首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Wolin, M. J. (University of Illinois, Urbana). Lysis of Vibrio succinogenes by ethylenediaminetetraacetic acid or lysozyme. J. Bacteriol. 91:1781-1786. 1966.-Cell suspensions of Vibrio succinogenes are lysed by ethylenediaminetetraacetic acid (EDTA) or lysozyme. Lysis occurs at alkaline pH and is prevented by 0.15 m NaCl or KCl or 0.3 m sucrose. The addition of 10(-3)m Mg(++), 10(-3)m spermine, or 10(-2)m Ca(++) prevents lysozyme lysis, and 10(-4)m spermine prevents EDTA lysis. EDTA lysis leads to the formation of a cell ghost, and lysozyme lysis leads to the formation of an empty round body. Freezing and thawing of cells permits lysozyme attack which is not prevented by the protective agents mentioned above. Much of the cell protein, and almost all of the nucleic acids, are released from the cells during EDTA lysis. Treatment of frozen-thawed cells with lysozyme at neutral pH does not cause release of more than 50% of the cell protein and 60% of the nucleic acids of the cells.  相似文献   

2.
A lytic enzyme was purified 600-fold with 12% recovery from lysates of Streptomyces venezuelae S13 infected with actinophage MSP2. The purified enzyme preparation was homogeneous as shown by polyacrylamide electrophoresis. The enzyme was active over a pH range 6.0 to 9.0 with a maximum at pH 7.5. The pH profile for stability was sharp, with an optimum at pH 7.5. Maximal activity occurred between 30 and 35 C. The enzyme was stable at 20 C or less. A 30-min exposure to 25, 30, 35, 40, 45, and 50 C produced an inactivation of 3, 40, 77, 82, 93, and 100%, respectively. Lytic activity was stimulated fivefold by either 5 x 10(-3)m Mg(2+) or Mn(2+) and three- and twofold by Ca(2+) and Ba(2+), respectively. Addition of Na(+), K(+), NH(4) (+), or Li(+) to the tris(hydroxymethyl)aminomethane-hydrochloride buffer did not alter the rate of lysis. Enzyme activity was inhibited 74 and 27% by 10(-4) and 10(-5)m ethylenediaminetetraacetic acid (EDTA), respectively. The inhibition by EDTA was reversed partially by addition of Mg(2+). Lytic activity was abolished by either 5 x 10(-4)m HgCl(2) or p-hydroxymercuribenzoate, whereas 5 x 10(-4)m CuSO(4) inhibited 72%. Cell wall solubilization paralleled the release of N-terminal amino groups and reached a level of 0.23 mumole per mg of cell walls. No release of reducing power was detected in treated or untreated cell wall suspensions. Tests for proteolytic activity were negative.  相似文献   

3.
1. The effects of teichoic acids on the Mg(2+)-requirement of some membrane-bound enzymes in cell preparations from Bacillus licheniformis A.T.C.C. 9945 were examined. 2. The biosynthesis of the wall polymers poly(glycerol phosphate glucose) and poly(glycerol phosphate) by membrane-bound enzymes is strongly dependent on Mg(2+), showing maximum activity at 10-15mm-Mg(2+). 3. When the membrane is in close contact with the cell wall and membrane teichoic acid, the enzyme systems are insensitive to added Mg(2+). The membrane appears to interact preferentially with the constant concentration of Mg(2+) that is bound to the phosphate groups of teichoic acid in the wall and on the membrane. When the wall is removed by the action of lysozyme the enzymes again become dependent on an external supply of Mg(2+). 4. A membrane preparation that retained its membrane teichoic acid was still dependent on Mg(2+) in solution, but the dependence was damped so that the enzymes exhibited near-maximal activity over a much greater range of concentrations of added Mg(2+); this preparation contained Mg(2+) bound to the membrane teichoic acid. The behaviour of this preparation could be reproduced by binding membrane teichoic acid to membranes in the presence of Mg(2+). Addition of membrane teichoic acid to reaction mixtures also had a damping effect on the Mg(2+) requirement of the enzymes, since the added polymer interacted rapidly with the membrane. 5. Other phosphate polymers behaved in a qualitatively similar way to membrane teichoic acid on addition to reaction mixtures. 6. It is concluded that in whole cells the ordered array of anionic wall and membrane teichoic acids provides a constant reservoir of bound bivalent cations with which the membrane preferentially interacts. The membrane teichoic acid is the component of the system which mediates the interaction of bound cations with the membrane. The anionic polymers in the wall scavenge cations from the medium and maintain a constant environment for the membrane teichoic acid. Thus a function of wall and membrane teichoic acids is to maintain the correct ionic environment for cation-dependent membrane systems.  相似文献   

4.
Effective disruption of Escherichia coli cells is achieved by the intracellularly accumulated recombinant murein hydrolase (Lactobacillus bacteriophage LL-H muramidase) after the addition of 5 mM thymol. Thymol destroys the integrity and electric potential of the cytoplasmic membrane, and as a consequence the muramidase can access and hydrolyze the cell wall murein leading to cell lysis. Lysis occurred within 5 min after the addition of thymol and seemed to be efficient at high culture densities. This lysis method does not require cell harvesting or addition of other cell wall weakening substances or exogenous enzymes. As a cell disruption method, thymol-triggered lysis is as efficient as sonication in the presence of 1% Triton. Furthermore, thymol did not interfere with the purification steps of Mur by expanded bed adsorption chromatography (EBA), suggesting that the lysis method presented here is well suited for large-scale production and purification of intracellular proteins of E. coli. Received 21 April 1998/ Accepted in revised form 5 December 1998  相似文献   

5.
Cell walls isolated from Bacillus psychrophilus autolyse at temperatures which support growth. At temperatures above the maximum growth temperature (28 C), a nonenzymatic lysis occurs. Removal of autolytic enzyme activity with 10 m LiCl had little effect on the rate or extent of lysis at elevated temperatures (37 and 45 C). Nonenzymatic lysis was characterized chemically by a decrease in the liberation of N-terminal groups, and the effects of pH, Ca(2+), and ethylenediaminetetraacetic acid suggest that ionic linkages are involved in much of the integrity of the cell wall of this psychrophile. The nonenzymatic absorbance decrease at 45 C can be reversed to the extent of 70 to 100% at 0 C. Centrifugation of a heat-lysed wall suspension separated a soluble protein component which is required for low-temperature reaggregation. Preliminary evidence indicates the insoluble residue which remains after temperature-mediated lysis is primarily peptidoglycan.  相似文献   

6.
Isolation of Mycoplasma Membranes by Digitonin   总被引:14,自引:7,他引:7       下载免费PDF全文
The cell membrane of Mycoplasma hominis was isolated by lysing the cells with digitonin. Electron microscopy and chemical, density gradient, and electrophoretic analyses of the membrane proteins showed the membranes so obtained, like those isolated by osmotic lysis, to be relatively free of cytoplasmic contaminants. Sensitivity to digitonin lysis depended on temperature but was not affected by Mg(2+) ions and was only slightly affected by the age of the culture. Accordingly, it seems that digitonin may be used for the isolation of cell membranes from sterol-requiring mycoplasmas that tend to be fairly resistant to osmotic lysis.  相似文献   

7.
Internodal cells of three species of Characeae, Nitella flexilis, Nitella axilliformis and Chara corallina, were analyzed for the contents of Ca(2+ )and Mg(2+) in the cytoplasm. To avoid contamination of Ca(2+) from the cell wall and vacuole, the vacuolar sap was replaced with a sorbitol solution containing Sr(2+) by the vacuolar perfusion method after the cell had been treated with Sr(2+). No significant difference in the cytoplasmic content of Mg(2+) was found among three species of Characeae, but significant differences in the cytoplasmic content of Ca(2+) were observed among them. The cytoplasmic Ca(2+) content of N. flexilis was 2.0 times that of N. axilliformis and 3.3 times that of C. corallina. The cytoplasmic drop was furthermore separated into two fractions: a chloroplast-free fraction and a chloroplast fraction. In the chloroplast-free fraction the Ca(2+) content of N. flexilis was 2.3 times that of C. corallina and 2.0 times that of N. axilliformis, while the Mg(2+) content was the same among the three species. In the chloroplast fraction N. flexilis contained about seven times more Ca(2+) and about two times more Mg(2+) than C. corallina. The difference in the cytoplasmic Ca(2+ )content was discussed in relation to the difference in the capacity for the hydration-induced Ca(2+) release existing among the three species.  相似文献   

8.
Jin H  Carlile C  Nolan S  Grote E 《Eukaryotic cell》2004,3(6):1664-1673
Membrane fusion requires localized destabilization of two phospholipid bilayers, but unrestrained membrane destabilization could result in lysis. prm1 mutant yeast cells have a defect at the plasma membrane fusion stage of mating that typically results in the accumulation of prezygotes that have fingers of membrane-bound cytoplasm projecting from one cell of each pair into its mating partner in the direction of the osmotic gradient between the cells. However, some prm1 mating pairs fuse successfully whereas the two cells in other prm1 mating pairs simultaneously lyse. Lysis only occurs if both mating partners are prm1 mutants. Osmotic stabilization does not protect prm1 mating pairs from lysis, indicating that lysis is not caused by a cell wall defect. prm1 mating pairs without functional mitochondria still lyse, ruling out programmed cell death. No excess lysis was found after pheromone treatment of haploid prm1 cells, and lysis did not occur in mating pairs when prm1 was combined with the fus1 and fus2 mutations to block cell wall remodeling. Furthermore, short (<1 microm) cytoplasmic microfingers indicating the completion of cell wall remodeling appeared immediately before lysis. In combination, these results demonstrate that plasma membrane contact is a prerequisite for lysis. Cytoplasmic microfingers are unlikely to cause lysis since most prm1 mating pairs with microfingers do not lyse, and microfingers were also detected before fusion in some wild-type mating pairs. The lysis of prm1 mutant mating pairs suggests that the Prm1 protein stabilizes the membrane fusion event of yeast mating.  相似文献   

9.
Among the eight strains of Listeria monocytogenes tested for lysozyme sensitivity, two were resistant to lysozyme but became sensitive after lipase pretreatment. Among the other six, one was very sensitive to lipase and another one was extremely susceptible to lysozyme. Stable protoplasts were formed from the lysozyme-resistant strain (42) by lipase and lysozyme treatment, which completely digested the cell wall. The cell wall (uranyl acetate-lead stained) was of a thick triple-layered profile, with the intermediate layer of low density. Lipase treatment for a short time (60 min) did not cause any alteration in structure, but prolonged treatment (180 min) caused extensive digestion of the plasma membrane and the cell wall, liberating cytoplasmic material. When the cells were treated with either lipase or lysozyme, a small number of protoplasts were extruded through the partly digested or weakened transverse cell wall, leaving an almost intact cell wall ghost. There were small vesicular structures in the interspace between cell wall and plasma membrane. Mesosomes of varied organization were prominent in electron micrographs, both in sections and in negatively stained preparations. These were largely everted during protoplasting in the form of tubules and as small peripheral buds; a few small vesicles also remained as intrusive structures, some of which were very unusual because they appeared to be enclosed by the inner layer of plasma membrane alone. Lysis of the protoplasts by dilution of the sucrose, while maintaining a constant ionic environment, liberated many small vesicular structures and fibrillar nuclear material.  相似文献   

10.
Treatment of a partially purified preparation of cell walls of Escherichia coli with Triton X-100 at 23 C resulted in a solubilization of 15 to 25% of the protein. Examination of the Triton-insoluble material by electron microscopy indicated that the characteristic morphology of the cell wall was not affected by the Triton extraction. Contaminating fragments of the cytoplasmic membrane were removed by Triton X-100, including the fragments of the cytoplasmic membrane which were normally observed attached to the cell wall. Treatment of a partially purified cytoplasmic membrane fraction with Triton X-100 resulted in the solubilization of 60 to 80% of the protein of this fraction. Comparison of the Triton-soluble and Triton-insoluble proteins from the cell wall and cytoplasmic membrane fractions by polyacrylamide gel electrophoresis after removal of the Triton by gel filtration in acidified dimethyl formamide indicated that the detergent specifically solubilized proteins of the cytoplasmic membrane. The proteins solubilized from the cell wall fraction were qualitatively identical to those solubilized from the cytoplasmic membrane fraction, but were present in different proportions, suggesting that the fragments of cytoplasmic membrane which are attached to the cell wall are different in composition from the remainder of the cytoplasmic membrane of the cell. Treatment of unfractionated envelope preparations with Triton X-100 resulted in the solubilization of 40% of the protein, and only proteins of the cytoplasmic membrane were solubilized. Extraction with Triton thus provides a rapid and specific means of separating the proteins of the cell wall and cytoplasmic membrane of E. coli.  相似文献   

11.
1. The extent to which the cytoplasmic membrane of the Gram-positive bacterium Bacillus licheniformis formed inside-out vesicles was studied with the freeze-fracture technique. The membrane orientation appeared to be dependent on the buffer compositon as well as on the lysis procedure used. 2. By manipulating these conditions, membrane preparations were obtained with the percentage of inside-out vesicles varying from 15 to 80%. 3. More vesicles had the opposite orientation when the cells were lysed in potassium phosphate buffer than when they were lysed in sodium phosphate buffer. Tris-HCl buffer favoured the formation of inside-out vesicles more than phosphate buffer. 4. Lysis of protoplasts in hypotonic buffers resulted in more inside-out vesicles than did direct lysis of cells in hypotonic media. 5. In an attempt to explain the observed differences, experiments were performed in which the morphology of thin-sectioned lysing cells in sodium phosphate buffer was compared with that in potassium phosphate buffer. The results from these experiments indicate that the formation of inside-out vesicles is brought about by an effect on the membrane itself rather than on the cell wall, on the cell wall membrane association, or on the cytoplasm.  相似文献   

12.
Isolated cell envelopes of a marine bacterium, M.B.3, have been prepared which possess a nonspecific, cation-activated nucleotidase. The cell envelope comprises approximately 35% (dry weight) of the whole cell and contains protein, 60.2%; lipids, 20.7%; hexose, 3.4%; and ribonucleic acid, 4.6%. No deoxyribonucleic acid could be detected in the preparations. The nucleotidase has an essential requirement for Mg(2+); maximum activation at pH 8.0 occurs at a divalent cation concentration of approximately 80 mm. At a Mg(2+) to adenosine 5'-triphosphate (ATP) ratio of 2:1, the enzyme was further stimulated by monovalent cations Na(+), K(+), NH(4) (+), and Li(+). Maximum activity was found at a monovalent ion concentration of approximately 0.3 m. The envelope preparation liberated inorganic orthophosphate (P(i)) from ATP, adenosine 5'-diphosphate (ADP), and adenosine 5'-monophosphate (AMP) at similar rates. Thin-layer and ion-exchange chromatography show that when AMP, ADP, and ATP were utilized as substrate, approximately 1, 2, and 3 moles of P(i), respectively, were produced per mole of adenosine. P(i) was also liberated from the 5'-triphosphates of guanosine, uridine, and cytidine. The enzyme preparation did not attack p-nitrophenyl phosphate, beta-glycerophosphate, or inorganic pyrophosphate. Sulfhydryl inhibitors p-chloromercuribenzoate, N-ethyl maleimide, and iodoacetate had little effect upon the nucleotidase activity. Ca(2+) and ethylenediaminetetraacetic acid caused complete inhibition of the system, whereas ouabain had no effect upon the enzyme activity. The concentrations of Na(+) (0.3 m) and Mg(2+) ions (60 to 80 mm) required for maximum ATP-hydrolyzing activity were similar to those concentrations necessary for maintenance of cell integrity and for the prevention of cell lysis.  相似文献   

13.
After fixation with glutaraldehyde and impregnation with tannic acid, the membrane that underlies the nerve terminals in Torpedo marmorata electroplaque presents a typical asymmetric triple-layered structure with an unusual thickness; in addition, it is coated with electron- dense material on its inner, cytoplasmic face. Filamentous structures are frequently found attached to these "subsynaptic densities." The organization of the subsynaptic membrane is partly preserved after homogenization of the electric organ and purification of acetylcholine- receptor (AchR)-rich membrane fragments. In vitro treatment at pH 11 and 4 degrees C of these AchR-rich membranes releases an extrinsic protein of 43,000 mol wt and at the same time causes the complete disappearance of the cytoplasmic condensations. Freeze-etching of native membrane fragments discloses remnants of the ribbonlike organization of the AchR rosettes. This organization disappears ater alkaline treatment and is replaced by a network which is not observed after rapid freezing and, therefore, most likely results from the lateral redistribution of the AchR rosettes during condition of slow freezing. A dispersion of the AchR rosettes in the plane of the membrane also occurs after fusion of the pH 11-treated fragments with phospholipid vesicles. These results are interpreted in terms of a structural stabilization and immobilization of the AchR by the 43,000- Mr protein binding to the inner face of the subsynaptic membrane.  相似文献   

14.
The cytoplasmic membrane of Saccharomyces carlsbergensis was isolated by enzymatic digestion of the yeast cell wall, followed by lysis of the protoplasts and fractionation by ultracentrifugation in a discontinuous sucrose density gradient. Location of the cytoplasmic membrane fraction on the sucrose gradient was made by labeling intact protoplasts with [G-3H]dansyl chloride, and was settled at the 50% (wt/vol) sucrose gradient (d = 1.186 g/cm3). Approximately 80% of the radioactivity was found in the membrane fraction prepared in the presence of Mg2+ ions. However, when protease inhibitors were used in the preparation step, the membrane fraction contained over 90% of the total radioactivity. The presence of Mg2+ ions during membrane isolation and purification enhanced the aggregation of membrane components but, at higher concentrations, as well as in the prolonged presence of Mg2+ ions in the membrane suspension, it caused the breakdown of membrane components. The membrane preparation contained Mg2+-adenosine triphosphatase, which was insensitive to oligomycin and ouabain. The distribution of Mg2+-adenosine triphosphatase in different fractions during sucrose gradient is reported.  相似文献   

15.
The cytoplasmic membrane of Saccharomyces carlsbergensis was isolated by enzymatic digestion of the yeast cell wall, followed by lysis of the protoplasts and fractionation by ultracentrifugation in a discontinuous sucrose density gradient. Location of the cytoplasmic membrane fraction on the sucrose gradient was made by labeling intact protoplasts with [G-3H]dansyl chloride, and was settled at the 50% (wt/vol) sucrose gradient (d = 1.186 g/cm3). Approximately 80% of the radioactivity was found in the membrane fraction prepared in the presence of Mg2+ ions. However, when protease inhibitors were used in the preparation step, the membrane fraction contained over 90% of the total radioactivity. The presence of Mg2+ ions during membrane isolation and purification enhanced the aggregation of membrane components but, at higher concentrations, as well as in the prolonged presence of Mg2+ ions in the membrane suspension, it caused the breakdown of membrane components. The membrane preparation contained Mg2+-adenosine triphosphatase, which was insensitive to oligomycin and ouabain. The distribution of Mg2+-adenosine triphosphatase in different fractions during sucrose gradient is reported.  相似文献   

16.
Cells of marine pseudomonad B-16 (ATCC 19855) washed with a solution containing 0.3 M NaCl, 50 mM MgCl2, and 10 mM KCl (complete salts) could be protected from lysis in a hypotonic environment if the suspending medium contained either 20 mM Mg2+, 40 mM Na+, or 300 mM K+. When the outer double-track layer (the outer membrane) of the cell envelope was removed to yield mureinoplasts, the Mg2+, Na+ or K+, requirements to prevent lysis were raised to 80, 210, and 400 mM, respectively. In the presence of 0.1% Triton X-100, 220, 320, and 360 mM Mg2+, Na+ or K+, respectively, prevented lysis of the normal cells. Mureinoplasts and protoplasts, however, lysed instantly in the presence of the detergent at all concentrations of Mg2+, Na+, or K+ tested up to 1.2 M. Thus, the structure of the outer membrane appears to be maintained by appropriate concentrations of Mg2+ or Na+ in a form preventing the penetration of Triton X-100 and thereby protecting the cytoplasmic membrane from dissolution by the detergent. K+ was effective in this capacity with cells washed with complete salts solution but not with cells washed with a solution of NaCl, suggesting that bound Mg2+ was required in the cell wall membrane for K+ to be effective in preventing lysis by the detergent. At high concentrations (1 M) K+ and Mg2+, but not Na+, appeared to destabilize the structure of the outer membrane in the presence of Triton X-100.  相似文献   

17.
1. The synthesis of a polymer of N-acetylglucosamine 1-phosphate, occurring in the walls of Staphylococcus lactis N.C.T.C. 2102, was examined by using cell-free enzyme preparations. The enzyme system was particulate, and probably represents fragmented cytoplasmic membrane. 2. Uridine diphosphate N-acetylglucosamine was the only substrate required for polymer synthesis and labelled substrate was used to show that N-acetylglucosamine 1-phosphate is transferred as an intact unit from substrate to polymer. 3. The properties of the enzyme system were studied. A high concentration of Mg(2+) or Mn(2+) was required for optimum activity, and the pH optimum was about 8.5. 4. End-group analysis during synthesis in vitro showed that newly formed chains contain up to about 15 repeating units. Pulse-labelling indicated that chain extension occurs by transfer from the nucleotide to the ;sugar-end' of the chain, i.e. to the end that is not attached to peptidoglycan in the wall.  相似文献   

18.
Previously, we showed that chitin synthase 2 (Chs2) is required for septum formation in Saccharomyces cerevisiae, whereas chitin synthase 1 (Chs1) does not appear to be an essential enzyme. However, in strains carrying a disrupted CHS1 gene, frequent lysis of buds is observed. Lysis occurs after nuclear separation and appears to result from damage to the cell wall, as indicated by osmotic stabilization and by a approximately 50-nm orifice at the center of the birth scar. Lysis occurs at a low pH and is prevented by buffering the medium above pH 5. A likely candidate for the lytic system is a previously described chitinase that is probably involved in cell separation. The chitinase has a very acidic pH optimum and a location in the periplasmic space that exposes it to external pH. Accordingly, allosamidin, a specific chitinase inhibitor, substantially reduced the number of lysed cells. Because the presence of Chs1 in the cell abolishes lysis, it is concluded that damage to the cell wall is caused by excessive chitinase activity at acidic pH, which can normally be repaired through chitin synthesis by Chs1. The latter emerges as an auxiliary or emergency enzyme. Other experiments suggest that both Chs1 and Chs2 collaborate in the repair synthesis of chitin, whereas Chs1 cannot substitute for Chs2 in septum formation.  相似文献   

19.
A study was made of the enzyme content of the isolated cell walls and of a plasma-membrane preparation obtained by centrifugation after enzymic digestion of the cell walls of baker's yeast. The isolated cell walls showed no hexokinase, alkaline phosphatase, esterase or NADH oxidase activity. It was concluded that these enzymes exist only in the interior of the cell. Further, only a negligible activity of deamidase was detectable in the cell walls. Noticeable amounts of saccharase, phosphatases hydrolysing p-nitrophenyl phosphate, ATP, ADP, thiamin pyrophosphate and PP(i), with optimum activity at pH3-4, and an activity of Mg(2+)-dependent adenosine triphosphatase at neutral pH, were found in the isolated cell walls. During enzymic digestion, the other activities appearing in the cell walls were mostly released into the medium, but the bulk of the Mg(2+)-dependent adenosine triphosphatase remained in the plasma-membrane preparation. Accordingly, it may be assumed that the enzymes released into the medium during digestion are located in the cell wall outside the plasma membrane, whereas the Mg(2+)-dependent adenosine triphosphatase is an enzyme of the plasma membrane. This enzyme differs from the phosphatases with pH optima in the range pH3-4 with regard to location, pH optimum, substrate specificity and different requirement of activators.  相似文献   

20.
The molecular structures of animal and human plasma membrane (Ca(2+)+Mg2+)-ATPases are not completely understood in part due to the fact that no suitable single crystal is available. The elucidation of the two-dimensional structure is in progress. The amino acid sequences of human erythrocyte and rat plasma membrane Ca2+ pump isoforms as well as of the pig smooth muscle plasma membrane Ca2+ pump are already known. This article reviews the present state of the knowledge in (Ca(2+)+Mg2+)-ATPase research of animal and human plasma membranes performed in the past few years, concerning in particular arrangements of proteolytically cleaved fragments, and relations between the erythrocyte (Ca(2+)+Mg2+)-ATPase in situ and the purified red cell enzyme, oxidative changes. Results of different experimental approaches concerning the structure of (Ca(2+)+Mg2+)-ATPases rather than the applications of the methods used are emphasized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号