首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Traditional tracer studies of cell proliferation fail to distinguish between label enrichment due to increased DNA repair versus DNA replication. We used the emerging stable (non-radiating) isotope-based dynamic metabolic profiling technique on HepG2 cells to determine synthesis pathways of nucleic acids from glucose and rates of proliferation using CG-MS assay of RNA and DNA enrichment. Comparing the isotopic enrichment curve in DNA with the theoretical curve based on cell growth, we observed that the measured tracer enrichment was significantly higher, indicating that surplus label was acquired during DNA repair. In particular, after the first duplication (3 days), 80.13% of the total enrichment observed corresponds to duplication and 19.87% corresponds to DNA repair as calculated from the [1, 2-13C2]-glucose incorporation curve. Our data indicate contemporary measurements of cell proliferation rates relying on tracer incorporation may be overestimated. 13C label was distributed between m1 (m1/Σm = 80) and m2 (m2/Σm = 14) of deoxyribose, indicating that most of the glucose carbon was acquired via direct glucose oxidation in the pentose cycle. The stable isotope technique distinguishes rates of DNA synthesis and repair via the oxidative and non-oxidative pentose cycle, separately, in one test, without inhibition of either process. The contribution of DNA repair in malignant cells to isotope accumulation in deoxyribose remains to be investigated.  相似文献   

2.
Summary Bromouracil mutagenesis was studied in several strains of E. coli in combination with measurement of incorporation of bromouracil in DNA. For levels below 10% total replacement of bromouracil for thymine, mutagenesis was negligible compared with higher levels of incorporation. Such a nonlinear response occurred both when the bromouracil was evenly distributed over the genome and when a small proportion of the genome was highly substituted. Also, the mutation frequency could be drastically lowered by amino acid starvation following bromouracil incorporation. These observations suggest the involvement of repair phenomena. Studies of mutagenesis in recA and uvrA mutants, as well as studies of prophage induction, did not support an error prone repair pathway of mutagenesis. On the other hand, uvrD and uvrE mutants, which are deficient in DNA mismatch repair, had much increased mutation frequencies compared with wild type cells. The mutagenic action of bromouracil showed specificity under the conditions used, as demonstrated by the inability of bromouracil to revert an ochre codon that was easily revertable by ultraviolet light irradiation. The results are consistent with a mechanism of bromouracil mutagenesis involving mispairing, but suggest that the final mutation frequencies depend on repair that removes mismatched bases.  相似文献   

3.
Arsenic compounds are known carcinogens. Although many carcinogens are also mutagens, we have previously shown that sodium arsenite is not mutagenic at either the Na+/K+ ATPase orhprt locus in Chinese hamster V79 cells. It can, however, enhance UV-mutagenesis. We now confirm the nonmutagenicity of sodium arsenite in line G12, a pSV2gpt-transformed V79 (hprt ) cell line, which is able to detect multilocus deletions in addition to point mutations and small deletions. The lack of arsenic mutagenicity has led to studies emphasizing its comutagenicity. Sodium arsenite at relatively nontoxic concentrations (5 μM for 24 h or 10 μM for 3 h) is comutagenic withN-methyl-N-nitrosourea (MMU) at thehprt locus in V79 cells. Using a nick translation assay, which measures DNA strand breaks by incorporating radioactive deoxyribonucleoside monophosphate at their 3′OH ends in permeabilized cells, we found that much more incorporation was seen in cells treated with MNU (4 mM, 15 min) followed by 3-h incubation with 10 μM sodium arsenite compared with cells exposed to the same MNU treatment followed by 3-h incubation without sodium arsenite. This result shows that in the presence of arsenite, strand breaks resulting from MNU or its repair accumulate over a 3-h period. We suggest that the repair of MNU-induced DNA lesions may be inhibited by arsenite either by affecting the incorporation of dNMPs into the MNU-damaged DNA template or by interfering with the ligation step.  相似文献   

4.
J. B. Boyd  R. B. Setlow 《Genetics》1976,84(3):507-526
Mutants of Drosophila melanogaster, with suspected repair deficiencies, were analyzed for their capacity to repair damage induced by X-rays and UV radiation. Analysis was performed on cell cultures derived from embryos of homozygous mutant stocks. Postreplication repair following UV radiation has been analyzed in mutant stocks derived from a total of ten complementation groups. Cultures were irradiated, pulse-labeled, and incubated in the dark prior to analysis by alkaline sucrose gradient centrifugation. Kinetics of the molecular weight increase in newly synthesized DNA were assayed after cells had been incubated in the presence or absence of caffeine. Two separate pathways of postreplication repair have been tentatively identified by mutants derived from four complementation groups. The proposed caffeine sensitive pathway (CAS) is defined by mutants which also disrupt meiosis. The second pathway (CIS) is caffeine insensitive and is not yet associated with meiotic functions. All mutants deficient in postreplication repair are also sensitive to nitrogen mustard. The mutants investigated display a normal capacity to repair single-strand breaks induced in DNA by X-rays, although two may possess a reduced capacity to repair damage caused by localized incorporation of high specific activity thymidine-3H. The data have been employed to construct a model for repair of UV-induced damage in Drosophila DNA. Implications of the model for DNA repair in mammals are discussed.  相似文献   

5.
Summary Primary cell cultures derived from embryos of a control stock of Drosophila melanogaster respond to ultraviolet light within the first hour after exposure with a decline in thymidine incorporation and a decline in the ability to form newly synthesized (nascent) DNA in long segments. Cells derived from two nonallelic excision-defective mutants (mei-9 and mus201) exhibit the same quantitative decline in both phenomena as do control cells. In contrast, cells from five nonallelic postreplication repair-defective mutants (mei-41, mus101, mus205, mus302 and mus310) respond to ultraviolet light by synthesizing nascent DNA in abnormally short segments. Two of these five mutants (mus302 and mus310) also exhibit unusually low thymidine incorporation levels after irradiation, whereas the other three mutants display the normal depression of incorporation.These results indicate that excision repair does not influence the amount or the length of nascent DNA synthesized in Drosophila cells within the first hour after exposure to ultraviolet light. Of the five mutations that diminish postreplication repair, only two reduce the ability of irradiated cells to synthesize normal amounts of DNA.Abbreviation used UV ultraviolet light — principal wavelength 254 nm  相似文献   

6.
Summary This paper describes a method of screening mutagenised populations of an E. coli gal A gal B F-prime merodiploid for mutants defective in recombination. The method relies on scoring colonies on Eosin-Methylene Blue agar that have fewer than normal numbers of Gal+ papillae. With a suitable choice of gal mutations most of the papillae arise by recombination and some of those colonies with less than normal numbers prove to be defective in some aspect of recombination or DNA repair. In addition to strains carrying mutations that can be ascribed to known loci, several novel mutant phenotypes were identified.  相似文献   

7.
Tunicamycin resistant mutants (TMR) were isolated and characterized from Chinese hamster ovary cells. One feature of this TMR mutants was a marked decrease in incorporation of radioactive glucosamine, both into membrane glycoproteins and G protein of vesicular stomatitis virus.

The cellular uptake and incorporation into acid insoluble materials of various radioactive substances, including glucosamine, galactosamine, mannose, 2-deoxyglucose and leucine, was examined for the purpose of determination whether the reduced incorporation of radioactive glucosamine into glycoproteins was due to a defect in the glycosylation step or decreased uptake of glucosamine by cells.

While incorporation of glucosamine and 2-deoxyglucose into acid insoluble fractions was reduced strikingly in the mutants, the incorporation of mannose and leucine were the same as in the parent cells.

The uptake of glucosamine in TMR cells was lower than that in the wild type cells, and the Km value for glucosamine uptake differed between the mutants and wild type cells. There was no obvious difference in the uptake of 2-deoxyglucose and mannose.  相似文献   

8.
Caffeine potentiates the lethal effects of ultraviolet and ionising radiation on wild-type Schizosaccharomyces pombe cells. In previous studies this was attributed to the inhibition by caffeine of a novel DNA repair pathway in S. pombe that was absent in the budding yeast Saccharomyces cerevisiae. Studies with radiation-sensitive S. pombe mutants suggested that this caffeine-sensitive pathway could repair ultraviolet radiation damage in the absence of nucleotide excision repair. The alternative pathway was thought to be recombinational and to operate in the G2 phase of the cell cycle. However, in this study we show that cells held in G1 of the cell cycle can remove ultraviolet-induced lesions in the absence of nucleotide excision repair. We also show that recombination-defective mutants, and those now known to define the alternative repair pathway, still exhibit the caffeine effect. Our observations suggest that the basis of the caffeine effect is not due to direct inhibition of recombinational repair. The mutants originally thought to be involved in a caffeine-sensitive recombinational repair process are now known to be defective in arresting the cell cycle in S and/or G2 following DNA damage or incomplete replication. The gene products may also have an additional role in a DNA repair or damage tolerance pathway. The effect of caffeine could, therefore, be due to interference with DNA damage checkpoints, or inhibition of the DNA damage repair/tolerance pathway. Using a combination of flow cytometric analysis, mitotic index analysis and fluorescence microscopy we show that caffeine interferes with intra-S phase and G2 DNA damage checkpoints, overcoming cell cycle delays associated with damaged DNA. In contrast, caffeine has no effect on the DNA replication S phase checkpoint in reponse to inhibition of DNA synthesis by hydroxyurea. Received: 16 June 1998 / Accepted: 13 July 1998  相似文献   

9.
We report measurements of the incorporation of radioactive molecules during short labeling periods, as a function of cell-cycle stage, using a cell-sorter-based technique that does not require cell synchronization. We have determined: (1) tritiated thymidine (3H-TdR) incorporation throughout S-phase in Lewis lung tumor cells in vitro both before and after treatment with cytosine arabinoside; (2) 3H-TdR incorporation throughout S-phase in KHT tumor cells in vitro and in vivo; (3) 3H-TdR incorporation throughout S-phase in Chinese hamster ovary cells and compared it with DNA synthesis throughout S-phase; (4) a mathematical expression describing 3H-TdR incorporation throughout S-phase in Chinese hamster M3-1 cells; and (5) the simultaneous incorporation of 3H-TdR and 35S-methionine as they are related to cell size and DNA content in S49 mouse lymphoma cells. In asynchronously growing cells in vitro and in vivo, 3HH-TdR incorporation was generally low in early and late S-phase and highest in mid-S-phase. However, in Lewis lung tumor cells treated with cytosine arabinoside 3H-TdR incorporation was highest in early and late S-phase and lowest in mid-S-phase. Incorporation of 35S-methionine increased continuously with cell size and DNA content. Incorporation of 3H-TdR in CHO cells was proportional to DNA synthesis.  相似文献   

10.
Summary Cell cultures prepared from embryos of a control stock of Drosophila melanogaster respond to ultraviolet light with a decline and subsequent recovery both of thymidine incorporation and in the ability to synthesize nascent DNA in long segments. Recovery of one or both capacities is absent or diminished in irradiated cells from ten nonallelic mutants that are defective in DNA repair and from four of five nonallelic mutagen-sensitive mutants that exhibit normal repair capabilities. Recovery of thymidine incorporation is not observed in nine of ten DNA repair-defective mutants. On the other hand, partial or complete recovery of incorporation is observed in all but one repair-proficient mutagen-sensitive mutant.Irradiated cells from two mutants that display no excision capacity exhibit a gradual arrest of thymidine incorporation within 20 h after the initial decline. This arrest of incorporation is not observed in mutants exhibiting only partial defects in excision repair.Recovery of the ability to synthesize nascent DNA in long segments is normal in cells from the two mutants that display no excision capacity, indicating that recovery does not depend upon the excision of pyrimidine dimers from cellular DNA. Recovery of that ability is not observed, however, in cells from one partially excision-defective mutant, two of three postreplication repair-defective mutants, two of four mutants defective in both excision and postreplication repair, and one of five repair-proficient mutagen-sensitive mutants. These results indicate that recovery of normal DNA replication in irradiated Drosophila cells depends upon the activity of several functions.Abbreviation used UV ultraviolet light — principal wavelength 254 nm  相似文献   

11.
The incorporation of [3H]thymidine into DNA due to unscheduled DNA synthesis (UDS) induced by N-OH-2-acetylaminofluorene (N-OH-AAF), aflatoxin B1 (AFB1), ethyl methanesulfonate (EMS) and ultra-violet light was quantitated by autoradiography and by scintillation spectrometry on acid precipitable macromolecules or DNA insolated by isopycnic banding in cesium chloride (CsCl). Dose-dependent increases in UDS due to N-OH-AAF and AFB1 treatment were found. Only 2-fold increases at the highest dose levels were found, however, when incorporated [3H]thymidine was quantitated by scintillation spectrometry. Seven, 11, and 25-fold increases in UDS induced by AFB1, N-OH-AAF and ultra-violet light, respectively, were found when incorporated [3H]thymidine was quantitated by autoradiography, indicating a high sensitivity for detecting ‘long patch’ repair by this technique. Scintillation spectrometry was completely ineffective in detecting EMS-induced UDS, whereas autoradiography demonstrated a small, but significant induction in [3H]thymidine incorporation at high dose levels. The non-proliferative nature of the primary hepatocyte prohibits the uniform radioactive prelabeling of DNA, necessary in other techniques, for the detection of ‘short patch’ repair induced by compounds such as EMS. Therefore, the sensitivity of the primary cultured rat hepatocyte in conjunction with UDS for detecting DNA damage caused by mutagens and carcinogens which induce ‘short patch’ repair may be limited to the autoradiographic analysis of the unscheduled incorporation of [3H]thymidine.  相似文献   

12.
Cells use homology‐dependent DNA repair to mend chromosome breaks and restore broken replication forks, thereby ensuring genome stability and cell survival. DNA break repair via homology‐based mechanisms involves nuclease‐dependent DNA end resection, which generates long tracts of single‐stranded DNA required for checkpoint activation and loading of homologous recombination proteins Rad52/51/55/57. While recruitment of the homologous recombination machinery is well characterized, it is not known how its presence at repair loci is coordinated with downstream re‐synthesis of resected DNA. We show that Rad51 inhibits recruitment of proliferating cell nuclear antigen (PCNA), the platform for assembly of the DNA replication machinery, and that unloading of Rad51 by Srs2 helicase is required for efficient PCNA loading and restoration of resected DNA. As a result, srs2Δ mutants are deficient in DNA repair correlating with extensive DNA processing, but this defect in srs2Δ mutants can be suppressed by inactivation of the resection nuclease Exo1. We propose a model in which during re‐synthesis of resected DNA, the replication machinery must catch up with the preceding processing nucleases, in order to close the single‐stranded gap and terminate further resection.  相似文献   

13.
Killer toxins from Kluyveromyces lactis (zymocin) and Pichia acaciae (PaT) were found to disable translation in target cells by virtue of anticodon nuclease (ACNase) activities on tRNAGlu and tRNAGln, respectively. Surprisingly, however, ACNase exposure does not only impair translation, but also affects genome integrity and concomitantly DNA damage occurs. Previously, it was shown that homologous recombination protects cells from ACNase toxicity. Here, we have analyzed whether other DNA repair pathways are functional in conferring ACNase resistance as well. In addition to HR, base excision repair (BER) and postreplication repair (PRR) promote clear resistance to either, PaT and zymocin. Comparative toxin sensitivity analysis of BER mutants revealed that its ACNase protective function is due to the endonucleases acting on apurinic (AP) sites, whereas none of the known DNA glycosylases is involved. Because PaT and zymocin require the presence of the ELP3/TRM9-dependent wobble uridine modification 5-methoxy-carbonyl-methyl (mcm5) for tRNA cleavage, we analyzed toxin response in DNA repair mutants additionally lacking such tRNA modifications. ACNase resistance caused by elp3 or trm9 mutations was found to rescue hypersensitivity of DNA repair defects, consistent with DNA damage to occur as a consequence of tRNA cleavage. The obtained genetic evidence promises to reveal new aspects into the mechanism linking translational fidelity and genome surveillance.  相似文献   

14.
Leaf growth consists of two basic processes, cell division and cell enlargement. DNA synthesis is an integral part of cell division and can be studied with autoradiographic techniques and incorporation of some labeled precursor. Studies were made on the synthesis of nuclear DNA through incorporation of 3H-thymidine in various parts of the lamina during the entire course of leaf development of Xanthium pennsylvanicum. The time course analysis of DNA synthesis was correlated with cell division and rates of cell enlargement. Significant differences in 3H-thymidine incorporation were found in various parts of the lamina. Cell division and DNA synthesis were highest in the early stages of development. Since no 3H-thymidine was incorporated after cessation of cell division (LPI 2.8) in the leaf lamina, it appears that DNA synthesis is not needed for enlargement and differentiation of Xanthium cells. Rates of cell enlargement were negligible in the early development and reached their maximum after cessation of mitoses, between plastochron ages (LPI) 3 and 4. Cells matured between LPI's 5 and 6. Enzymatic activity was correlated with cell division and cell differentiation at various stages of leaf development.  相似文献   

15.
We have cloned, sequenced and disrupted the checkpoint genes RAD17, RAD24 and MEC3 of Saccharomyces cerevisiae. Mec3p shows no strong similarity to other proteins currently in the database. Rad17p is similar to Rec1 from Ustilago maydis, a 3′ to 5′ DNA exonuclease/checkpoint protein, and the checkpoint protein Rad1p from Schizosaccharomyces pombe (as we previously reported). Rad24p shows sequence similarity to replication factor C (RFC) subunits, and the S. pombe Rad17p checkpoint protein, suggesting it has a role in DNA replication and/or repair. This hypothesis is supported by our genetic experiments which show that overexpression of RAD24 strongly reduces the growth rate of yeast strains that are defective in the DNA replication/repair proteins Rfc1p (cdc44), DNA polα (cdc17) and DNA polδ (cdc2) but has much weaker effects on cdc6, cdc9, cdc15 and CDC + strains. The idea that RAD24 overexpression induces DNA damage, perhaps by interfering with replication/repair complexes, is further supported by our observation that RAD24 overexpression increases mitotic chromosome recombination in CDC + strains. Although RAD17, RAD24 and MEC3 are not required for cell cycle arrest when S phase is inhibited by hydroxyurea (HU), they do contribute to the viability of yeast cells grown in the presence of HU, possibly because they are required for the repair of HU-induced DNA damage. In addition, all three are required for the rapid death of cdc13 rad9 mutants. All our data are consistent with models in which RAD17, RAD24 and MEC3 are coordinately required for the activity of one or more DNA repair pathways that link DNA damage to cell cycle arrest. Received: 8 April 1997 / Accepted: 10 May 1997  相似文献   

16.
We described product analysis of DNA synthesized in chloroplast lysate from liverwort Marchantia polymorpha L. cell suspension cultures. Characteristics of in vitro DNA synthesis by chloroplast lysate using bacteriophage ?X174 single-stranded DNA were very similar to those in the case of double-stranded calf thymus DNA reported previously. Autoradiographic analysis clearly showed the incorporation of radioactive [α-32P]-dCTP into DNA molecules associated with bacteriophage ?X174 single-stranded template DNA, indicating conversion of bacteriophage ?X174 single-stranded DNA to double-stranded DNA (RF III, double-stranded linear molecule). Experiments on the fate of [32P]-labeled single-stranded DNA also showed a clear conversion of the single-stranded DNA to double-stranded DNA. Furthermore, patterns of sucrose density gradient centrifugations (neutral and alkaline) showed the production of two major components in in vitro DNA synthesis by chloroplast lysate. This also indicated conversion of bacteriophage ?X174 single-stranded DNA to double-stranded DNA (RF III form). Our results suggest that the mechanism of chloroplast DNA replication could be the mode of strand-displacement DNA synthesis as seen in animal mitochondrial DNA synthesis.  相似文献   

17.
Summary To identify the nature and origin of spontaneous mutability we developed a screening procedure suitable to isolate antimutators showing a lower error rate than 10-10 per base per replication. Among about 500,000 mutagenized colonies we found 20 mutants showing a reduced spontaneous mutability. These antimutators can be subdivided into three groups: (i) Mutants in which the level of spontaneous mutability.is reduced due to an increase in efficiency of the error correcting mechanism (amu4). (ii) Mutants which are deficient in several pathways of DNA repair. This finding supports the hypothesis that much spontaneous mutability is due to error-prone repair (amu59, amu47, amu50, amu62, amu43, amu38). (iii) Mutants in which the antimutator effect seems to be the result of an auxotrophy such as Pur- (amu17), Thr- (amu1, amu28) and Ser- (amu31). This finding might support the hypothesis that metabolically induced lesions are important in spontaneous mutagenesis.Eleven of these antimutators were mapped at ten bacterial loci in the following positions: amu31 (2 min); amu4 (4 min); amu62 (82 min); amu47 (85 min); amu59 (86 min); amu17 (89 min); amu50 (95 min); amu1/amu28 (100 min); amu38 (23–27 min) and amu43 (74–81 min).  相似文献   

18.
Cells of B. subtilis exposed to temperatures between 0 and 5 C are permeable to small molecules not normally able to pass through the cell envelope. As a result, deoxyribonucleotide triphosphates (dXTPs) are incorporated into DNA if the reaction mixture contains all four dXTPs. Since this incorporation is insensitive to 6-(p-hydroxyphenylazo)-uracil and is not observed in DNA Polymerase I mutants, we conclude it reflects DNA repair rather than the DNA replication which can be observed in cells permeabilized with toluene.  相似文献   

19.
Endothelial cells from injured frog corneas undergo increased 3H-uridine and 3H-actinomycin D (3H-AMD) incorporation as judged by autoradiography. The increase in 3H-AMD binding occurs when living endothelium is labeled in vitro or when fixed preparations are exposed to the drug. The changes in 3H-AMD incorporation detected by the two methods are comparable (55 and 62 % for living and pre-fixed tissue respectively). However, when fixed endothelium is also de-histonized with 2 N HCl, differential binding of 3H-AMD is eliminated. This result suggests that the enhanced incorporation of 3H-AMD into nuclei is at least partly due to a modification in the association of chromosomal proteins with DNA and not entirely to cell permeability changes that may accompany wound repair. This contrasts with observations of cells that are killed outright by the injury. Such cells bind very large amounts of 3H-AMD compared with their living neighbors. Here the difference in incorporation is eliminated by prefixation. Thus, in the dead cells increased binding may be due to a reduction of cell surface permeability barriers which accompanies cell morbidity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号