首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ligand binding induces shape changes within the four modular ectodomains (D1-D4) of the CD4 receptor, an important receptor in immune signaling. Small angle x-ray scattering (SAXS) on both a two-domain and a four-domain construct of the soluble CD4 (sCD4) is consistent with known crystal structures demonstrating a bilobal and a semi-extended tetralobal Z conformation in solution, respectively. Detection of conformational changes within sCD4 as a result of ligand binding was followed by SAXS on sCD4 bound to two different glycoprotein ligands: the tick saliva immunosuppressor Salp15 and the HIV-1 envelope protein gp120. Ab initio modeling of these data showed that both Salp15 and gp120 bind to the D1 domain of sCD4 and yet induce drastically different structural rearrangements. Upon binding, Salp15 primarily distorts the characteristic lobal architecture of the sCD4 without significantly altering the semi-extended shape of the sCD4 receptor. In sharp contrast, the interaction of gp120 with sCD4 induces a shape change within sCD4 that can be described as a Z-to-U bi-fold closure of the four domains across its flexible D2-D3 linker. Placement of known crystal structures within the boundaries of the SAXS-derived models suggests that the ligand-induced shape changes could be a result of conformational changes within this D2-D3 linker. Functionally, the observed shape changes in CD4 receptor causes dissociation of lymphocyte kinase from the cytoplasmic domain of Salp15-bound CD4 and facilitates an interaction between the exposed V3 loops of CD4-bound gp120 molecule to the extracellular loops of its co-receptor, a step essential for HIV-1 viral entry.  相似文献   

2.
The Ixodes scapularis salivary protein Salp15 inhibits the activation of T cells through its interaction with the coreceptor CD4. Salp15 prevents the activation of Lck upon TCR engagement and the formation of lipid rafts. We have now analyzed the signaling pathways that are inhibited by the tick salivary protein in CD4(+) T cells. Salp15 affects tyrosine phosphorylation of several early signal components downstream of Lck, including LAT and Vav1, which results in improper actin polymerization. The effect of Salp15 is due to its interaction with CD4, as no effect was observed in CD4-negative T cells. Finally, we demonstrate that the peptide that mediates the interaction of Salp15 with CD4, P11, is able to recapitulate the immunosuppressive activity of the whole protein. These results clarify the molecular mechanisms of action of Salp15 on T cells and suggest that binding to CD4 is sufficient to elicit its immunosuppressive effect.  相似文献   

3.
Salp15 is an Ixodes scapularis salivary protein that inhibits CD4+ T cell activation through the repression of TCR ligation-triggered calcium fluxes and IL-2 production. We show in this study that Salp15 binds specifically to the CD4 coreceptor on mammalian host T cells. Salp15 specifically associates through its C-terminal residues with the outermost two extracellular domains of CD4. Upon binding to CD4, Salp15 inhibits the subsequent TCR ligation-induced T cell signaling at the earliest steps including tyrosine phosphorylation of the Src kinase Lck, downstream effector proteins, and lipid raft reorganization. These results provide a molecular basis to understanding the immunosuppressive activity of Salp15 and its specificity for CD4+ T cells.  相似文献   

4.
Salp15 is a tick saliva protein that inhibits CD4+ T cell differentiation through its interaction with CD4. The protein inhibits early signaling events during T cell activation and IL-2 production. Because murine Experimental Autoimmune Encephalomyelitis development is mediated by central nervous system-infiltrating CD4+ T cells that are specific for myelin-associated proteins, we sought to determine whether the treatment of mice with Salp15 during EAE induction would prevent the generation of proinflammatory T cell responses and the development of the disease. Surprisingly, Salp15-treated mice developed more severe EAE than control animals. The treatment of EAE-induced mice with the tick saliva protein did not result in increased infiltration of T cells to the central nervous system, indicating that Salp15 had not affected the permeability of the blood-brain barrier. Salp15 treatment did not affect the development of antibody responses against the eliciting peptide or the presence of IFNγ in the sera. The treatment with Salp15 resulted, however, in the increased differentiation of Th17 cells in vivo, as evidenced by higher IL-17 production from PLP139-151-specific CD4+ T cells isolated from the central nervous system and the periphery. In vitro, Salp15 was able to induce the differentiation of Th17 cells in the presence of IL-6 and the absence of TGFβ These results suggest that a conductive milieu for the differentiation of Th17 cells can be achieved by restriction of the production of IL-2 during T cell differentiation, a role that may be performed by TGFβ and other immunosuppressive agents.  相似文献   

5.
HIV-1 external envelope glycoprotein gp120 inhibits adenosine deaminase (ADA) binding to its cell surface receptor in lymphocytes, CD26, by a mechanism that does not require the gp120-CD4 interaction. To further characterize this mechanism, we studied ADA binding to murine clones stably expressing human CD26 and/or human CD4, and transiently expressing human CXCR4. In this heterologous model, we show that both recombinant gp120 and viral particles from the X4 HIV-1 isolate IIIB inhibited the binding of ADA to wild-type or catalytically inactive forms of CD26. In cells lacking human CXCR4 expression, this gp120-mediated inhibition of ADA binding to human CD26 was completely dependent on the expression of human CD4. In contrast, when cells were transfected with human CXCR4 the inhibitory effect of gp120 was significantly enhanced and was not blocked by anti-CD4 antibodies. These data suggest that the interaction of gp120 with CD4 or CXCR4 is required for efficient inhibition of ADA binding to CD26, although in the presence of CXCR4 the interaction of gp120 with CD4 may be dispensable.  相似文献   

6.
Filamin-A regulates actin-dependent clustering of HIV receptors   总被引:5,自引:0,他引:5  
Human immunodeficiency virus (HIV)-1 infection requires envelope (Env) glycoprotein gp120-induced clustering of CD4 and coreceptors (CCR5 or CXCR4) on the cell surface; this enables Env gp41 activation and formation of a complex that mediates fusion between Env-containing and target-cell membranes. Kinetic studies show that viral receptors are actively transported to the Env-receptor interface in a process that depends on plasma membrane composition and the actin cytoskeleton. The mechanisms by which HIV-1 induces F-actin rearrangement in the target cell remain largely unknown. Here, we show that CD4 and the coreceptors interact with the actin-binding protein filamin-A, whose binding to HIV-1 receptors regulates their clustering on the cell surface. We found that gp120 binding to cell receptors induces transient cofilin-phosphorylation inactivation through a RhoA-ROCK-dependent mechanism. Blockade of filamin-A interaction with CD4 and/or coreceptors inhibits gp120-induced RhoA activation and cofilin inactivation. Our results thus identify filamin-A as an adaptor protein that links HIV-1 receptors to the actin cytoskeleton remodelling machinery, which may facilitate virus infection.  相似文献   

7.
Activation of Th2 CD4(+) T cells is necessary and sufficient to elicit allergic airway disease, a mouse model with many features of human allergic asthma. Effectively controlling the activities of these cells could be a panacea for asthma therapy. Blood-feeding parasites have devised remarkable strategies to effectively evade the immune response. For example, ticks such as Ixodes scapularis, which must remain on the host for up to 7 days to feed to repletion, secrete immunosuppressive proteins. Included among these proteins is the 15-kDa salivary protein Salp15, which inhibits T cell activation and IL-2 production. Our objective for these studies was to evaluate the T cell inhibitory properties of Salp15 in a mouse model of allergic asthma. BALB/cJ mice were Ag sensitized by i.p. injection of OVA in aluminum hydroxide, with or without 50 mug of Salp15, on days 0 and 7. All mice were challenged with aerosolized OVA on days 14-16 and were studied on day 18. Compared with control mice sensitized with Ag, mice sensitized with Ag and Salp15 displayed significantly reduced airway hyperresponsiveness, eosinophilia, Ag-specific IgG1 and IgE, mucus cell metaplasia, and Th2 cytokine secretion in vivo and by CD4(+) T cells restimulated with Ag in vitro. Our results demonstrate that Salp15 can effectively prevent the generation of a Th2 immune response and the development of experimental asthma. These studies, and those of others, support the notion that a lack of ectoparasitism may contribute to the increasing prevalence of allergic asthma.  相似文献   

8.
We investigated the interaction between cross-reactive HIV-1 neutralizing human monoclonal antibody m18 and HIV-1YU-2 gp120 in an effort to understand how this antibody inhibits the entry of virus into cells. m18 binds to gp120 with high affinity (KD≈5 nM) as measured by surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC). SPR analysis further showed that m18 inhibits interactions of gp120 with both soluble CD4 and CD4-induced antibodies that have epitopes overlapping the coreceptor binding site. This dual receptor site antagonism, which occurs with equal potency for both inhibition effects, argues that m18 is not functioning as a mimic of CD4, in spite of the presence of a putative CD4-like loop formed by HCDR3 in the antibody. Consistent with this view, m18 was found to interact with gp120 in the presence of saturating concentrations of a CD4-mimicking small molecule gp120 inhibitor, suggesting that m18 does not require unoccupied CD4 Phe43 binding cavity residues of gp120. Thermodynamic analysis of the m18-gp120 interaction suggests that m18 stabilizes a conformation of gp120 that is unique from and less structured than the CD4-stabilized conformation. Conformational mutants of gp120 were studied for their impact on m18 interaction. Mutations known to disrupt the coreceptor binding region and to lead to complete suppression of 17b binding had minimal effects on m18 binding. This argues that energetically important epitopes for m18 binding lie outside the disrupted bridging sheet region used for 17b and coreceptor binding. In contrast, mutations in the CD4 region strongly affected m18 binding. Overall, the results obtained in this work argue that m18, rather than mimicking CD4 directly, suppresses both receptor binding site functions of HIV-1 gp120 by stabilizing a nonproductive conformation of the envelope protein. These results can be related to prior findings about the importance of conformational entrapment as a common mode of action for neutralizing CD4bs antibodies, with differences mainly in epitope utilization and the extent of gp120 structuring.  相似文献   

9.
During HIV entry or resulting cell to cell fusion, the envelope glycoprotein gp120 binds first to the CD4 membrane distal domain and second to a chemokine receptor as coreceptor. Taking into consideration the relative length of these two molecules' extracellular parts, structural modulations of CD4 would be required to make the second interaction possible. In this work, we assessed the effect of gp120 binding on the conformation of CD4 expressed on cell surface. We demonstrated that following gp120 binding the avidity of some, but not all, monoclonal antibodies specific to epitopes, outside of the gp120-binding site, in D1, D3 and D4 domains of CD4 was decreased dramatically. This finding demonstrates that the gp120-CD4 interaction induces local and specific conformational changes of CD4 and constitutes functional evidence for hinge regions that could confer to this molecule the flexibility required for its various functions.  相似文献   

10.
This paper describes a branched synthetic peptide [3.7] that incorporates sequence discontinuous residues of HIV-1 gp120 constant regions. The approach was to bring together residues of gp120 known to interact with human cell membranes such that the peptide could fold to mimic the native molecule. The peptide incorporates elements of both the conserved CD4 and CCR5 binding sites. The 3.7 peptide, which cannot be produced by conventional genetic engineering methods, is recognized by antiserum raised to native gp120. The peptide also binds to CD4 and competitively inhibits binding of QS4120 an antibody directed against the CDR2 region of CD4. When preincubated with the CD4+ve MM6 macrophage cell line, which expresses mRNA for the CCR3 and CCR5 chemokine receptors, both 3.7 and gp120 inhibit binding of the chemokine MIP-1alpha. The peptide also inhibits infection of primary macrophages by M-tropic HIV-1. Thus, 3.7 is a prototype candidate peptide for a vaccine against HIV-1 and represents a novel approach to the rational design of peptides that can mimic complex sequence discontinuous ligand binding sites of clinically relevant proteins.  相似文献   

11.
This paper describes an approach to prevent HIV-cell fusion by disrupting the interaction between HIV protein gp120 and CD4 receptor. The CD4 residues Phe43 and Arg59 make important interactions with gp120. Small molecule analogues were made to mimic the crucial features of these residues. The analogues were assayed using a cellular 'FIGS' assay to measure inhibition of cell fusion and caused some inhibition.  相似文献   

12.
BACKGROUND: HIV-associated nephropathy is accompanied by significant tubular alterations in the form of tubular cell proliferation, apoptosis, and microcystic dilatation. In the present study we evaluated the role of CD4 receptors in HIV-1-induced tubular cell injury. METHODS: To confirm the presence of CD4 receptors in tubular cells, immunocytochemical, Western and Northern blot studies were carried out. To determine the downstream effect of CD4 and gp120 interaction, we evaluated the effect of gp120 on tubular cell p38 mitogen-activated protein kinase (MAPK) activity and phosphorylation. To establish causal relationships between gp120, CD4, and p38 MAPK pathways, we studied the effect of anti-CD4 antibody and SB 202190 (an inhibitor of p38 MAPK) on gp120-induced tubular cell apoptosis. RESULTS: Proximal tubular cells in culture as well as in intact tissue showed expression of CD4 (immunocytochemical and Western blot studies). Cultured tubular cells also showed mRNA expression for CD4 (Northern blot studies). Gp120, at concentrations of 10-100 ng/ ml, triggered tubular cell apoptosis; however, this effect of gp120 was inhibited by anti-CD4 antibody. SB 202190 also inhibited gp120-induced tubular cell apoptosis. In addition, gp120 promoted tubular cell p38 MAPK phosphorylation in a time- and dose- dependent manner. CONCLUSION: Gp120 through interaction with CD4 triggers tubular cell apoptosis. This effect of gp120 on tubular cells is mediated through phosphorylation of p38 MAPK.  相似文献   

13.
The human immunodeficiency virus binds to CD4+ T lymphocytes through the interaction of its envelope glycoprotein (gp120) with the CD4 molecule. The src-related protein tyrosine kinase p56lck is physically associated with CD4 and is co-immunoprecipitated by CD4 monoclonal antibody (mAb). Activators of protein kinase C (PKC) cause the dissociation of p56lck from CD4. Here we report that gp120 mAb immunoprecipitated the p56lck.CD4.gp120 complex after short term treatment (20 min) of human T lymphocytes with gp120. The p56lck that was associated with the CD4.gp120 complex was dissociated by activators of PKC. This effect was abolished by pretreatment of cells with PKC inhibitors. Thus the p56lck.CD4.gp120 immune complex immunoprecipitated by gp120 mAb behaves in a similar manner, with respect to PKC activation or inhibition, to the p56lck.CD4 complex immunoprecipitated by CD4 mAb. Short term treatment of cells with gp120, followed by gp120 mAb, resulted in an increase in the tyrosine kinase activity of p56lck associated with CD4. However, the amount of enzyme associated with CD4 remained unchanged. Long term treatment (20 h) of human T lymphocytes with gp120 resulted in the down-regulation of cell surface CD4 molecules. A parallel decrease in CD4-associated gp120 was also observed. In addition, gp120 caused the dissociation of p56lck and CD4. However, the dissociation of the p56lck from CD4 occurred at much faster rate than the down-regulation of surface CD4 molecules. Such mechanisms may account for the down-regulation of cell surface CD4 molecules and the depletion of functional CD4+ T lymphocytes which are characteristic of human immunodeficiency virus infections and acquired immune deficiency syndrome pathogenesis.  相似文献   

14.
A murine T cell hybridoma with a receptor specific for the class I molecule H-2 Dd was transfected with an expressible cDNA for human CD4. Expression of the human class II MHC molecule HLA-DP on Dd-positive murine fibroblasts resulted in a greatly enhanced response of the CD4-positive T cell hybridoma, measured either by lymphokine production or by rosette formation. Inhibition of these functional assays with anti-CD4 monoclonal antibodies implicated the two amino-terminal domains of CD4 in an interaction with the HLA-DP molecule. This interaction was blocked by incubation with recombinant gp120 envelope protein of HIV. In contrast, recombinant soluble CD4 did not inhibit and was able to prevent the inhibition by gp120. Anti-CD4 antibody blocking experiments clearly indicated that distinct regions of CD4 interact respectively with gp120 and with class II MHC molecules.  相似文献   

15.
HIV-1 envelope protein, gp120, is a major immunogenic protein of the AIDS virus. A specific feature of this protein is its interaction with the receptor protein, human CD4, an important component of the immune system. This interaction might affect the immunogenic properties of the gp120 and modulate the immune response towards HIV. To test this hypothesis we used human CD4-transgenic mice for immunization with gp120. The dynamics of the immune response towards gp120, CD4 and other proteins was followed. The results show that the primary immune response to gp120 (two weeks) developed somewhat faster in CD4-transgenic mice versus non-transgenic mice. Both animals, however, ultimately mounted the same level of response over time. The primary immune response to gp120 when complexed with soluble CD4 before the immunization, developed similarly in both groups. The secondary immune response was earlier and markedly stronger in non-transgenic mice compared with the transgenic mice where a less efficient memory response to gp120 was observed. The ability of gp120 to directly interact with CD4+ helper lymphocytes appears to affect the humoral response towards this antigen. Moreover, these effects illustrate how viral modulation of these cells may in turn lead to potentially different states of immunological equilibrium.  相似文献   

16.
Human immunodeficiency virus type 1 (HIV-1) entry into target cells is a multistep process initiated by envelope protein gp120 binding to cell surface CD4. The conformational changes induced by this interaction likely favor a second-step interaction between gp120 and a coreceptor such as CXCR4 or CCR5. Here, we report a spontaneous and stable CD4-independent entry phenotype for the HIV-1 NDK isolate. This mutant strain, which emerged from a population of chronically infected CD4-positive CEM cells, can replicate in CD4-negative human cell lines. The presence of CXCR4 alone renders cells susceptible to infection by the mutant NDK, and infection can be blocked by the CXCR4 natural ligand SDF-1. Furthermore, we have correlated the CD4-independent phenotype with seven mutations in the C2 and C3 regions and the V3 loop. We propose that the mutant gp120 spontaneously acquires a conformation allowing it to interact directly with CXCR4. This virus provides us with a powerful tool to study directly gp120-CXCR4 interactions.  相似文献   

17.
The gp120 envelope glycoprotein of the human immunodeficiency virus type 1 (HIV-1) promotes virus entry by sequentially binding CD4 and chemokine receptors on the target cell. Primary, clinical HIV-1 isolates require interaction with CD4 to allow gp120 to bind the CCR5 chemokine receptor efficiently. We adapted a primary HIV-1 isolate, ADA, to replicate in CD4-negative canine cells expressing human CCR5. The gp120 changes responsible for the adaptation were limited to alteration of glycosylation addition sites in the V2 loop-V1-V2 stem. The gp120 glycoproteins of the adapted viruses bound CCR5 directly, without prior interaction with CD4. Thus, a major function of CD4 binding in the entry of primary HIV-1 isolates can be bypassed by changes in the gp120 V1-V2 elements, which allow the envelope glycoproteins to assume a conformation competent for CCR5 binding.  相似文献   

18.
Peptide fragments of the CD4 molecule were compared in their ability to 1) inhibit CD4-dependent HIV-induced cell fusion; 2) inhibit CD4-dependent HIV infection in vitro; and 3) block gp120 envelope glycoprotein binding to CD4. Peptides from the region CD4(81-92), although inactive when underivatized, were equipotent inhibitors of CD4-dependent virus infection, cell fusion, and CD4/gp120 binding when derivatized via benzylation and acetylation. Peptides of identical chemical composition, but altered sequence and derivatization pattern that blocked gp120 binding to either CD4-positive cells or solubilized CD4, also blocked infection and fusion with similar potencies. Those that did not block gp120/CD4 interaction were also inactive in HIV-1 infection and cell fusion assays. No other peptide fragments of the CD4 molecule inhibited fusion, infection, or CD4/gp120 interaction. The peptide CD4(23-56), derived from a region of CD4 implicated in binding of CD4 antibodies that neutralize HIV infection and cell fusion, had no effect on CD4-dependent cell fusion, HIV-1 infection, or CD4/gp120 binding, but did reverse OKT4A and anti-Leu 3a blockade of gp120 binding to CD4. These data provide evidence that the 81-92 region of CD4 is directly involved in gp120 binding leading to CD4-dependent HIV infection and syncytium formation. Previous observations with structural mutants of CD4 suggest that the CDR2-homologous region of CD4 is also involved, either directly or indirectly, in binding of gp120 to CD4. The CDR2- and CDR3-like domains of CD4 may both contribute to the binding of the HIV envelope necessary for HIV-1 infection and HIV-1-induced cell fusion.  相似文献   

19.
BMS-488043 is a small-molecule human immunodeficiency virus type 1 (HIV-1) CD4 attachment inhibitor with demonstrated clinical efficacy. The compound inhibits soluble CD4 (sCD4) binding to the 11 distinct HIV envelope gp120 proteins surveyed. Binding of BMS-488043 and that of sCD4 to gp120 are mutually exclusive, since increased concentrations of one can completely block the binding of the other without affecting the maximal gp120 binding capacity. Similarly, BMS-488043 inhibited virion envelope trimers from binding to sCD4-immunoglobulin G (IgG), with decreasing inhibition as the sCD4-IgG concentration increased, and BMS-488043 blocked the sCD4-induced exposure of the gp41 groove in virions. In both virion binding assays, BMS-488043 was active only when added prior to sCD4. Collectively, these results indicate that obstruction of gp120-sCD4 interactions is the primary inhibition mechanism of this compound and that compound interaction with envelope must precede CD4 binding. By three independent approaches, BMS-488043 was further shown to induce conformational changes within gp120 in both the CD4 and CCR5 binding regions. These changes likely prevent gp120-CD4 interactions and downstream entry events. However, BMS-488043 could only partially inhibit CD4 binding to an HIV variant containing a specific envelope truncation and altered gp120 conformation, despite effectively inhibiting the pseudotyped virus infection. Taken together, BMS-488043 inhibits viral entry primarily through altering the envelope conformation and preventing CD4 binding, and other downstream entry events could also be inhibited as a result of these induced conformational changes.  相似文献   

20.
Comodulation of CXCR4 and CD26 in human lymphocytes   总被引:2,自引:0,他引:2  
We provide convergent and multiple evidence for a CD26/CXCR4 interaction. Thus, CD26 codistributes with CXCR4, and both coimmunoprecipitate from membranes of T (CD4(+)) and B (CD4(-)) cell lines. Upon induction with stromal cell-derived factor 1alpha (SDF-1alpha), CD26 is cointernalized with CXCR4. CXCR4-mediated down-regulation of CD26 is not induced by antagonists or human immunodeficiency virus (HIV)-1 gp120. SDF-1alpha-mediated down-regulation of CD26 is not blocked by pertussis toxin but does not occur in cells expressing mutant CXCR4 receptors unable to internalize. Codistribution and cointernalization also occurs in peripheral blood lymphocytes. Since CD26 is a cell surface endopeptidase that has the capacity to cleave SDF-1alpha, the CXCR4.CD26 complex is likely a functional unit in which CD26 may directly modulate SDF-1alpha-induced chemotaxis and antiviral capacity. CD26 anchors adenosine deaminase (ADA) to the lymphocyte cell surface, and this interaction is blocked by HIV-1 gp120. Here we demonstrate that gp120 interacts with CD26 and that gp120-mediated disruption of ADA/CD26 interaction is a consequence of a first interaction of gp120 with a domain different from the ADA binding site. SDF-1alpha and gp120 induce the appearance of pseudopodia in which CD26 and CXCR4 colocalize and in which ADA is not present. The physical association of CXCR4 and CD26, direct or part of a supramolecular structure, suggests a role on the function of the immune system and the pathophysiology of HIV infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号