tolerance. The transgenic lines showed enhanced levels of cellular shoot citrate and a 2-fold increase in citrate exudation when exposed to 150 micro M Al. Our work with yeast and transgenic canola clearly suggest that modulation of different enzymes involved in citrate synthesis and turnover (malate dehydrogenase, CS, ACO, and IDH) could be considered as potential targets of gene manipulation to understand the role of citrate metabolism in mediating Al tolerance.  相似文献   

5.
We have previously shown that citrate synthase binds to an intrinsic protein of the mitochondrial inner membrane (D'Souza and Srere, 1983). In this paper we present evidence that this citrate synthase binding protein is the citrate transporter. We have used citrate synthase 1 mutants of Saccharomyces cerevisiae and transformants containing citrate synthase inactivated by site-directed mutagenesis to study the effect of the CS1 protein upon mitochondrial function (Kispal and Srere). In the present study citrate uptake and oxidation were measured during state 3 conditions (presence of 200 microM ADP) in the mitochondria of several strains of Saccharomyces cerevesiae: a parental strain containing wild-type mitochondrial citrate synthase (CS1) and strains derived from a CS1 deficient strain in which the CS1 gene was disrupted by insertion of the LEU2 gene. These strains were generated from the CS1- cells by transformation with vectors encoding site-specific mutants of CS1 possessing very low levels of enzymatic activity. One such strain in this study was subsequently found to have undergone reversion to produce a strain which had activity very similar to wild type. Positive correlation between citrate uptake and the rate of citrate oxidation was found, suggesting coupling of the two processes. Both mitochondrial citrate uptake and oxidation were decreased in the mutant lacking any form of CS1 protein. Reintroduction of mutagenized CS1 into yeast causes an enhancement in the rate of state 3 oxygen consumption and of citrate uptake.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
In order to evaluate the potential of Saccharomyces kluyveri for heterologous protein production, S. kluyveri Y159 was transformed with a S. cerevisiae-based multi-copy plasmid containing the S. cerevisiae PEP4 gene, which encodes proteinase A, under the control of its native promoter. As a reference, S. cerevisiae CEN.PK 113-5D was transformed with the same plasmid and the two strains were characterised in batch cultivations on glucose. The glucose metabolism was found to be less fermentative in S. kluyveri than in S. cerevisiae. The yield of ethanol on glucose was 0.11 g/g in S. kluyveri, compared to a yield of 0.40 g/g in S. cerevisiae. Overexpression of PEP4 led to the secretion of active proteinase A in both S. kluyveri and S. cerevisiae. The yield of active proteinase A during growth on glucose was found to be 3.6-fold higher in S. kluyveri than in the S. cerevisiae reference strain.  相似文献   

7.
D-Xylulokinase (XK) is essential for the metabolism of D-xylose in yeasts. However, overexpression of genes for XK, such as the Pichia stipitis XYL3 gene and the Saccharomyces cerevisiae XKS gene, can inhibit growth of S. cerevisiae on xylose. We varied the copy number and promoter strength of XYL3 or XKS1 to see how XK activity can affect xylose metabolism in S. cerevisiae. The S. cerevisiae genetic background included single integrated copies of P. stipitis XYL1 and XYL2 driven by the S. cerevisiae TDH1 promoter. Multicopy and single-copy constructs with either XYL3 or XKS1, likewise under control of the TDH1 promoter, or with the native P. stipitis promoter were introduced into the recombinant S. cerevisiae. In vitro enzymatic activity of XK increased with copy number and promoter strength. Overexpression of XYL3 and XKS1 inhibited growth on xylose but did not affect growth on glucose even though XK activities were three times higher in glucose-grown cells. Growth inhibition increased and ethanol yields from xylose decreased with increasing XK activity. Uncontrolled XK expression in recombinant S. cerevisiae is inhibitory in a manner analogous to the substrate-accelerated cell death observed with an S. cerevisiae tps1 mutant during glucose metabolism. To bypass this effect, we transformed cells with a tunable expression vector containing XYL3 under the control of its native promoter into the FPL-YS1020 strain and screened the transformants for growth on, and ethanol production from, xylose. The selected transformant had approximately four copies of XYL3 per haploid genome and had moderate XK activity. It converted xylose into ethanol efficiently.  相似文献   

8.
The physiology of Saccharomyces cerevisiae CBS 8066 was studied in anaerobic glucose-limited chemostat cultures in a mineral medium supplemented with ergosterol and Tween 80. The organism had a mu max of 0.31 h-1 and a Ks for glucose of 0.55 mM. At a dilution rate of 0.10 h-1, a maximal yield of 0.10 g biomass (g glucose)-1 was observed. The yield steadily declined with increasing dilution rates, so a maintenance coefficient for anaerobic growth could not be estimated At a dilution rate of 0.10 h-1, the yield of the S. cerevisiae strain H1022 was considerably higher than for CBS 8066, despite a similar cell composition. The major difference between the two yeast strains was that S. cerevisiae H1022 did not produce acetate, suggesting that the observed difference in cell yield may be ascribed to an uncoupling effect of acetic acid. The absence of acetate formation in H1022 correlated with a relatively high level of acetyl-CoA synthetase. The uncoupling effect of weak acids on anaerobic growth was confirmed in experiments in which a weak acid (acetate or propionate) was added to the medium feed. This resulted in a reduction in yield and an increase in specific ethanol production. Both yeasts required approximately 35 mg oleic acid (g biomass)-1 for optimal growth. Lower or higher concentrations of this fatty acid, supplied as Tween 80, resulted in uncoupling of dissimilatory and assimilatory processes.  相似文献   

9.
The gene mel1, encoding alpha-galactosidase in Schizosaccharomyces pombe, and the gene bgl2, encoding and beta-glucosidase in Trichoderma reesei, were isolated and co-expressed in the industrial ethanol-producing strain of Saccharomyces cerevisiae. The resulting strains were able to grow on cellobiose and melibiose through simultaneous production of sufficient extracellular alpha-galactosidase and beta-glucosidase activity. Under aerobic conditions, the growth rate of the recombinant strain GC 1 co-expressing 2 genes could achieve 0.29 OD600 h(-1) and a biomass yield up to 7.8 g l(-1) dry cell weight on medium containing 10.0 g l(-1) cellobiose and 10.0 g l(-1) melibiose as sole carbohydrate source. Meanwhile, the new strain of S. cerevisiae CG 1 demonstrated the ability to directly produce ethanol from microcrystalline cellulose during simultaneous saccharification and fermentation process. Approximately 36.5 g l(-1) ethanol was produced from 100 g of cellulose supplied with 5 g l(-1) melibose within 60 h. The yield (g of ethanol produced/g of carbohydrate consumed) was 0.44 g/g, which corresponds to 88.0% of the theoretical yield.  相似文献   

10.
Hemicellulose is one of the major forms of biomass in lignocellulose, and its essential component is xylan. We used a cell surface engineering system based on alpha-agglutinin to construct a Saccharomyces cerevisiae yeast strain codisplaying two types of xylan-degrading enzymes, namely, xylanase II (XYNII) from Trichoderma reesei QM9414 and beta-xylosidase (XylA) from Aspergillus oryzae NiaD300, on the cell surface. In a high-performance liquid chromatography analysis, xylose was detected as the main product of the yeast strain codisplaying XYNII and XylA, while xylobiose and xylotriose were detected as the main products of a yeast strain displaying XYNII on the cell surface. These results indicate that xylan is sequentially hydrolyzed to xylose by the codisplayed XYNII and XylA. In a further step toward achieving the simultaneous saccharification and fermentation of xylan, a xylan-utilizing S. cerevisiae strain was constructed by codisplaying XYNII and XylA and introducing genes for xylose utilization, namely, those encoding xylose reductase and xylitol dehydrogenase from Pichia stipitis and xylulokinase from S. cerevisiae. After 62 h of fermentation, 7.1 g of ethanol per liter was directly produced from birchwood xylan, and the yield in terms of grams of ethanol per gram of carbohydrate consumed was 0.30 g/g. These results demonstrate that the direct conversion of xylan to ethanol is accomplished by the xylan-utilizing S. cerevisiae strain.  相似文献   

11.
Previous metabolic engineering strategies for improving glycerol production by Saccharomyces cerevisiae were constrained to a maximum theoretical glycerol yield of 1 mol.(molglucose)(-1) due to the introduction of rigid carbon, ATP or redox stoichiometries. In the present study, we sought to circumvent these constraints by (i) maintaining flexibility at fructose-1,6-bisphosphatase and triosephosphate isomerase, while (ii) eliminating reactions that compete with glycerol formation for cytosolic NADH and (iii) enabling oxidative catabolism within the mitochondrial matrix. In aerobic, glucose-grown batch cultures a S. cerevisiae strain, in which the pyruvate decarboxylases the external NADH dehydrogenases and the respiratory chain-linked glycerol-3-phosphate dehydrogenase were deleted for this purpose, produced glycerol at a yield of 0.90 mol.(molglucose)(-1). In aerobic glucose-limited chemostat cultures, the glycerol yield was ca. 25% lower, suggesting the involvement of an alternative glucose-sensitive mechanism for oxidation of cytosolic NADH. Nevertheless, in vivo generation of additional cytosolic NADH by co-feeding of formate to aerobic, glucose-limited chemostat cultures increased the glycerol yield on glucose to 1.08 mol mol(-1). To our knowledge, this is the highest glycerol yield reported for S. cerevisiae.  相似文献   

12.
Prosopis juliflora (Mesquite) is a raw material for long-term sustainable production of cellulosics ethanol. In this study, we used acid pretreatment, delignification and enzymatic hydrolysis to evaluate the pretreatment to produce more sugar, to be fermented to ethanol. Dilute H(2)SO(4) (3.0%,v/v) treatment resulted in hydrolysis of hemicelluloses from lignocellulosic complex to pentose sugars along with other byproducts such as furfural, hydroxymethyl furfural (HMF), phenolics and acetic acid. The acid pretreated substrate was delignified to the extent of 93.2% by the combined action of sodium sulphite (5.0%,w/v) and sodium chlorite (3.0%,w/v). The remaining cellulosic residue was enzymatically hydrolyzed in 0.05 M citrate phosphate buffer (pH 5.0) using 3.0 U of filter paper cellulase (FPase) and 9.0 U of beta-glucosidase per mL of citrate phosphate buffer. The maximum enzymatic saccharification of cellulosic material (82.8%) was achieved after 28 h incubation at 50 degrees C. The fermentation of both acid and enzymatic hydrolysates, containing 18.24 g/L and 37.47 g/L sugars, with Pichia stipitis and Saccharomyces cerevisiae produced 7.13 g/L and 18.52 g/L of ethanol with corresponding yield of 0.39 g/g and 0.49 g/g, respectively.  相似文献   

13.
Saccharomyces cerevisiae was metabolically engineered for xylose utilization. The Pichia stipitis CBS 6054 genes XYL1 and XYL2 encoding xylose reductase and xylitol dehydrogenase were cloned into S. cerevisiae. The gene products catalyze the two initial steps in xylose utilization which S. cerevisiae lacks. In order to increase the flux through the pentose phosphate pathway, the S. cerevisiae TKL1 and TAL1 genes encoding transketolase and transaldolase were overexpressed. A XYL1- and XYL2-containing S. cerevisiae strain overexpressing TAL1 (S104-TAL) showed considerably enhanced growth on xylose compared with a strain containing only XYL1 and XYL2. Overexpression of only TKL1 did not influence growth. The results indicate that the transaldolase level in S. cerevisiae is insufficient for the efficient utilization of pentose phosphate pathway metabolites. Mixtures of xylose and glucose were simultaneously consumed with the recombinant strain S104-TAL. The rate of xylose consumption was higher in the presence of glucose. Xylose was used for growth and xylitol formation, but not for ethanol production. Decreased oxygenation resulted in impaired growth and increased xylitol formation. Fermentation with strain S103-TAL, having a xylose reductase/xylitol dehydrogenase ratio of 0.5:30 compared with 4.2:5.8 for S104-TAL, did not prevent xylitol formation.  相似文献   

14.
The yeast strain Candida guilliermondii 2581 was chosen for its ability to produce xylitol in media with high concentrations of xylose. The rate of xylitol production at a xylose concentration of 150 g/l is 1.25 g/l per h; the concentration of xylitol after three days of cultivation is 90 g/l; and the relative xylitol yield is 0.6 g per g substrate consumed. The growth conditions were found that resulted in the maximum relative xylitol yield with complete consumption of the sugar: xylose concentration, 150 g/l; pH 6.0; and shaking at 60 rpm. It was shown that the growth under conditions of limited aeration favors the reduction of xylose.  相似文献   

15.
16.
Malic acid, a petroleum-derived C4-dicarboxylic acid that is used in the food and beverage industries, is also produced by a number of microorganisms that follow a variety of metabolic routes. Several members of the genus Aspergillus utilize a two-step cytosolic pathway from pyruvate to malate known as the reductive tricarboxylic acid (rTCA) pathway. This simple and efficient pathway has a maximum theoretical yield of 2 mol malate/mol glucose when the starting pyruvate originates from glycolysis. Production of malic acid by Aspergillus oryzae NRRL 3488 was first improved by overexpression of a native C4-dicarboxylate transporter, leading to a greater than twofold increase in the rate of malate production. Overexpression of the native cytosolic alleles of pyruvate carboxylase and malate dehydrogenase, comprising the rTCA pathway, in conjunction with the transporter resulted in an additional 27 % increase in malate production rate. A strain overexpressing all three genes achieved a malate titer of 154 g/L in 164 h, corresponding to a production rate of 0.94 g/L/h, with an associated yield on glucose of 1.38 mol/mol (69 % of the theoretical maximum). This rate of malate production is the highest reported for any microbial system.  相似文献   

17.
The yeast Debaryomyces hansenii has been chosen as a model for molecular studies of tolerance to NaCl. A gene library was built and transformants of Saccharomyces cerevisiae W303 containing genes from D. hansenii were selected for their ability to grow in the presence of high concentrations of NaCl and/or low concentrations of KCl. In three of these transformants 500 mM NaCl improved growth at pH 7.6 like in D. hansenii but not in S. cerevisiae. One of the plasmids restored growth at 50 microM KCl and K(+) uptake in a mutant of S. cerevisiae lacking genes that encode K(+) transporters.  相似文献   

18.
Here, we describe the development of a genetically defined strain of l-lysine hyperproducing Corynebacterium glutamicum by systems metabolic engineering of the wild type. Implementation of only 12 defined genome-based changes in genes encoding central metabolic enzymes redirected major carbon fluxes as desired towards the optimal pathway usage predicted by in silico modeling. The final engineered C. glutamicum strain was able to produce lysine with a high yield of 0.55 g per gram of glucose, a titer of 120 g L(-1) lysine and a productivity of 4.0 g L(-1) h(-1) in fed-batch culture. The specific glucose uptake rate of the wild type could be completely maintained during the engineering process, providing a highly viable producer. For these key criteria, the genetically defined strain created in this study lies at the maximum limit of classically derived producers developed over the last fifty years. This is the first report of a rationally derived lysine production strain that may be competitive with industrial applications. The design-based strategy for metabolic engineering reported here could serve as general concept for the rational development of microorganisms as efficient cellular factories for bio-production.  相似文献   

19.
Saccharomyces cerevisiae was engineered to express different amount of heavy (H)- and light (L)-chain subunits of human ferritin by using a low-copy integrative vector (YIp) and a high-copy episomal vector (YEp). In addition to pep4::HIS3 allele, the expression host strain was bred to have the selection markers leu2(-) and ura3(-) for YIplac128 and YEp352, respectively. The heterologous expression of phytase was used to determine the expression capability of the host strain. Expression in the new host strain (2805-a7) was as high as that in the parental strain (2805), which expresses high levels of several foreign genes. Following transformation, Northern and Western blot analyses demonstrated the expression of H- and L-chain genes. The recombinant yeast was more iron tolerant, in that transformed cells formed colonies on plates containing more than 25 mM ferric citrate, whereas none of the recipient strain cells did. Prussian blue staining indicated that the expressed isoferritins were assembled in vivo into a complex that bound iron. The expressed subunits showed a clear preference for the formation of heteropolymers over homopolymers. The molar ratio of H to L chains was estimated to be 1:6.8. The gel-purified heteropolymer took up iron faster than the L homopolymer, and it took up more iron than the H homopolymer did. The iron concentrations in transformants expressing the heteropolymer, L homopolymer, and H homopolymer were 1,004, 760, and 500 micro g per g (dry weight) of recombinant yeast cells, respectively. The results indicate that heterologously expressed H and L subunits coassemble into a heteropolymer in vivo and that the iron-carrying capacity of yeast is further enhanced by the expression of heteropolymeric isoferritin.  相似文献   

20.
Of the three regulated acid phosphatase genes in S. cerevisiae (PHO5, PHO10 and PHO11) two have previously been cloned (PHO5 and PHO11). We have now identified PHO10 and show by restriction mapping that it is highly homologous to PHO11. This homology includes not only the coding sequence but also a stretch of about 2 kb upstream and 2.2 kb downstream of the genes. Analysis of strains in which either gene had been disrupted shows that the two genes are located at the telomeres of two different chromosomes. PHO10 3.6 kb from the end of a chromosome I. This makes PHO11 the gene closest to the end of a chromosome that has been physically mapped so far in S. cerevisiae. The organization of the two genes varies strongly from strain to strain consistent with a high incidence of telomere rearrangement. In one of twenty transformants examined a conversion event could be directly demonstrated that resulted in a chromosome VIII which had acquired a copy of the telomere from chromosome I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号