首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
2.
Duplications of genes encoding highly connected and essential proteins are selected against in several species but not in human, where duplicated genes encode highly connected proteins. To understand when and how gene duplicability changed in evolution, we compare gene and network properties in four species (Escherichia coli, yeast, fly, and human) that are representative of the increase in evolutionary complexity, defined as progressive growth in the number of genes, cells, and cell types. We find that the origin and conservation of a gene significantly correlates with the properties of the encoded protein in the protein-protein interaction network. All four species preserve a core of singleton and central hubs that originated early in evolution, are highly conserved, and accomplish basic biological functions. Another group of hubs appeared in metazoans and duplicated in vertebrates, mostly through vertebrate-specific whole genome duplication. Such recent and duplicated hubs are frequently targets of microRNAs and show tissue-selective expression, suggesting that these are alternative mechanisms to control their dosage. Our study shows how networks modified during evolution and contributes to explaining the occurrence of somatic genetic diseases, such as cancer, in terms of network perturbations.  相似文献   

3.
Why do hubs tend to be essential in protein networks?   总被引:1,自引:0,他引:1       下载免费PDF全文
He X  Zhang J 《PLoS genetics》2006,2(6):e88
The protein–protein interaction (PPI) network has a small number of highly connected protein nodes (known as hubs) and many poorly connected nodes. Genome-wide studies show that deletion of a hub protein is more likely to be lethal than deletion of a non-hub protein, a phenomenon known as the centrality-lethality rule. This rule is widely believed to reflect the special importance of hubs in organizing the network, which in turn suggests the biological significance of network architectures, a key notion of systems biology. Despite the popularity of this explanation, the underlying cause of the centrality-lethality rule has never been critically examined. We here propose the concept of essential PPIs, which are PPIs that are indispensable for the survival or reproduction of an organism. Our network analysis suggests that the centrality-lethality rule is unrelated to the network architecture, but is explained by the simple fact that hubs have large numbers of PPIs, therefore high probabilities of engaging in essential PPIs. We estimate that ~ 3% of PPIs are essential in the yeast, accounting for ~ 43% of essential genes. As expected, essential PPIs are evolutionarily more conserved than nonessential PPIs. Considering the role of essential PPIs in determining gene essentiality, we find the yeast PPI network functionally more robust than random networks, yet far less robust than the potential optimum. These and other findings provide new perspectives on the biological relevance of network structure and robustness.  相似文献   

4.
Xu Y  Duanmu H  Chang Z  Zhang S  Li Z  Li Z  Liu Y  Li K  Qiu F  Li X 《Molecular biology reports》2012,39(2):1627-1637
Copy number variations (CNVs) are one type of the human genetic variations and are pervasive in the human genome. It has been confirmed that they can play a causal role in complex diseases. Previous studies of CNVs focused more on identifying the disease-specific CNV regions or candidate genes on these CNV regions, but less on the synergistic actions between genes on CNV regions and other genes. Our research combined the CNVs with related gene co-expression to reconstruct gene co-expression network by using single nucleotide polymorphism microarray datasets and gene microarray datasets of breast cancer, and then extracted the modules which connected densely inside and analyzed the functions of modules. Interestingly, all of these modules’ functions were related to breast cancer according to our enrichment analysis, and most of the genes in these modules have been reported to be involved in breast cancer. Our findings suggested that integrating CNVs and gene co-expressed relations was an available way to analyze the roles of CNV genes and their synergistic genes in breast cancer, and provided a novel insight into the pathological mechanism of breast cancer.  相似文献   

5.

Background

Genome-wide expression data of gene microarrays can be used to infer gene networks. At a cellular level, a gene network provides a picture of the modules in which genes are densely connected, and of the hub genes, which are highly connected with other genes. A gene network is useful to identify the genes involved in the same pathway, in a protein complex or that are co-regulated. In this study, we used different methods to find gene networks in the ciliate Tetrahymena thermophila, and describe some important properties of this network, such as modules and hubs.

Methodology/Principal Findings

Using 67 single channel microarrays, we constructed the Tetrahymena gene network (TGN) using three methods: the Pearson correlation coefficient (PCC), the Spearman correlation coefficient (SCC) and the context likelihood of relatedness (CLR) algorithm. The accuracy and coverage of the three networks were evaluated using four conserved protein complexes in yeast. The CLR network with a Z-score threshold 3.49 was determined to be the most robust. The TGN was partitioned, and 55 modules were found. In addition, analysis of the arbitrarily determined 1200 hubs showed that these hubs could be sorted into six groups according to their expression profiles. We also investigated human disease orthologs in Tetrahymena that are missing in yeast and provide evidence indicating that some of these are involved in the same process in Tetrahymena as in human.

Conclusions/Significance

This study constructed a Tetrahymena gene network, provided new insights to the properties of this biological network, and presents an important resource to study Tetrahymena genes at the pathway level.  相似文献   

6.
Hao D  Li C 《PloS one》2011,6(12):e28322
Most complex networks from different areas such as biology, sociology or technology, show a correlation on node degree where the possibility of a link between two nodes depends on their connectivity. It is widely believed that complex networks are either disassortative (links between hubs are systematically suppressed) or assortative (links between hubs are enhanced). In this paper, we analyze a variety of biological networks and find that they generally show a dichotomous degree correlation. We find that many properties of biological networks can be explained by this dichotomy in degree correlation, including the neighborhood connectivity, the sickle-shaped clustering coefficient distribution and the modularity structure. This dichotomy distinguishes biological networks from real disassortative networks or assortative networks such as the Internet and social networks. We suggest that the modular structure of networks accounts for the dichotomy in degree correlation and vice versa, shedding light on the source of modularity in biological networks. We further show that a robust and well connected network necessitates the dichotomy of degree correlation, suggestive of an evolutionary motivation for its existence. Finally, we suggest that a dichotomous degree correlation favors a centrally connected modular network, by which the integrity of network and specificity of modules might be reconciled.  相似文献   

7.
8.
9.
10.
The complex integrity of the cells and its sudden, but often predictable changes can be described and understood by the topology and dynamism of cellular networks. All these networks undergo both local and global rearrangements during stress and development of diseases. Here, we illustrate this by showing the stress-induced structural rearrangement of the yeast protein-protein interaction network (interactome). In an unstressed state, the yeast interactome is highly compact, and the centrally organized modules have a large overlap. During stress, several original modules became more separated, and a number of novel modules also appear. A few basic functions such as theproteasome preserve their central position; however, several functions with high energy demand, such the cell-cycle regulation loose their original centrality during stress. A number of key stress-dependent protein complexes, such as the disaggregation-specific chaperone, Hsp104 gain centrality in the stressed yeast interactome. Molecular chaperones, heat shock, or stress proteins became established as key elements in our molecular understanding of the cellular stress response. Chaperones form complex interaction networks (the chaperome) with each other and their partners. Here, we show that the human chaperome recovers the segregation of protein synthesis-coupled and stress-related chaperones observed in yeast recently. Examination of yeast and human interactomes shows that chaperones 1) are intermodular integrators of protein-protein interaction networks, which 2) often bridge hubs and 3) are favorite candidates for extensive phosphorylation. Moreover, chaperones 4) become more central in the organization of the isolated modules of the stressed yeast protein-protein interaction network, which highlights their importance in the decoupling and recoupling of network modules during and after stress. Chaperone-mediated evolvability of cellular networks may play a key role in cellular adaptation during stress and various polygenic and chronic diseases, such as cancer, diabetes or neurodegeneration.  相似文献   

11.
Genetic networks can characterize complex genetic relationships among groups of individuals, which can be used to rank nodes most important to the overall connectivity of the system. Ranking allows scarce resources to be guided toward nodes integral to connectivity. The greater sage‐grouse (Centrocercus urophasianus) is a species of conservation concern that breeds on spatially discrete leks that must remain connected by genetic exchange for population persistence. We genotyped 5,950 individuals from 1,200 greater sage‐grouse leks distributed across the entire species’ geographic range. We found a small‐world network composed of 458 nodes connected by 14,481 edges. This network was composed of hubs—that is, nodes facilitating gene flow across the network—and spokes—that is, nodes where connectivity is served by hubs. It is within these hubs that the greatest genetic diversity was housed. Using indices of network centrality, we identified hub nodes of greatest conservation importance. We also identified keystone nodes with elevated centrality despite low local population size. Hub and keystone nodes were found across the entire species’ contiguous range, although nodes with elevated importance to network‐wide connectivity were found more central: especially in northeastern, central, and southwestern Wyoming and eastern Idaho. Nodes among which genes are most readily exchanged were mostly located in Montana and northern Wyoming, as well as Utah and eastern Nevada. The loss of hub or keystone nodes could lead to the disintegration of the network into smaller, isolated subnetworks. Protecting both hub nodes and keystone nodes will conserve genetic diversity and should maintain network connections to ensure a resilient and viable population over time. Our analysis shows that network models can be used to model gene flow, offering insights into its pattern and process, with application to prioritizing landscapes for conservation.  相似文献   

12.
Understanding the mechanism of complex human diseases is a major scientific challenge. Towards this end, we developed a web-based network tool named iBIG (stands for integrative BIoloGy), which incorporates a variety of information on gene interaction and regulation. The generated network can be annotated with various types of information and visualized directly online. In addition to the gene networks based on physical and pathway interactions, networks at a functional level can also be constructed. Furthermore, a supplementary R package is provided to process microarray data and generate a list of important genes to be used as input for iBIG. To demonstrate its usefulness, we collected 54 microarrays on common human diseases including cancer, neurological disorders, infectious diseases and other common diseases. We processed the microarray data with our R package and constructed a network of functional modules perturbed in common human diseases. Networks at the functional level in combination with gene networks may provide new insight into the mechanism of human diseases. iBIG is freely available at http://lei.big.ac.cn/ibig.  相似文献   

13.

Background

Complex diseases are associated with altered interactions between thousands of genes. We developed a novel method to identify and prioritize disease genes, which was generally applicable to complex diseases.

Results

We identified modules of highly interconnected genes in disease-specific networks derived from integrating gene-expression and protein interaction data. We examined if those modules were enriched for disease-associated SNPs, and could be used to find novel genes for functional studies. First, we analyzed publicly available gene expression microarray and genome-wide association study (GWAS) data from 13, highly diverse, complex diseases. In each disease, highly interconnected genes formed modules, which were significantly enriched for genes harboring disease-associated SNPs. To test if such modules could be used to find novel genes for functional studies, we repeated the analyses using our own gene expression microarray and GWAS data from seasonal allergic rhinitis. We identified a novel gene, FGF2, whose relevance was supported by functional studies using combined small interfering RNA-mediated knock-down and gene expression microarrays. The modules in the 13 complex diseases analyzed here tended to overlap and were enriched for pathways related to oncological, metabolic and inflammatory diseases. This suggested that this union of the modules would be associated with a general increase in susceptibility for complex diseases. Indeed, we found that this union was enriched with GWAS genes for 145 other complex diseases.

Conclusions

Modules of highly interconnected complex disease genes were enriched for disease-associated SNPs, and could be used to find novel genes for functional studies.  相似文献   

14.
15.
The functional characterization of genes and their gene products is the main challenge of the genomic era. Examining interaction information for every gene product is a direct way to assemble the jigsaw puzzle of proteins into a functional map. Here we demonstrate a method in which the information gained from pull-down experiments, in which single proteins act as baits to detect interactions with other proteins, is maximized by using a network-based strategy to select the baits. Because of the scale-free distribution of protein interaction networks, we were able to obtain fast coverage by focusing on highly connected nodes (hubs) first. Unfortunately, locating hubs requires prior global information about the network one is trying to unravel. Here, we present an optimized 'pay-as-you-go' strategy that identifies highly connected nodes using only local information that is collected as successive pull-down experiments are performed. Using this strategy, we estimate that 90% of the human interactome can be covered by 10,000 pull-down experiments, with 50% of the interactions confirmed by reciprocal pull-down experiments.  相似文献   

16.
Park K  Kim D 《Proteins》2008,71(2):960-971
The protein and ligand interaction takes an important part in protein function. Both ligand and its binding site are essential components for understanding how the protein-ligand complex functions. Until now, there have been many studies about protein function and evolution, but they usually lacked ligand information. Accordingly, in this study, we tried to answer the following questions: how much ligand and binding site are associated with protein function, and how ligands themselves are related to each other in terms of binding site. To answer the questions, we presented binding similarity network of ligand. Through the network analysis, we attempted to reveal systematic relationship between the ligand and binding site. The results showed that ligand binding site and function were closely related (conservation ratio, 81%). We also showed conservative tendency of function in line with ligand structure similarity with some exceptional cases. In addition, the binding similarity network of ligand revealed scale-free property to some degree like other biological networks. Since most nodes formed highly connected cluster, a clustering coefficient was very high compared with random. All the highly connected ligands (hubs) were involved in various functions forming large cluster and tended to act as a bridge between modular clusters in the network.  相似文献   

17.
Ooi CH  Oh HK  Wang HZ  Tan AL  Wu J  Lee M  Rha SY  Chung HC  Virshup DM  Tan P 《PLoS genetics》2011,7(12):e1002415
MicroRNAs (miRNAs) are important components of cellular signaling pathways, acting either as pathway regulators or pathway targets. Currently, only a limited number of miRNAs have been functionally linked to specific signaling pathways. Here, we explored if gene expression signatures could be used to represent miRNA activities and integrated with genomic signatures of oncogenic pathway activity to identify connections between miRNAs and oncogenic pathways on a high-throughput, genome-wide scale. Mapping >300 gene expression signatures to >700 primary tumor profiles, we constructed a genome-wide miRNA-pathway network predicting the associations of 276 human miRNAs to 26 oncogenic pathways. The miRNA-pathway network confirmed a host of previously reported miRNA/pathway associations and uncovered several novel associations that were subsequently experimentally validated. Globally, the miRNA-pathway network demonstrates a small-world, but not scale-free, organization characterized by multiple distinct, tightly knit modules each exhibiting a high density of connections. However, unlike genetic or metabolic networks typified by only a few highly connected nodes ("hubs"), most nodes in the miRNA-pathway network are highly connected. Sequence-based computational analysis confirmed that highly-interconnected miRNAs are likely to be regulated by common pathways to target similar sets of downstream genes, suggesting a pervasive and high level of functional redundancy among coexpressed miRNAs. We conclude that gene expression signatures can be used as surrogates of miRNA activity. Our strategy facilitates the task of discovering novel miRNA-pathway connections, since gene expression data for multiple normal and disease conditions are abundantly available.  相似文献   

18.
To acquire system-level understanding of the intercellular junctional complex, protein–protein interactions occurring at the junctions of simple epithelial cells have been examined by network analysis. Although proper hubs (i.e., very rare proteins with exceedingly high connectivity) were absent from the junctional network, the most connected (albeit nonhub) proteins displayed a significant association with essential genes and contributed to the “small world” properties of the network (as shown by in vivo and in silico deletion, respectively). In addition, compared with a random network, the junctional network had greater tendency to form modules and subnets of densely interconnected proteins. Module analysis highlighted general organizing principles of the junctional complex. In particular, two major modules (corresponding to the tight junctions and to the adherens junctions/desmosomes) were linked preferentially to two other modules that acted as structural and signaling platforms.  相似文献   

19.

Background

Parkinson''s Disease (PD) is one of the most prevailing neurodegenerative diseases. Improving diagnoses and treatments of this disease is essential, as currently there exists no cure for this disease. Microarray and proteomics data have revealed abnormal expression of several genes and proteins responsible for PD. Nevertheless, few studies have been reported involving PD-specific protein-protein interactions.

Results

Microarray based gene expression data and protein-protein interaction (PPI) databases were combined to construct the PPI networks of differentially expressed (DE) genes in post mortem brain tissue samples of patients with Parkinson''s disease. Samples were collected from the substantia nigra and the frontal cerebral cortex. From the microarray data, two sets of DE genes were selected by 2-tailed t-tests and Significance Analysis of Microarrays (SAM), run separately to construct two Query-Query PPI (QQPPI) networks. Several topological properties of these networks were studied. Nodes with High Connectivity (hubs) and High Betweenness Low Connectivity (bottlenecks) were identified to be the most significant nodes of the networks. Three and four-cliques were identified in the QQPPI networks. These cliques contain most of the topologically significant nodes of the networks which form core functional modules consisting of tightly knitted sub-networks. Hitherto unreported 37 PD disease markers were identified based on their topological significance in the networks. Of these 37 markers, eight were significantly involved in the core functional modules and showed significant change in co-expression levels. Four (ARRB2, STX1A, TFRC and MARCKS) out of the 37 markers were found to be associated with several neurotransmitters including dopamine.

Conclusion

This study represents a novel investigation of the PPI networks for PD, a complex disease. 37 proteins identified in our study can be considered as PD network biomarkers. These network biomarkers may provide as potential therapeutic targets for PD applications development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号