首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphatidic acid-induced calcium mobilization in osteoblasts   总被引:1,自引:0,他引:1  
Phosphatidic acid (PA) evoked a transient increase in the cytosolic free Ca2+ concentration ([Ca2+]i) in osteoblasts isolated from neonatal mouse calvaria. This increase was observed in both low (below 150 microM) and high (1.26 mM) Ca2+-containing medium. In contrast, other phospholipids, such as phosphatidylethanolamine, phosphatidylcholine, and phosphatidylinositol, failed to increase [Ca2+]i in osteoblasts. In high Ca2+-containing medium, A23187 also increased [Ca2+]i in the cells, but the mode of the change was different from that in the case of PA. These results suggest that PA may induce Ca2+-mediated cellular responses through Ca2+ release from intracellular stores in osteoblasts.  相似文献   

2.
Cytosolic free calcium [( Ca2+]in) was measured using fura-2 in isolated cultured ventricular myocytes of neonatal rat. Exposure of the cardiomyocyte to a solution in which all Na+ have been replaced by impermeable cations results in a 400-600 nmol/l increase of [Ca2+]in. This increase is followed by a slow decrease to the initial level. A decrease of the extracellular calcium concentration from 2.5 to 0.5 mmol./l or increase to 10 mmol/l produced, respectively, decrease and increase of the amplitude of [Ca2+]in rise in response to low-Na+ superfusion. Exposure of cardiomyocytes to low-Na+ solutions also led to a 2-3 fold increase of caffeine++-dependent Ca2+ release from intracellular stores. Changes in [Ca2+]in can be attributed to the operation of a sodium-calcium exchanger in heart cells.  相似文献   

3.
Signal transduction by the T-cell antigen receptor involves the turnover of polyphosphoinositides and an increase in the concentration of cytoplasmic free Ca2+ ([Ca2+]i). This increase in [Ca2+]i is due initially to the release of Ca2+ from intracellular stores, but is sustained by the influx of extracellular Ca2+. To examine the regulation of sustained antigen-receptor-mediated increases in [Ca2+]i, we studied the relationships between extracellular Ca2+ influx, the mobilization of Ca2+ from intracellular stores, and the contents of inositol polyphosphates after stimulation of the antigen receptor on a human T-cell line, Jurkat. We demonstrate that sustained antigen-receptor-mediated increases in [Ca2+]i are associated with ongoing depletion of intracellular Ca2+ stores. When antigen-receptor-ligand interactions are disrupted, [Ca2+]i and inositol 1,4,5-trisphosphate return to basal values over 3 min. Under these conditions, intracellular Ca2+ stores are repleted if extracellular Ca2+ is present. There is a tight temporal relationship between the fall in [Ca2+]i, the return of inositol 1,4,5-trisphosphate to basal values, and the repletion of intracellular Ca2+ stores. Reversal of the increase in [Ca2+]i preceeds any fall in inositol tetrakisphosphate by 2 min. These studies suggest that sustained antigen-receptor-induced increases in [Ca2+]i, although dependent on extracellular Ca2+ influx, are also regulated by ongoing inositol 1,4,5-trisphosphate-mediated intracellular Ca2+ mobilization. In addition, an elevated concentration of inositol tetrakisphosphate in itself is insufficient to sustain an increase in [Ca2+]i within Jurkat cells.  相似文献   

4.
The hydrogen ion is an important factor in the alteration of vascular tone in pulmonary circulation. Endothelial cells modulate vascular tone by producing vasoactive substances such as prostacyclin (PGI2) through a process depending on intracellular Ca2+ concentration ([Ca2+]i). We studied the influence of CO2-related pH changes on [Ca2+]i and PGI2 production in human pulmonary artery endothelial cells (HPAECs). Hypercapnic acidosis appreciably increased [Ca2+]i from 112 +/- 24 to 157 +/- 38 nmol/l. Intracellular acidification at a normal extracellular pH increased [Ca2+]i comparable to that observed during hypercapnic acidosis. The hypercapnia-induced increase in [Ca2+]i was unchanged by the removal of Ca2+ from the extracellular medium or by the depletion of thapsigargin-sensitive intracellular Ca2+ stores. Hypercapnic acidosis may thus release Ca2+ from pH-sensitive but thapsigargin-insensitive intracellular Ca2+ stores. Hypocapnic alkalosis caused a fivefold increase in [Ca2+]i compared with hypercapnic acidosis. Intracellular alkalinization at a normal extracellular pH did not affect [Ca2+]i. The hypocapnia-evoked increase in [Ca2+]i was decreased from 242 +/- 56 to 50 +/- 32 nmol/l by the removal of extracellular Ca2+. The main mechanism affecting the hypocapnia-dependent [Ca2+]i increase was thought to be the augmented influx of extracellular Ca2+ mediated by extracellular alkalosis. Hypercapnic acidosis caused little change in PGI2 production, but hypocapnic alkalosis increased it markedly. In conclusion, both hypercapnic acidosis and hypocapnic alkalosis increase [Ca2+]i in HPAECs, but the mechanisms and pathophysiological significance of these increases may differ qualitatively.  相似文献   

5.
We have studied the changes of the intracellular free calcium concentration ([Ca2+]i) effected by external ATP, which induces formation of inositol trisphosphate, and by the divalent cation ionophores ionomycin and A23187. Both, ATP (40 microM) and ionophores (1-80 mumol/l cells ionomycin; 20-400 mumol/l cells A23187), produced a transient rise of [Ca2+]i which reached its maximum within 15-30 s and declined near resting values (about 200 nM) within 1-3 min. When the [Ca2+]i peak surpassed 500 nM a transient cell shrinkage due to simultaneous activation of Ca2+-dependent K+ and Cl- channels was also observed. The cell response was similar in medium containing 1 mM Ca2+ and in Ca2+-free medium, suggesting that the Ca mobilized to the cytosol comes preferently from the intracellular stores. Treatment with low doses of ionophore (1 mumol/l cells for ionomycin; 20 mumol/l cells for A23187) depressed the response to a subsequent treatment, either with ionophore or with ATP. Treatment with ATP did also inhibit the subsequent response to ionophore, but in this case the inhibition was dependent on time, the stronger the shorter the interval between both treatments. This result suggests that the permeabilization of Ca stores by ATP is transient and that Ca can be taken up again by the intracellular stores. Refill was most efficient when Ca2+ was present in the incubation medium. Addition of either ATP or ionomycin (1-25 mumol/l cells) to cells incubated in medium containing 1 mM Ca2+ decreased drastically the total cell Ca content during the following 3 min of incubation. In the case of ATP the total cell levels of Ca returned to the initial values after 7-15 min, whereas in the case of the ionophore they remained decreased during the whole incubation period. These results indicate that Ca released from the intracellular stores by either ATP or ionophores is quickly extruded by active mechanisms located at the plasma membrane. They also suggest that, under the conditions studied here, with 1 mM Ca2+ outside, the Ca-mobilizing effect of ionophores is stronger in endomembranes than in the plasma membrane.  相似文献   

6.
Phosphatidic acid (PA), which can be synthesized de novo, or as a product of phosphatidylcholine hydrolysis and/or phosphorylation of 1,2-diacylglycerol (DAG), mediates diverse cellular functions in various cell types, including cardiomyocytes. We set out to characterize the effect of PA on intracellular free calcium ([Ca2+]i) and inositol-1,4,5-trisphosphate (IP(3)) levels in primary cultures of neonatal rat cardiomyocytes. Addition of PA led to rapid, concentration and time dependent increases in both IP(3) and [Ca2+]i levels in adherent cells. There was strong correlation in the concentration-response relationships between IP(3) and [Ca2+]i increases evoked by PA. Incubation with the sarcoplasmic reticulum (SR) Ca2+ pump inhibitor, cyclopiazonic acid (CPA), significantly attenuated the PA evoked [Ca2+]i increase but had no significant effect on IP(3) accumulation. The phospholipase C (PLC) inhibitor, D-609, attenuated both IP(3) and [Ca2+]i elevations evoked by PA whereas staurosporine (STS), a potent and non-selective PKC inhibitor, had no significant effect on either. Another PLC inhibitor, U73122, but not its inactive analog, U73343, also inhibited PA evoked increases in [Ca2+]i. Depletion of extracellular calcium attenuated both basal and PA evoked increases in [Ca2+]i. The PLA(2) inhibitors, bromophenylacyl-bromide (BPB) and CDP-choline, had no effect on PA evoked [Ca2+]i responses. Neither the DAG analog, dioctanoylglycerol, nor the DAG kinase inhibitor, R59949, affected PA evoked changes in [Ca2+]i. Taken together, these data indicate that PA, in a manner independent of PKC, DAG, or PLA(2), may enhance Ca2+ release from IP(3) sensitive SR Ca(2+) stores via activation of PLC in neonatal rat cardiomyocytes.  相似文献   

7.
We have recently shown that both lipopolysaccharide (LPS) and the phorbol ester, 12-O-tetradecanoyl phorbol 13-acetate (TPA) induce differentiation in the transformed murine pre-B lymphocyte cell line 70Z/3 by enhancing Na+-H+ exchange across the plasma membrane through an amiloride-sensitive transport system (Rosoff, P.M., Stein, L.F., and Cantley, L.C. (1984) J. Biol. Chem. 259, 7056-7060). These data suggested that the activation of protein kinase C indirectly by LPS and directly by TPA was the critical step in the initiation of differentiation in these cells. We extend these observations to show that LPS rapidly stimulates an increase in phosphatidylinositol turnover, leading to a rise in the levels of diacylglycerol and inositol 1,4,5-trisphosphate and a concomitant decrease in the amount of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. There is also a rapid elevation of intracellular free [Ca2+] which is independent of the presence of extracellular Ca2+ or Na+. These results suggest that the increase in cytosolic [Ca2+] is due to release of cation from internal stores. TPA, which also causes differentiation in these cells, and the synthetic diacylglycerol, 1-oleoyl-2-acetylglycerol, have opposite effects from LPS on both phosphatidylinositol turnover and cellular Ca+ mobilization. These data suggest that protein kinase C inhibits the activity of phospholipase C. Thus protein kinase C plays a pivotal role in the regulation of mitogen-induced differentiation in these cells by both transducing a positive stimulus to the Na+-H+ exchange system as well as feedback regulating its own stimulatory pathway.  相似文献   

8.
We investigated the role of the L3T4 molecule in mitogen and antigen-initiated signal transduction in the L3T4(+) murine T cell hybridoma, 3DT52.5.9 and an L3T4(-) variant, 3DT52.5.24. Both Concanavalin A (Con A) and specific antigen stimulated increases in cytosolic-free calcium ([Ca2+]i), phosphatidylinositol turnover, and interleukin-2 (IL-2) production in both cell lines. About 85% of the stimulated rise in [Ca2+]i was from an extracellular source. Anti-L3T4 monoclonal antibody (MAb) inhibited 90% of antigen- and 50% of Con A-stimulated increases in [Ca2+]i and IL-2 production but had no effect on the ability of either activation signal to stimulate phosphatidylinositol turnover in the parent L3T4(+) cells. Stimulus-response coupling in the L3T4(-) cells was unaffected by the MAb. The anti-L3T4-insensitive increase in [Ca2+]i induced by Con A was inhibited by EGTA, suggesting that this mitogen also stimulated an influx of Ca2+ via an additional transport mechanism distinct from that stimulated by antigen. The fact that anti-L3T4 antibodies inhibit antigen and Con A-stimulated Ca2+ transport and IL-2 production without affecting phosphatidylinositol turnover suggests that L3T4 may play a critical role in modulating the activation of the T cell receptor-associated Ca2+ transporter in T cell stimulus-response coupling.  相似文献   

9.
Effects of heat on cell calcium and inositol lipid metabolism   总被引:12,自引:0,他引:12  
Hyperthermia causes a large (three-to fivefold) increase in intracellular free calcium ([Ca2+]i) in HA-1 fibroblasts. Increased [Ca2+]i appears initially to be due to release of Ca2+ from an internal store, probably located in the endoplasmic reticulum. A subsequent influx of Ca2+ from the extracellular medium is then observed. These heat-induced changes in Ca2+ homeostasis are correlated with turnover of the phosphoinositides (PI), a class of phospholipids whose metabolism has been shown to regulate Ca2+ in a wide variety of cells (M. J. Berridge and R. F. Irvine, Nature 312, 315 (1984]. Hyperthermia induces rapid release of inositol 1,4,5-trisphosphate (IP3) within 1 min at 45 degrees C; IP3 release precedes the heat-induced rise in [Ca2+]i. IP3 release, a result of phosphatidylinositol 4,5-bisphosphate hydrolysis by phospholipase C, is the initial step in PI turnover. Later accumulation of phosphatidic acid, another metabolite in the PI pathway, is correlated with the delayed, heat-induced influx of 45Ca2+ from the extracellular environment. The data thus indicate that heat-induced changes in Ca2+ homeostasis are correlated with activation of PI turnover. They indicate that this class of lipids may be closely involved in heat-induced changes in cellular Ca2+ homeostasis. Cell Ca2+ appears to be important in some aspects of the cellular response to heat.  相似文献   

10.
Addition of gonadotropin releasing hormone (GnRH) to pituitary cells prelabeled with [32P]Pi or with myo-[2-3H]inositol, resulted in a rapid decrease in the level of [32P]phosphatidylinositol 4,5-bisphosphate (approximately 10 s), and in [32P]phosphatidylinositol 4-phosphate (approximately 1 min), followed by increased labeling of [32P]phosphatidylinositol and [32P]phosphatidic acid (1 min). GnRH stimulated the appearance of [3H]myo-inositol 1,4,5-trisphosphate (10 s), [3H]myo-inositol 1,4-bisphosphate (15 s), and [3H]myo-inositol 1-phosphate (1 min) in the presence of Li+ (10 mM). Li+ alone stimulated the accumulation of [3H]myo-inositol 1-phosphate and [3H]myo-inositol 1,4-bisphosphate but not [3H]myo-inositol 1,4,5-trisphosphate, but had no effect on luteinizing hormone release. The effect of GnRH on inositol phosphates (Ins-P) production was dose-related (ED50 = 1-5 nM), and was blocked by a potent antagonist [D-pGlu,pClPhe,D-Trp]GnRH. Elevation of cytosolic free Ca2+ levels ([Ca2+]i), by ionomycin and A23187 from intracellular or extracellular Ca2+ pools, respectively, had no significant effect on [3H]Ins-P production. GnRH-induced [3H]Ins-P production was not dependent on extracellular Ca2+ and was noticed also after extracellular or intracellular Ca2+ mobilization by A23187 or ionomycin, respectively. The effect of GnRH on [3H]Ins-P accumulation was not affected by prior treatment of the cells with the tumor promoter phorbol ester 12-O-tetradecanoylphorbol-13-acetate or with islet-activating protein pertussis toxin. These results indicate that GnRH stimulates a rapid phosphodiester hydrolysis of polyphosphoinositides. The stimulatory effect is not mediated via an islet-activating protein-substrate, is not dependent on elevation of [Ca2+]i, neither is it negatively regulated by 12-O-tetradecanoylphorbol-13-acetate which activates Ca2+/phospholipid-dependent protein C kinase. The results are consistent with the hypothesis that GnRH-induced phosphoinositide turnover is responsible for Ca2+ mobilization followed by gonadotropin release.  相似文献   

11.
Effects of lanthanum on calcium-dependent phenomena in human red cells.   总被引:4,自引:0,他引:4  
Lanthanum (0.25 mM) does not penetrate into fresh or Mg2+-depleted cells, whereas it does into ATP-depleted or ATP + 2,3-diphosphoglycerate-depleted cells, into cells containing more than 3 mM calcium, or cells stored for more than 4 weeks in acid/citrate/dextrose solution. In fresh cells loaded with calcium, extracellular lanthanum blocks the active Ca2+-efflux completely and inhibits (Ca2+ + Mg2+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) activity to about 50%. In Mg2+-depleted cells Ca2+-Ca2+ exchange is inhibited by lanthanum. Ca2+-leak is unaffected by lanthanum up to 0.25 mM concentration; higher lanthanum concentrations reduce leak rate. In NaCl medium Ca2+-leak +/ S.D. amounts to 0.28 +/ 0.08 mumol/1 of cells per min, whereas in KC1 medium to 0.15 +/ 0.04 mumol/1 of cells per min at 2.5 mM [Ca2+]e and 0.25 mM [La3+]e pH 7.1. Lanthanum inhibits Ca2+-dependent rapid K+ transport in ATP-depleted and propranolol-treated red cells, i.e. whenever intracellular calcium is below a critical level. The inhibition of the rapid K+ transport can be attributed to protein-lanthanum interactions on the cell surface, since lanthanum is effectively detached from the membrane lipids by propranolol. Lanthanum at 0.2--0.25 mM concentration has no direct effect on the morphology of red cells. The shape regeneration of Ca2+-loaded cells, however, is blocked by lanthanum owing to Ca2+-pump inhibition. Using lanthanum the transition in cell shape can be quantitatively correlated to intracellular Ca2+ concentrations.  相似文献   

12.
Malaria parasites, Plasmodia, spend most of their asexual life cycle within red blood cells, where they proliferate and mature. The erythrocyte cytoplasm has very low [Ca2+] (<100 nM), which is very different from the extracellular environment encountered by most eukaryotic cells. The absence of extracellular Ca2+ is usually incompatible with normal cell functions and survival. In the present work, we have tested the possibility that Plasmodia overcome the limitation posed by the erythrocyte intracellular environment through the maintenance of a high [Ca2+] within the parasitophorous vacuole (PV), the compartment formed during invasion and within which the parasites grow and divide. Thus, Plasmodia were allowed to invade erythrocytes in the presence of Ca2+ indicator dyes. This allowed selective loading of the Ca2+ probes within the PV. The [Ca2+] within this compartment was found to be approximately 40 microM, i.e., high enough to be compatible with a normal loading of the Plasmodia intracellular Ca2+ stores, a prerequisite for the use of a Ca2+-based signaling mechanism. We also show that reduction of extracellular [Ca2+] results in a slow depletion of the [Ca2+] within the PV. A transient drop of [Ca2+] in the PV for a period as short as 2 h affects the maturation process of the parasites within the erythrocytes, with a major reduction 48 h later in the percentage of schizonts, the form that re-invades the red blood cells.  相似文献   

13.
The effects of N-methyl-D-aspartate (NMDA) on the free intracellular Ca2+ concentration [( Ca2+]i) and the energy state in superfused cerebral cortical slices have been studied using 19F- and 31P-nuclear magnetic resonance spectroscopy. [Ca2+]i was measured using the calcium indicator 1,2-bis(2-amino-5-fluorophenoxy)ethane-N,N,N',N'-tetraacetic acid (5FBAPTA). NMDA (10 microM) in the absence of extracellular Mg2+ caused the expected rise in [Ca2+]i but produced an impairment of the energy state: the phosphocreatine (PCr) content was decreased by 42%, and the Pi/PCr ratio was increased by 55%. There was no detectable change in ATP or free intracellular Mg2+ concentration. Increasing the NMDA concentration in the superfusing medium to 100 or 400 microM caused no further increase in [Ca2+]i or further decrease in PCr content, but the Pi/PCr ratio continued to rise. The impairment of the energy state preceded the effect on [Ca2+]i, and these changes were irreversible on return to control conditions. Repeating the experiments in the presence of 1.2 mM extracellular Mg2+ resulted in similar changes in the energy state, with no change in [Ca2+]i. The possibilities that the effects were due to membrane depolarisation or to the presence of 5FBAPTA within the tissues were eliminated. The results suggest that low concentrations (10 microM) of NMDA produce an impaired energy state independent of the presence of extracellular Mg2+ and that the decreased energy state is not due to the changes in [Ca2+]i, which are seen only in the absence of extracellular Mg2+.  相似文献   

14.
Cytosolic free calcium spiking affected by intracellular pH change   总被引:1,自引:0,他引:1  
The characteristics underlying cytosolic free calcium oscillation were evaluated by superfused dual wave-length microspectrofluorometry of fura-2-loaded single acinar cells from rat pancreas. Application of a physiological concentration of cholecystokinin octapeptide (CCK) (20 pM) induced a small basal increase in cytosolic free calcium concentration ([Ca2+]i) averaging 34 nM above the prestimulation level (69 nM) with superimposed repetitive Ca2+ spike oscillation. The oscillation amplitude averaged 121 nM above the basal increase in [Ca2+]i and occurred at a frequency of one pulse every 49 s. Although extracellular Ca2+ was required for maintenance of high frequency and amplitude of the spikes with increase in basal [Ca2+]i, the primary source utilized for oscillation was intracellular. The threshold of the peak [Ca2+]i amplitude for causing synchronized and same-sized oscillations was less than 300 nM. The [Ca2+]i oscillation was sensitive to intracellular pH (pHi) change. This is shown by the fact that the large pHi shift toward acidification (delta pHi decrease, 0.95) led to a basal increase in [Ca2+]i to the spike peak level with inhibiting Ca2+ oscillation. The pHi shift toward alkalinization (delta pHi increase, 0.33) led to a basal decrease in [Ca2+]i to the prestimulation level, possibly due to reuptake of Ca2+ into the Ca2+ stores, with inhibiting Ca2+ oscillation. Whereas extracellular pH (pHo) change had only minimal effects on Ca2+ oscillation (and/or Ca2+ release from intracellular stores), the extra-Ca2+ entry process, which was induced by higher concentrations of CCK, was totally inhibited by decreasing pHo from 7.4 to 6.5. Thus the major regulatory sites by which H+ affects Ca2+ oscillation are accessible from the intracellular space.  相似文献   

15.
The intracellular free Ca2+ concentration ([free Ca2+]i) was measured simultaneously with the Ca2+ extrusion from single isolated mouse pancreatic acinar cells placed in a microdroplet of extracellular solution using the fluorescent probes fura-2 and fluo-3. The extracellular solution had a low total calcium concentration (15-35 microM), and acetylcholine (ACh), applied by microionophoresis, therefore only evoked a transient elevation of [free Ca2+]i lasting about 2-5 min. The initial sharp rise in [free Ca2+]i from about 100 nM toward 0.5-1 microM was followed within seconds by an increase in the total calcium concentration in the microdroplet solution ([Ca]o). The rate of this rise of [Ca]o was dependent on the [free Ca2+]i elevation, and as [free Ca2+]i gradually decreased Ca2+ extrusion declined with the same time course. Ca2+ extrusion following ACh stimulation was not influenced by removal of all Na+ in the microdroplet solution indicating that the Ca2+ extrusion is not mediated by Na(+)-Ca2+ exchange but by the Ca2+ pump. The amount of Ca2+ extruded during the ACh-evoked transient rise in [free Ca2+]i corresponded to a decrease in the total intracellular Ca concentration of about 0.7 mM which is close to previously reported values (0.5-1 mM) for the total concentration of mobilizable calcium in these cells. Our results therefore demonstrate directly the ability of the Ca2+ pump to rapidly remove the large amount of Ca2+ released from the intracellular pools during receptor activation.  相似文献   

16.
T51B rat liver epithelial cells were stimulated with extracellular ATP. Changes in cytoplasmic free Ca2+ concentration [( Ca2+]i) were measured by fura-2 both in a large population of cells on coverslips in a cuvette and in single cells in a microscopic system. Extracellular ATP evoked a prompt increase in [Ca2+]i in both the presence and absence of extracellular Ca2+, although the effect was less pronounced in the latter case. These findings indicate that at least part of the [Ca2+]i increase is due to mobilization of intracellularly bound calcium. Stimulation with ATP did not mobilize the total pool of intracellular releasable Ca2+, as evidenced from experiments where subsequent addition of ionomycin evoked a pronounced increase in [Ca2+]i in the absence of extracellular Ca2+. The effect of ATP was maintained at room temperature but was markedly impaired in the absence of continuous stirring of the buffer solution. In the absence of stirring, ATP had to be increased to the millimolar range in order to evoke a pronounced effect. Single cell measurements revealed a heterogenous Ca2+ response to ATP, with some cells failing to respond with a detectable increase in [Ca2+]i. The actual increase in [Ca2+]i was not uniform throughout the cytoplasm, but seemed to start in one part of the cell. Even if part of the [Ca2+]i increase might be accounted for by ATP promoting the hydrolysis of phosphatidylinositol 4,5-bisphosphate and thereby a generation of InsP3 and diacylglycerol, there was no initiation of DNA synthesis under the present conditions. Hence, extracellular growth factors exert either a quantitative difference in second messenger production or additional stimulatory effects by activating intracellular signal pathways beyond these represented by [Ca2+]i and protein kinase C.  相似文献   

17.
Dual wavelength microfluorometry was used to measure the cytoplasmic free calcium concentration [( Ca2+]in) in single cultured cells from ventricular myocytes of neonatal rats loaded with the indicator fura-2. At 2.5 nmol/l extracellular Ca2+ in the resting cells [Ca2+]in was between 80 and 110 nmol/l. Sometimes, spontaneous low-frequency (approximately 0.1 Hz) [Ca2+]in oscillations were observed. High-potassium depolarization led to a Ca2+-antagonists-sensitive rise of [Ca2+]in. Both caffeine++ (5-10 mmol/l) and thymol (lmmol/l) initialized transient increase of [Ca2+]in. Mechanisms of [Ca2+]in homeostasis in heart muscle cells were discussed.  相似文献   

18.
The neuropeptide somatostatin causes membrane hyperpolarization and reduces the intracellular free calcium ion concentration ([Ca2+]i) in GH pituitary cells. In this study, we have used the fluorescent dyes bisoxonol (bis,-(1,3-diethylthiobarbiturate)-trimethineoxonol) and quin2 to elucidate the mechanisms by which these ionic effects are triggered. Addition of 100 nM somatostatin to GH4C1 cells caused a 3.4 mV hyperpolarization and a 26% decrease in [Ca2+]i within 30 s. These effects were not accompanied by changes in intracellular cAMP concentrations and occurred in cells containing either basal or maximally elevated cAMP levels. To determine which of the major permeant ions were involved in these actions of somatostatin, we examined its ability to elicit changes in the membrane potential and the [Ca2+]i when the transmembrane concentration gradients for Na+, Cl-, Ca2+, and K+ were individually altered. Substitution of impermeant organic ions for Na+ or Cl- did not block either the hyperpolarization or the decrease in [Ca2+]i induced by somatostatin. Decreasing extracellular Ca2+ from 1 mM to 250 nM abolished the reduction in [Ca2+]i but did not prevent the hyperpolarization response. These results show that hyperpolarization was not primarily due to changes in the conductances of Na+, Cl-, or Ca2+. Although the somatostatin-induced decrease in [Ca2+]i did require Ca2+ influx, it was independent of changes in Na+ or Cl- conductance. In contrast, elevating the extracellular [K+] from 4.6 to 50 mM completely blocked both the somatostatin-induced hyperpolarization and the reduction in [Ca2+]i. Furthermore, hyperpolarization of the cells with gramicidin mimicked the effect of somatostatin to decrease the [Ca2+]i and prevented any additional effect by the hormone. These results indicate that somatostatin increases a K+ conductance, which hyperpolarizes GH4C1 cells, and thereby secondarily decreases Ca2+ influx. Since the somatostatin-induced decrease in [Ca2+]i is independent of changes in intracellular cAMP levels, it may be responsible for somatostatin inhibition of hormone secretion by its cAMP-independent mechanism.  相似文献   

19.
The biochemical basis of Ca2+ mobilization after anti-Ig binding to B cell Ag-R has been further characterized by flow cytometric analysis of indo-1-loaded B cells. The ability to distinguish intracellular Ca2+ release from extracellular Ca2+ influx by using an extracellular calcium depletion-repletion approach has allowed us to study the relationship between the mobilization of Ca2+ from these sources. Studies involving manipulation of the Ca2+ gradient across the plasma membrane indicate that a significant portion of the Ca2+ mobilization response is preserved even when the normal inwardly directed Ca2+ gradient is reversed. In the presence of an extracellular calcium concentration ([Ca2+]o) of 10 microM, the response to anti-Ig is not blocked by the organic Ca2+ channel blockers. This response is not reduced by further depletion of [Ca2+]o by EGTA Ca2+-binding buffers. Thus, the Ca2+ response that occurs when [Ca2+]o less than or equal to 10 microM represents intracellular calcium release. Analysis of B cells stimulated with anti-Ig in low Ca2+ medium ([Ca2+]o = less than 10 microM) followed by repletion of [Ca2+]o to 1 to 5 mM reveals that a significant increase in permeability of the plasma membrane to Ca2+ develops in the stimulated cells. The resultant Ca2+ influx is nimodipine (20 microM) sensitive. Both intracellular Ca2+ release and Ca2+ influx are reduced in parallel as the concentration of anti-Ig stimulus is decreased, suggesting that Ca2+ influx may be coupled to the release of intracellular stores. Neomycin blocks anti-Ig-stimulated formation of inositol trisphosphate, which mediates release of Ca2+ from the endoplasmic reticulum. It also blocks the anti-Ig-induced release of intracellular Ca2+ stores as well as Ca2+ influx, indicating that both responses may be dependent upon phosphatidylinositol 4,5-bisphosphate hydrolysis.  相似文献   

20.
In Retzius neurones of the medicinal leech, Hirudo medicinalis, kainate activates ionotropic glutamate receptors classified as AMPA/kainate receptors. Activation of the AMPA/kainate receptor-coupled cation channels evokes a marked depolarization, intracellular acidification, and increases in the intracellular concentrations of Na+ ([Na+]i) and Ca2+. Qualitatively similar changes are observed upon the application of carbachol, an activator of acetylcholine receptor-coupled cation channels. Using multibarrelled ion-selective microelectrodes it was demonstrated that kainate, but not carbachol, caused additional increases in the intracellular free Mg2+ concentration ([Mg2+]i). Experiments were designed to investigate whether this kainate-induced [Mg2+]i increase was due to a direct Mg2+ influx through the AMPA/kainate receptor-coupled cation channels or a secondary effect due to the depolarization or the ionic changes. It was found that: (a) Similar [Mg2+]i increases were evoked by the application of glutamate or aspartate. (b) All kainate-induced effects were inhibited by the glutamatergic antagonist DNQX. (c) The magnitude of the [Mg2+]i increases depended on the extracellular Mg2+ concentration. (d) A reduction of the extracellular Ca2+ concentration increased kainate-induced [Mg2+]i increases, excluding possible Ca2+ interference at the Mg2+-selective microelectrode or at intracellular buffer sites. (e) Neither depolarizations evoked by the application of 30 mM K+, nor [Na+]i increases induced by the inhibition of the Na+/K+ ATPase caused comparable [Mg2+]i increases. (f) Inhibitors of voltage-dependent Ca2+ channels did not affect the kainate-induced [Mg2+]i increases. Moreover, previous experiments had already shown that intracellular acidification evoked by the application of 20 mM propionate did not cause changes in [Mg2+]i. The results indicate that kainate-induced [Mg2+]i increases in leech Retzius neurones are due to an influx of extracellular Mg2+ through the AMPA/kainate receptor-coupled cation channel. Mg2+ may thus act as an intracellular signal to distinguish between glutamatergic and cholinergic activation of leech Retzius neurones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号