首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Serotonin (5-HT) receptors are classified into seven groups (5-HT1–7), comprising at least 14 structurally and pharmacologically distinct receptor subtypes. Pharmacological antagonism of ionotropic 5-HT3 receptors has been shown to modulate both behavioral and neurochemical aspects of the induction of sensitization to cocaine. It is not known, however, if specific molecular subunits of the 5-HT3 receptor influence the development of cocaine sensitization. To address this question, we studied the effects of acute and chronic intermittent cocaine administration in mice with a targeted deletion of the gene for the 5-HT3A-receptor subunit (5-HT3A−/−). 5-HT3A (−/−) mice showed blunted induction of cocaine-induced locomotor sensitization as compared with wild-type littermate controls. 5-HT3A (−/−) mice did not differ from wild-type littermate controls on measures of basal motor activity or response to acute cocaine treatment. Enhanced locomotor response to saline injection following cocaine sensitization was observed equally in 5-HT3A (−/−) and wild-type mice suggesting similar conditioned effects associated with chronic cocaine treatment. These data show a role for the 5-HT3A-receptor subunit in the induction of behavioral sensitization to cocaine and suggest that the 5-HT3A molecular subunit modulates neurobehavioral adaptations to cocaine, which may underlie aspects of addiction.  相似文献   

2.
Interaction between brain endocannabinoid (EC) and serotonin (5-HT) systems was investigated by examining 5-HT-dependent behavioral and biochemical responses in CB1 receptor knockout mice. CB1 knockout animals exhibited a significant reduction in the induction of head twitches and paw tremor by the 5-HT2A/C receptor selective agonist (±) DOI, as well as a reduced hypothermic response following administration of the 5-HT1A receptor agonist (±)-8-OH-DPAT. Additionally, exposure to the tail suspension test induced enhanced despair responses in CB1 knockout mice. However, the tricyclic antidepressant imipramine and the 5-HT selective reuptake inhibitor fluoxetine induced similar decreases in the time of immobility in the tail suspension test in CB1 receptor knockout and wild-type mice. No differences were found between both genotypes with regard to 5-HT2A receptor and 5-HT1A receptors levels, measured by autoradiography in different brain areas. However, a significant decrease in the ability of both, the 5-HT1A receptor agonist (±)-8-OH-DPAT and the 5-HT2A/C receptor agonist (−)DOI, to stimulate [35S]GTPγS binding was detected in the hippocampal CA1 area and fronto-parietal cortex of CB1 receptor knockout mice, respectively. This study provides evidence that CB1 receptors are involved in the regulation of serotonergic responses mediated by 5-HT2A/C and 5-HT1A receptors, and suggests that a reduced coupling of 5-HT1A and 5-HT2A receptors to G proteins might be involved in these effects.  相似文献   

3.
Serotonergic genes have been implicated in the pathogenesis of depression probably via their influence on neural activity during emotion processing. This study used an imaging genomics approach to investigate amygdala activity in major depression as a function of common functional polymorphisms in the serotonin transporter gene (5-HTTLPR) and the serotonin receptor 1A gene (5-HT(1A)-1019C/G). In 27 medicated patients with major depression, amygdala responses to happy, sad and angry faces were assessed using functional magnetic resonance imaging at 3 Tesla. Patients were genotyped for the 5-HT(1A)-1019C/G and the 5-HTTLPR polymorphism, including the newly described 5-HTT-rs25531 single nucleotide polymorphism. Risk allele carriers for either gene showed significantly increased bilateral amygdala activation in response to emotional stimuli, implicating an additive effect of both genotypes. Our data suggest that the genetic susceptibility for major depression might be transported via dysfunctional neural activity in brain regions critical for emotion processing.  相似文献   

4.
Hibernation is a unique physiological state characterized by profound reversible sleep-like state, depression in body temperature and metabolism. The serotonin 5-hydroxytryptamine1A (5-HT1A) receptor gene sequence in typical seasonal hibernator, ground squirrel ( Spermophilus undulatus ), was specified. It was found that the fragment encoding the fifth transmembrane domain showed 93.6% of homology with the analogous fragment of the mouse and rat genes and displayed 88.5% homology with the human 5-HT1A receptor gene. Using primers designed on the basis of obtained sequence, the expression of 5-HT1A receptor gene in the brain regions in active, entering into hibernation, hibernating and coming out of hibernation ground squirrels was investigated. Significant structure-specific changes were revealed in the 5-HT1A messenger RNA (mRNA) level in entry into hibernation and in arousal. An increase in the 5-HT1A gene expression was found in the hippocampus during the prehibernation period and in ground squirrels coming out of hibernation, thus confirming the idea of the hippocampus trigger role in the hibernation. Significant decrease in 5-HT1A receptor mRNA level in the midbrain was found in animals coming out of hibernation. There was no considerable changes in 5-HT1A receptor mRNA level in different stages of sleep–wake cycle in the frontal cortex. Despite drastically decreased body temperature in hibernating animals (about 37°C in active and 4–5°C in hibernation), 5-HT1A receptor mRNA level in all examined brain regions remained relatively high, suggesting the essential role of this 5-HT receptor subtype in the regulation of hibernation and associated hypothermia.  相似文献   

5.
6.
Abstract: Previous radioligand binding studies have demonstrated human platelet serotonin2A (5-HT2A) receptor binding sites. Pharmacological similarities between platelet and frontal cortex 5-HT2A receptor binding parameters have been demonstrated. However, it is not clear whether the platelet 5-HT2A receptor primary structure is identical to that of the brain receptor. Three overlapping cDNAs were obtained to span completely the coding region of the 5-HT2A receptor. These clones were sequenced with external and internal primers. The nucleotide sequence of human platelet 5-HT2A cDNA was identical to that reported for the human frontal cortex 5-HT2A receptor, except for nucleotide 102 (T → C), which has been reported to represent a normal DNA polymorphism that does not alter the amino acid sequence. This finding may have implications in the study of neuropsychiatric disorders for which altered platelet 5-HT2A receptor binding has been demonstrated.  相似文献   

7.
Serotonin-1A (5-HT1A) receptors in the dorsal raphe nucleus (DRN) function as somatodendritic autoreceptors, and therefore play a critical role in controlling serotonergic cell firing and serotonergic neurotransmission. We hypothesized that a decrease in the capacity of 5-HT1A receptors to activate G proteins was a general mechanism by which 5-HT1A receptors in the DRN are desensitized following chronic administration of selective serotonin reuptake inhibitors (SSRIs). Using in vivo microdialysis, we found that the ability of the 5-HT1A receptor agonist 8-hydroxydipropylaminotetralin hydrobromide (8-OH-DPAT) (0.025 mg/kg, s.c.) to decrease extracellular 5-HT levels in striatum was attenuated following chronic treatment of rats with the SSRIs sertraline or fluoxetine. This apparent desensitization of somatodendritic 5-HT1A autoreceptor function was not accompanied by a decrease in 5-HT1A receptor sites in the coupled, high-affinity agonist state as measured by the binding of [3H]8-OH-DPAT. In marked contrast to what was observed following chronic administration of fluoxetine, 5-HT1A receptor-stimulated [35S]GTPγS binding in the DRN was not altered following chronic sertraline treatment. Thus, desensitization of 5-HT1A somatodendritic autoreceptor function following chronic sertraline administration appears not to be due to a decrease in the capacity 5-HT1A receptors to activate G proteins in the DRN. Our findings suggest that the SSRIs may not be a homogeneous class of antidepressant drug with regard to the mechanism by which the function of somatodendritic 5-HT1A autoreceptors is regulated.  相似文献   

8.
9.
In fisheries, the two morphological parameters of opercular and maximum girth are related to the effectivity of capture methods in gilled and wedged fish, respectively. The present work investigates the relationship between opercular ( G ope) and maximum girths ( G max) to total length ( L t) for 10 fish species captured from Shatt al-Arab River, Basrah, Iraq. Data were collected October 2005 to December 2006. Cyprinids were the best represented family with six species; engraulids, silurids, heteropneustids and mugilids were each represented by one species. G ope and G max were found to increase linearly with total length of all species, all r 2 values being greater than 0.73 and statistically significant (P < 0.01). When G ope and G max for all species were plotted against total length, two groups were identified ( G 1, G 2), corresponding to general girth-length relationships: (a) G 1 = −0.252 + 0.424 L t and G 2 = −0.262  +  0.600 L t for opercular girth and, (b) G 1 = 1.538 + 0.419 L t and G 2  =  1.538  +  0.696 L t for maximum girth. These groups correspond to different body shapes of fishes: G 1-round and G 2-compressed. These relationships have implications when using length data and mesh size to determine size selectivity of gill nets.  相似文献   

10.
Abstract: The present study addressed the possibility that disinhibition of serotonin (5-HT) autoreceptor-mediated negative feedback might potentiate the elevation of nerve terminal 5-HT output induced by selective 5-HT reuptake blockade. To this end, rats were given citalopram and the 5-HT autoreceptor-blocking agents ( S )-UH-301 (5-HT1A) and (−)-penbutolol (5-HT1A/1B), and the effect on extracellular 5-HT in the ventral hippocampus was monitored by means of in vivo microdialysis. Citalopram (5 mg/kg, s.c.) approximately doubled the 5-HT output, a response that was markedly augmented by ( S )-UH-301 (3 mg/kg, s.c.) and (−)-penbutolol (8 mg/kg, s.c.) and by combined treatment with ( S )-UH-301 (3 mg/kg, s.c.) plus (−)-penbutolol (1 μ M ; via the dialysis perfusion medium), but not by (−)-penbutolol (1 μ M ) alone. These findings provide evidence that 5-HT, in particular 5-HT1A, autoreceptor-mediated negative feedback mechanisms are pivotal in determining the nerve terminal 5-HT output level after 5-HT reuptake inhibition. These findings have important implications for the interplay between different processes controlling 5-HT transmission in vivo and might possibly offer a lead toward novel, therapeutically exploitable principles.  相似文献   

11.
Abstract: Milnacipran, a dual noradrenaline (NA) and serotonin (5-hydroxytryptamine, 5-HT) uptake inhibitor, increased extracellular levels of NA and 5-HT in hypothalamus of freely moving guinea pigs as measured by microdialysis. The basal levels of both monoamines, which were tetrodotoxin sensitive, were increased in a dose-dependent manner and to a similar extent after the intraperitoneal administration of milnacipran (10 and 40 mg/kg i.p.). Levels of the NA metabolite 4-hydroxy-3-methoxyphenylglycol (MHPG) were decreased by milnacipran at 10 and 40 mg/kg i.p., whereas those of the 5-HT metabolite 5-hydroxyindoleacetic acid (5-HIAA) showed no effect. Subcutaneous injection of 5-HT1A and β-adrenergic receptor antagonist (−)-pindolol alone, at 10 mg/kg, had no effect on the extracellular levels of NA or 5-HT. The concomitant administration of (−)-pindolol (10 mg/kg s.c.) with milnacipran (10 mg/kg i.p.) increased severalfold the effect of milnacipran on the extracellular levels of NA and 5-HT. These results indicate that milnacipran, by blocking the uptake of NA and 5-HT, increases virtually equipotently the extracellular levels of NA and 5-HT, confirming previous in vitro studies. In addition, the antagonism of 5-HT1A autoreceptors by (−)-pindolol potentiates the action of milnacipran on both NA and 5-HT systems, without modifying the ratio of these activities.  相似文献   

12.
During hypoxia, extracellular adenosine levels are increased to prevent cell damage, playing a neuroprotective role mainly through adenosine A1 receptors. The aim of the present study was to analyze the effect of hypoxia in both adenosine A1 and A2A receptors endogenously expressed in C6 glioma cells. Two hours of hypoxia (5% O2) caused a significant decrease in adenosine A1 receptors. The same effect was observed at 6 h and 24 h of hypoxia. However, adenosine A2A receptors were significantly increased at the same times. These effects were not due to hypoxia-induced alterations in cells number or viability. Changes in receptor density were not associated with variations in the rate of gene expression. Furthermore, hypoxia did not alter HIF-1α expression in C6 cells. However, HIF-3α, CREB and CREM were decreased. Adenosine A1 and A2A receptor density in normoxic C6 cells treated with adenosine for 2, 6 and 24 h was similar to that observed in cells after oxygen deprivation. When C6 cells were subjected to hypoxia in the presence of adenosine deaminase, the density of receptors was not significantly modulated. Moreover, DPCPX, an A1 receptor antagonist, blocked the effects of hypoxia on these receptors, while ZM241385, an A2A receptor antagonist, was unable to prevent these changes. These results suggest that moderate hypoxia modulates adenosine receptors and cAMP response elements in glial cells, through a mechanism in which endogenous adenosine and tonic A1 receptor activation is involved.  相似文献   

13.
Abstract : Single treatment with the serotonin (5-hydroxytryptamine) 5-HT1A receptor agonists 8-hydroxy-2-(di- n -propylamino)tetralin (8-OH-DPAT) and alnespirone (S-20499) reduces the extracellular 5-HT concentration (5-HText) in the rat midbrain and forebrain. Given the therapeutic potential of selective 5-HT1A agonists in the treatment of affective disorders, we have examined the changes in 5-HT1A receptors induced by 2-week minipump administration of alnespirone (0.3 and 3 mg/kg/day) and 8-OH-DPAT (0.1 and 0.3 mg/kg/day). The treatment with alnespirone did not modify baseline 5-HText but significantly attenuated the ability of 0.3 mg/kg s.c. alnespirone to reduce 5-HText in the dorsal raphe nucleus (DRN) and frontal cortex. In contrast, the ability of 8-OH-DPAT (0.025 and 0.1 mg/kg s.c.) to reduce 5-HText in both areas was unchanged by 8-OH-DPAT pretreatment. Autoradiographic analysis revealed a significant reduction of [3H]8-OH-DPAT and [3H]WAY-100635 {3H-labeled N -[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]- N -(2-pyridyl)cyclohexanecarboxamide · 3HCl} binding to somatodendritic 5-HT1A receptors (but not to postsynaptic 5-HT1A receptors) of rats pretreated with alnespirone but not with 8-OH-DPAT. In situ hybridization analysis revealed no change of the density of the mRNA encoding the 5-HT1A receptors in the DRN after either treatment. These data indicate that continuous treatment for 2 weeks with alnespirone, but not with 8-OH-DPAT, causes a functional desensitization of somatodendritic 5-HT1A receptors controlling 5-HT release in the DRN and frontal cortex.  相似文献   

14.
Abstract: The regulation of 5-HT2A receptor expression by an antisense oligodeoxynucleotide, complementary to the coding region of rat 5-HT2A receptor mRNA, was examined in a cortically derived cell line and in rat brain. Treatment of A1A1 variant cells, which express the 5-HT2A receptor coupled to the stimulation of phosphatidylinositol (PI) hydrolysis, with antisense oligodeoxynucleotide decreased the maximal stimulation of PI hydrolysis by the partial agonist quipazine and the number of 5-HT2A receptor sites as measured by the binding of 2-[125I]-iodolysergic acid diethylamide. Treatment of cells with random, sense, or mismatch oligodeoxynucleotide did not alter the stimulation of PI hydrolysis by quipazine or 5-HT2A receptor number. Intracerebroventricular infusion of antisense, but not mismatch, oligodeoxynucleotide for 8 days resulted in a significant increase in cortical 5-HT2A receptor density and an increase in headshake behavior induced by the 5-HT2 receptor agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane. The density of cortical 5-HT2A receptors was not altered by administration of antisense oligodeoxynucleotide for 1, 2, or 4 days. We hypothesize that in brain this antisense oligodeoxynucleotide relieved some form of translational suppression, resulting in an increase in 5-HT2A receptor expression.  相似文献   

15.
Abstract: The influence of the adenosine A2A receptor on the A1 receptor was examined in rat striatal nerve terminals, a model for other cells in which these receptors are coexpressed. Incubation of striatal synaptosomes with the A2A receptor agonist 2- p -(2-carboxyethyl)phenethylamino-5'- N -ethylcarboxamidoadenosine (CGS 21680) caused the appearance of a low-affinity binding site for the A1 receptor agonist 2-chloro- N 6-cyclopentyladenosine (CCPA). This effect was blocked by the A2A receptor antagonist ZM241385 and by the protein kinase C inhibitor chelerythrine, but not by the protein kinase A inhibitor N -(2-guanidinoethyl)-5-isoquinolinesulfonamide (HA 1004). The effect was not seen with striatal membranes or with hypotonically lysed synaptosomes. These results demonstrate a protein kinase C-mediated heterologous desensitisation of the A1 receptor by the A2A receptor.  相似文献   

16.
Abstract: 5-Hydroxytryptamine (5-HT) receptors contain seven putative transmembrane domains and couple via different guanine nucleotide binding proteins to specific effector enzymes. Studies with other receptors identify the second and third intracellular loops or the C-terminus of the receptor as important for selective effector coupling. However, it is not known which regions of the 5-HT receptor determine effector coupling specificity. To address this question, we constructed a chimeric 5-HT receptor in which the third intracellular (i3) loop is derived from the 5-HT2A receptor, which is coupled to activation of phospholipase C, and the rest of the sequence is derived from the 5-HT1B receptor, which is coupled to inhibition of adenylyl cyclase. The chimeric receptor exhibited ligand binding properties similar to those of the 5-HT1B receptor and distinct from those of the 5-HT2A receptor. This suggests that the i3 loop is not critical for the unique pharmacology of the 5-HT1B receptor. In contrast, the chimeric receptor exhibited signaling properties similar to those of the 5-HT2A receptor and distinct from those of the 5-HT1B receptor. This indicates that the i3 loop determines the effector coupling specificity of the 5-HT2A receptor.  相似文献   

17.
Glial cell line-derived neurotrophic factor (GDNF) affords neuroprotection in Parkinson's disease in accordance with its ability to bolster nigrostriatal innervation. We previously found that GDNF facilitates dopamine release in a manner dependent on adenosine A2A receptor activation. As motor dysfunction also involves modifications of striatal glutamatergic innervation, we now tested if GDNF and its receptor system, Ret ( rearranged during transfection ) and GDNF family receptor α1 controlled the cortico-striatal glutamatergic pathway in an A2A receptor-dependent manner. GDNF (10 ng/mL) enhanced (by ≈13%) glutamate release from rat striatal nerve endings, an effect potentiated (up to ≈30%) by the A2A receptor agonist CGS 21680 (10 nM) and prevented by the A2A receptor antagonist, SCH 58261 (50 nM). Triple immunocytochemical studies revealed that Ret and GDNF family receptor α1 were located in 50% of rat striatal glutamatergic terminals (immunopositive for vesicular glutamate transporters-1/2), where they were found to be co-located with A2A receptors. Activation of the glutamatergic system upon in vivo electrical stimulation of the rat cortico-striatal input induced striatal Ret phosphorylation that was prevented by pre-treatment with the A2A receptor antagonist, MSX-3 (3 mg/kg). The results provide the first functional and morphological evidence that GDNF controls cortico-striatal glutamatergic pathways in a manner largely dependent on the co-activation of adenosine A2A receptors.  相似文献   

18.
Picea sitchensis (Bong.) Carr. seedlings were exposed to SO2, NO2 and SO2+ NO2 during dormancy in controlled environments, and were taken to night temperatures of 4, 0, −5, −10 and −15 °C in a freezer. Conditions in the freezer were carefully monitored during the low–temperature treatments. In two experiments, different photoenvironments and temperature regimes were imposed prior to the cold treatments, and different effects were observed. In the first, only limited frost hardiness was achieved and night temperatures of −15 °C were lethal. Temperatures of −5 and − 10 °C led to poor survival of lateral buds, particularly in plants exposed to 45 ppb SO2. The poor bud break in plants exposed to SO2 and to − 5 °C resulted in a loss of the effectiveness of this temperature as a chill requirement. Pressure-volume analysis showed that the shoots of plants exposed to NO2 had greater elasticity (lower elastic moduli, e), so that loss of turgor occurred at lower relative water contents. In contrast, a hardening period (2 weeks in night/day temperatures of 3/10 °C and 8 h days at 50 μmol m−2 s−1 PAR) gave decreased elasticity and lower solute potentials of spruce shoots. In the second experiment, exposure to 30 ppb SO2 and SO2+ NO2 led to slight, but consistent, increases in frost injury to the needles of plants frozen to − 5 and − 10 °C. The results suggest that the main interaction of low temperatures and winter pollutants may be on bud survival rather than on needle damage, but that effects are subtle, only occurring with certain combinations of pollutant dose and cold treatment.  相似文献   

19.
Abstract: In the present study, we examined whether chronic exposure of C6BU-1 cells to 100 n M of several different types of antidepressants directly influences serotonin2A (5-HT2A) receptor-stimulated intracellular Ca2+ mobilization. Imipramine, desipramine, clomipramine, and maprotiline amplified the 5-HT response at 48, but not at 2, h. Imipramine increased the maximum response to 5-HT without altering the EC50 of the dose-response curve. This effect was time dependent and cycloheximide blocked the maximal induction, suggesting an essential role for protein synthesis in this process. Previous exposure of the cells to thrombin or isoproterenol did not influence 5-HT2A receptor function and pretreatment with imipramine did not alter the thrombin- or bradykinin-induced Ca2+ mobilization, which indicates that the effects of imipramine appear to be specific to the 5-HT2A receptor. The effect of imipramine was potently suppressed by a calmodulin antagonist, W-13, in a dose-dependent manner. Furthermore, this amplified 5-HT response was blocked by KN-93, but not by H-7. Taken together, these results suggest that imipramine has a modulatory effect on the 5-HT2A receptor-coupled intracellular Ca2+ in C6 cells through a calmodulin-dependent pathway, possibly involving Ca2+/calmodulin kinase activation.  相似文献   

20.
Corticotropin-releasing hormone (CRH) overproduction and serotonergic dysfunction have both been implicated in a range of psychiatric disorders, such as anxiety and depression, and several studies have shown interactions between these two neurotransmitter systems. In this study, we investigated the effects of CRH challenge on hypothalamo-pituitary-adrenal (HPA) axis activity in female transgenic mice overproducing CRH. Furthermore, the effects of mild stress on HPA axis activity and body temperature were investigated in these mice. Pre- and post-synaptic 5-HT1A receptor function were studied by monitoring body temperature and plasma corticosterone levels after challenge with the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propyl-amino)-tetralin (8-OH-DPAT). Hypothermia in response to 8-OH-DPAT treatment did not differ between transgenic and wild type mice, indicating unaltered somatodendritic 5-HT1A autoreceptor function in mice overproducing CRH. In wild type mice 8-OH-DPAT increased plasma corticosterone levels, but not in transgenic animals. CRH injection, however, increased corticosterone levels in both groups. These data suggest desensitization of post-synaptic, but not pre-synaptic, 5-HT1A receptors in mice overproducing CRH. These findings resemble those seen in depressed patients following 5-HT1A challenge, which is in accord with the hypothesized role of CRH in the pathogenesis of depression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号